Способ получения синтез-газа

Изобретение относится к высокотемпературным каталитическим окислительным способам превращения метана с получением синтез-газа и может быть использовано в химической технологии. В реактор подают исходную газовую смесь, содержащую смесь метана и молекулярного кислорода. В реактор помещен катализатор, а свободный объем заполнен инертной насадкой. Катализатор представляет из себя сложный оксид общей формулы NdaCabCucNidCOeOf, где а=0, 1, 2; b=0, 1, 2; с=0, 1; d=0, 1, 2; е=0, 1, 2; f=3, 4, 5. Катализатор получен путем растворения исходных веществ в воде, выпаривания образованного раствора до загустевания, высушивания полученного продукта в муфельной печи при 250-350°C и последующего прокаливания в течение 4-6 ч при 900-1000°C. В качестве исходных веществ используют водорастворимые соединения Nd, Са, Со, Ni, Cu, образующие при прокаливании оксиды указанных металлов. Технический результат: повышение конверсии метана, выходов оксида углерода и водорода, упрощение технологии проведения способа и сокращение затрат на процесс. 9 з.п. ф-лы, 1 табл., 48 пр.

 

Изобретение относится к области химической технологии, а именно к высокотемпературным каталитическим окислительным способам превращения метана с получением синтез-газа: смеси Н2 и СО, являющегося исходным сырьем для получения моторных топлив, метанола, диметилового эфира, альдегидов, спиртов и других ценных веществ, к катализаторам, использующимся при получении синтез-газа, и способам их получения.

Известен способ получения синтез-газа путем каталитического превращения углеводородов в присутствии кислородсодержащих газов и/или паров воды (RU 2204434, 2003). Катализатором процесса превращения является сложный композит, содержащий смешанные оксиды со структурой перовскита или флюорита и переходные и/или благородные металлы, который дополнительно содержит компоненты с низким коэффициентом термического расширения. Катализаторы готовят сложным многостадийным синтезом носителя, состоящего из оксида алюминия или смешанного каркасного фосфата циркония, кальция и стронция, которые затем пропитывают растворами солей переходных металлов, которые после высушивания и прокаливания образуют смешанный оксид со структурой перовскита M1B1-yMyOz и/или оксид со структурой флюорита где М - элемент 8 группы (Pt, Rh, Ir), М1 - редкоземельный или щелочно-земельный элемент, М2 - элемент IV b группы Периодической системы (Zr, Hf), В - переходный элемент - 3d элементы 4-го периода, 0,01<x<1,0, у<1, z определяется степенью окисления катионов и их стехиометрическим соотношением. Описано превращение на использованных катализаторах газовой смеси, содержащей 25% метана, 12,5% кислорода, остальное азот. При температурах 720-790°C конверсия метана составляет 70-99%, селективность по СО 88-99%, по водороду 73-99%.

Недостатком способа является проведение процесса при сильном разбавлении метан-кислородной смеси азотом, ведущее к необходимости последующего проведения разделения получаемого синтез-газа и инертного разбавителя, что является очень трудоемким и дорогостоящим процессом. Указанная необходимость диктуется тем, что разбавленный синтез-газ не пригоден для практического использования. Кроме того, используемому в способе катализатору свойственна сложная многостадийная процедура приготовления катализатора, а также дороговизна, обусловленная использованием металлов платиновой группы.

Известен способ парциального окисления метана кислородом в реакционной смеси с избытком метана в присутствии катализатора - оксида со структурой перовскита, содержащего редкоземельные и переходные элементы, дополнительно содержащего Al2O3 (RU 2144844, 2003). Массовое отношение компонентов катализатора составляет: перовскит ABOx 5-40, носитель - Al2O3 60-95, где А - редкоземельный элемент, В - переходный элемент, который включает 3d элементы IV периода Периодической таблицы, x определяется степенью окисления А, В и их стехиометрическим соотношением.

Процесс селективного окисления метана кислородом проводят в проточном реакторе при температуре 700-850°C, объемной скорости 25000-200000 час-1 и составе реакционной смеси СН4:O2:N2=1:2:12 или 1:2:25.

Катализатор готовят в 2 этапа - приготовление носителя и нанесение активного компонента. Для приготовления Al2O3 в лопастном смесителе смешивают корунд и переосажденный гидроксид алюминия, взятые в соотношении 1:1, в присутствии азотной кислоты в качестве пептизатора. В качестве поверхностно-активного вещества вводят 1% глицерина. Полученную пасту формуют в виде черенков или микроблоков сотовой структуры через специальную насадку с помощью шприца. Далее носитель сушат и прокаливают при 1300°C. Полученный носитель дробят, отсеивают фракцию 0,5-0,25 мм и пропитывают растворами нитратов редкоземельных элементов (например, нитратов La, Се, Nd) и нитратов переходных элементов (например, нитратов Со, Ni, Mn) или/и растворами - H2PtCl6, H2IrCl6, RhCl3. После пропитки катализатор сушат и прокаливают на воздухе при 900°C 2 часа. Стадии пропитки и прокаливания могут повторяться.

Наибольшую каталитическую активность достигают на катализаторе состава 40% LaCo0,96Ir0,04/α-Al2O3. При подаче на приготовленный катализатор газовой смеси, состоящей из метана, кислорода и гелия в соотношении СН4:O2:Не=2:1:12, с объемной скоростью 120000 л/час, при 800° достигают конверсию метана 98%, селективность по Н2 и СО, равную 100%, что соответствует выходу целевого продукта 98%. На катализаторе 20% NdCoO3/Al2O3 при подаче газовой смеси, состоящей из метана, кислорода и гелия в соотношении СН4:O2:Не=2:1:25, с объемной скоростью 120000 л/час, при 850°C достигают конверсию 85%, селективность по Н2 85%, по СО 87%, что соответствует выходам Н2 и СО 72% и 74% соответственно.

Недостатком способа является проведение процесса при сильном разбавлении метан-кислородной смеси инертным газом - азотом или гелием. Процедура разделения получаемого синтез-газа и инертного разбавителя является очень трудоемким и дорогостоящим процессом. Необходимость разделения диктуется тем, что разбавленный синтез-газ не пригоден для практического использования.

Наиболее близким к заявляемому изобретению по технической сущности и достигаемому эффекту является способ получения синтез-газа (RU 2433950, 2011) путем высокотемпературного каталитического окислительного превращения метана, заключающийся в подаче в реактор, в который помещен катализатор, а свободный объем которого заполнен инертной насадкой, исходной газовой смеси, содержащей смесь метана и молекулярного кислорода без инертного газа со скоростью 4315-24100 мл/г катализатора в час. Используемый в процессе катализатор представляет из себя сложный оксид с слоистой перовскитной структурой, содержащий редкоземельные элементы - La или Nd, щелочно-земельные элементы - Sr или Са, и переходный элемент - Со, отвечающий формулам LaSrCoO4 или NdCaCoO4. При этом катализатор получают путем механического перемешивания и последующего прокаливания при температуре 1100°C твердой порошкообразной смеси, содержащей, в зависимости от состава катализатора, оксид кобальта, оксид лантана или оксид неодима, карбонат стронция или карбонат кальция, взятые в стехиометрических соотношениях, отвечающих вышеуказанным формулам. Исходные компоненты в стехиометрических количествах, соответствующих формулам LaSrCoO4 и NdCaCoO4, перетирают в фарфоровой ступке или планетарной мельнице и образовавшуюся порошкообразную смесь прокаливают при 1100°C, затем снова перетирают и прокаливают при 1200°C. Способ при температуре 850-910°C обеспечивает конверсию метана до 92%, селективность по Н2 до 97,7%, по СО до 99,7%, выход Н2 до 83%, СО до 85%. и производительность катализатора по СО - до 10900 мл/г/ч. Недостатками способа являются недостаточно высокие выходы водорода и СО, а также недостаточно высокая конверсия метана, содержание которого в получаемом синтез-газе затрудняет его последующее использование. При этом используемому катализатору свойственна сложная процедура его приготовления. Таким образом, известный способ получения синтез-газа недостаточно эффективен.

Задачей изобретения является повышение эффективности способа получения синтез-газа.

Поставленная задача достигается созданием способа получения синтез-газа высокотемпературным каталитическим окислительным превращением метана, заключающегося в подаче в реактор, в который помещен катализатор, а свободный объем которого заполнен инертной насадкой, исходной газовой смеси, содержащей смесь метана и молекулярного кислорода, причем катализатор представляет из себя сложный оксид общей формулы NdaCabCucNidCoeOf, где а=0, 1, 2; b=0, 1, 2; c=0, 1; d=0, 1, 2; е=0, 1, 2; f=3, 4, 5, полученный путем растворения исходных веществ в воде, выпаривания образованного раствора до загустевания, высушивания полученного продукта в муфельной печи при 250-350°C и последующего прокаливания в течение 4-6 ч при 900-1000°C с использованием в качестве исходных веществ водорастворимых соединений Nd, Са, Со, Ni, Cu, образующих при прокаливании оксиды указанных металлов.

Предпочтительно в качестве исходных веществ используют

- нитрат ниодима Nd(NO3)3·6H2O, оксид кальция СаО, нитрат кобальта Со(NO3)2·6H2O, нитрат никеля Ni(NO3)2·6H2O, нитрат меди Cu(NO3)2·6H2O, взятые в стехиометрических соотношениях, отвечающих общей формуле NdaCabCucNidCoeOf, где а=0, 1, 2; b=0, 1, 2; с=0, 1; d=0, 1, 2; е=0, 1, 2; f=3, 4, 5;

- Nd(NO3)3·6H2O, Со(No3)2·6H2O в стехиометрических количествах, соответствующих формуле NdCoO3;

- Nd(NO3)3·6H2O, СаО, Co(NO3)2·6H2O в стехиометрических количествах, соответствующих формуле NdCaCoO4;

- Nd(NO3)3·6H2O, Co(NO3)2·6H2O, Ni(NO3)2·6H2O в стехиометрических количествах, соответствующих формуле NdNiCoO4;

- Nd(NO3)3·6H2O, Co(NO3)2·6H2O, Cu(NO3)2·6H2O в стехиометрических количествах, соответствующих формуле NdCuCoO4;

- СаО, Со(NO3)2·6H2O в стехиометрических количествах, соответствующих формуле Ca2Co2O5;

- Nd(NO3)3·6H2O, Ni(NO3)2·6H2O в стехиометрических количествах, соответствующих формуле Nd2Ni2O5.

Окислительное превращение метана преимущественно осуществляют при температуре на катализаторе 860-958°C.

В качестве исходной газовой смеси преимущественно используют смесь метана и молекулярного кислорода с объемным отношением метан:молекулярный кислород 2:1.

Получаемый технический результат заключается в повышении конверсии метана, выходов оксида углерода и водорода, в упрощении технологии проведения способа и сокращении затрат за счет проведения процесса в отсутствие инертных газов, а также использования катализатора, получаемого более простым способом за счет отсутствия сложной стадии помола твердых исходных реагентов и снижения температуры прокаливания катализатора.

Сущность изобретения заключается в следующем.

Процесс высокотемпературного каталитического окислительного превращения метана в смесь СО и Н2 осуществляют в обогреваемом кварцевом реакторе проточного типа, изготовленном в виде трубки U-образной формы с карманом для термопары, расположенным между входящей и выходящей трубками реактора. В нижней части реактора помещают катализатор, а свободный объем реактора до и после катализатора заполняют кварцевой крошкой. Исходное сырье представляет собой смесь метана и молекулярного кислорода. Причем возможно использование в качестве исходного сырья смеси магистрального природного газа и технического кислорода. Возможно, также, в качестве кислорода использовать воздух и смесь воздуха с инертными газами.

Исходную сырьевую газовую смесь подают в реактор, в котором она достигает катализатора, и осуществляют нагрев катализатора до температуры 755-965°C, предпочтительно до 860-958°C, которую поддерживают в течение протекания всего процесса окислительного превращения метана. Подачу сырья в реактор осуществляют со скоростью 8,8-9,6 л/г катализатора в час (далее - л/г/ч). Объемное отношение метан:кислород в исходной газовой смеси может составлять 1,5:1-4:1, предпочтительно 2:1.

Катализатор, на котором ведут процесс окислительного превращения метана, согласно изобретению, представляет собой сложный оксид темно-серого или черного цвета, включающий в свой состав ионы кобальта (Со), никеля (Ni), меди (Cu), неодима (Nd), кальция (Са), причем мольные соотношения компонентов катализатора - исходных веществ, в качестве которых используют водорастворимые соединения неодима (Nd), кальция (Са), кобальта (Со), никеля (Ni), меди (Cu), образующие при прокаливании оксиды указанных металлов, соответствуют общей формуле NdaCabCucNidCoeOf, где а=0, 1, 2; b=0, 1, 2; с=0, 1; d=0, 1, 2; е=0, 1, 2; f=3, 4, 5.

Способ получения катализатора по изобретению характеризуется простой технологией и доступностью исходных компонентов. В качестве исходных веществ при получении катализатора возможно использовать различные водорастворимые соединения вышеуказанных металлов, такие как, например, нитраты, хлориды, сульфаты, ацетаты, растворимые оксиды и гидроксиды в различных сочетаниях, образующих при прокаливании оксиды металлов, в частности используют Nd в виде нитрата Nd(NO3)3·6H2O, Са в виде оксида СаО, Со в виде нитрата Co(NO3)2·6H2O, Ni в виде нитрата Ni(NO3)2·6H2O, Cu в виде нитрата Cu(NO3)2·6H2O. Исходные компоненты в стехиметрических количествах, соответствующих общей формуле NdaCabCucNidCoeOf, где а=0, 1, 2; b=0, 1, 2; с=0, 1; d=0, 1, 2; е=0, 1, 2; f=3, 4, 5, растворяют в воде, и образовавшийся раствор выпаривают до загустевания, высушивают в муфельной печи при 250-350°C и прокаливают в течение 4-6 ч при 900-1000°C. Полученную массу измельчают и отсеивают фракцию 0,5-1 мм, которую в количестве 0,2±0,01 г загружают в реактор для использования в качестве катализатора высокотемпературного окислительного превращения метана в способе получения синтез-газа. Допустимо использование катализатора в виде порошка, частиц произвольного размера, либо в виде таблеток при проведении процесса в реакторе большего объема.

Приведенные ниже примеры иллюстрируют изобретение, но не ограничивают его.

Пример 1

Для приготовления катализатора (в таблице приведен под номером 1) в качестве исходных веществ берут следующие соединения: Nd в виде нитрата Nd(NO3)3·6H2O, Со в виде нитрата Со(NO3)2·6H2O, в стехиометрических количествах, соответствующих формуле NdCoO3.

Смесь исходных веществ растворяют в воде. Образовавшийся раствор выпаривают до загустевания, высушивают в муфельной печи при 300C и прокаливают 5 ч при 900C. Образовавшийся сложный оксид используют в качестве катализатора окислительного превращения метана.

Пример 2. Условия и процедура приготовления катализатора (в таблице приведен под номером 2) аналогичны примеру 1, за исключением использования в качестве исходных веществ соединений Nd(NO3)3·6H2O, СаО, Co(NO3)2·6H2O, взятых в стехиометрических количествах, соответствующих формуле NdCaCoO4.

Пример 3. Условия и процедура приготовления катализатора (в таблице приведен под номером 3) аналогичны примеру 1, за исключением использования в качестве исходных веществ соединении Nd(NO3)3·6H2O, Со(NO3)2·6H2O, Ni(NO3)2·6H2O, взятых в стехиометрических количествах, соответствующих формуле NdNiCoO4.

Пример 4. Условия и процедура приготовления катализатора (в таблице приведен под номером 4) аналогичны примеру 1, за исключением использования в качестве исходных веществ соединений Nd(NO3)3·6H2O, Со(NO3)2·6H2O, Cu(NO3)2·6H2O, взятых в стехиометрических количествах, соответствующих формуле NdCuCoO4.

Пример 5. Условия и процедура приготовления катализатора (в таблице приведен под номером 5) аналогичны примеру 1, за исключением использования в качестве исходных веществ соединений СаО, Со(NO3)2·6H2O, взятых в стехиометрических количествах, соответствующих формуле Са2Со2О5.

Пример 6

Условия и процедура приготовления катализатора (в таблице приведен под номером 6) аналогичны примеру 1, за исключением использования в качестве исходных веществ соединений Nd(NO3)3·6H2O, Ni(NO3)2·6H2O, взятых в стехиометрических количествах, соответствующих формуле Nd2Ni2O5.

Примеры 7-48. Окислительное превращение метана в синтез-газ

В обогреваемый кварцевый реактор проточного типа, изготовленный в виде трубки U-образной формы с карманом для термопары, расположенным между входящей и выходящей трубками реактора, помещают 0,2 г катализатора в виде частиц размером 0,5-1 мм, а свободный объем реактора до и после катализатора заполняют кварцевой крошкой. Исходное сырье представляет собой смесь метана и молекулярного кислорода в соотношении 2:1, причем возможно использование в качестве исходного сырья смеси магистрального природного газа и технического кислорода или воздуха.

Метан и кислород через расходомеры подают в реактор, где они, контактируя с кварцевой крошкой, образуют гомогенную смесь. Поток гомогенной метан-кислородной смеси в реакторе достигает слоя катализатора, и катализатор в токе этой смеси нагревают до необходимой температуры, значение которой оговорено в таблице.

Газовую смесь, образовавшуюся в результате реакции на катализаторе, охлаждают в конденсаторе для отделения паров воды, и часть смеси направляют в газовый хроматограф для определения состава продуктов реакции.

Анализ реакционной газовой смеси, выходящей из реактора, показывает, что помимо целевых продуктов - смеси Н2 и СО, она может включать в свой состав непрореагировавшие метан и кислород, а также воду, диоксид углерода, С23 углеводороды (этилен, этан, пропилен, пропан).

Результаты проведения получения синтез-газа, полученные с использованием разных катализаторов при варьировании значений температуры в слое катализатора (Т), мольного отношения метан:кислород (СН4/O2), скорости подачи метан-кислородной смеси (W), приведены в таблице. В таблице в качестве показателей эффективности способа приведены данные по конверсии метана, селективности образования продуктов реакции (в расчете на превращенный метан), выходу целевых продуктов.

Согласно экспериментальным данным, приведенным в таблицах, описываемый способ обеспечивает конверсию метана до 99%, селективность по Н2 до 100%, по СО до 100%, выход Н2 и СО до 99%.

Выход монооксида углерода рассчитывают путем умножения численного значения конверсии метана на численное значение селективности образования СО, выход водорода рассчитывают по формуле wH2вых·100/wCH4·2, где wH2 - количество водорода на выходе из реактора моль, wCH4 - скорость подачи метана на входе в реактор, моль.

Повышение значения температуры в слое катализатора способствует росту селективности по водороду и монооксиду углерода, повышению выхода целевых продуктов. Проведение процесса предпочтительно осуществлять при температуре в слое катализатора не ниже 860°C.

Таким образом, способ согласно изобретению обеспечивает высокие выходы целевого продукта без использования инертных газов, наличие которых значительно усложняет технологию проведения способа. При этом указанный способ проводят с использованием катализатора, полученного по простой технологии.

1. Способ получения синтез-газа высокотемпературным каталитическим окислительным превращением метана, заключающийся в подаче в реактор, в который помещен катализатор, а свободный объем которого заполнен инертной насадкой, исходной газовой смеси, содержащей смесь метана и молекулярного кислорода, причем катализатор представляет из себя сложный оксид общей формулы NdaCabCucNidCoeOf, где a=0, 1, 2; b=0, 1, 2; c=0, 1; d=0, 1, 2; e=0, 1, 2; f=3, 4, 5, полученный путем растворения исходных веществ в воде, выпаривания образованного раствора до загустевания, высушивания полученного продукта в муфельной печи при 250-350°C и последующего прокаливания в течение 4-6 ч при 900-1000°C с использованием в качестве исходных веществ водорастворимых соединений Nd, Ca, Со, Ni, Cu, образующих при прокаливании оксиды указанных металлов.

2. Способ по п. 1, отличающийся тем, что в качестве исходных веществ используют нитрат ниодима Nd(NO3)3·6H2O, оксид кальция СаО, нитрат кобальта Со(NO3)2·6H2O, нитрат никеля Ni(NO3)2·6H2O, нитрат меди Cu(NO3)2·6H2O, взятые в стехиометрических соотношениях, отвечающих общей формуле NdaCabCucNidCoeOf, где a=0, 1, 2; b=0, 1, 2; c=0, 1; d=0, 1, 2; e=0, 1, 2; f=3, 4, 5.

3. Способ по п. 1, отличающийся тем, что в качестве исходных веществ используют Nd(NO3)3·6H2O, Со(NO3)2·6H2O в стехиометрических количествах, соответствующих формуле NdCoO3.

4. Способ по п. 1, отличающийся тем, что в качестве исходных веществ используют Nd(NO3)3·6H2O, СаО, Со(NO3)2·6H2O в стехиометрических количествах, соответствующих формуле NdCaCoO4.

5. Способ по п. 1, отличающийся тем, что в качестве исходных веществ используют Nd(NO3)3·6H2O, Со(NO3)2·6H2O, Ni(NO3)2·6H2O в стехиометрических количествах, соответствующих формуле NdNiCoO4.

6. Способ по п. 1, отличающийся тем, что в качестве исходных веществ используют Nd(NO3)3·6H2O, Со(NO)3)2·6H2O, Cu(NO3)2·6H2O в стехиометрических количествах, соответствующих формуле NdCuCoO4.

7. Способ по п. 1, отличающийся тем, что в качестве исходных веществ используют СаО, Со(NO3)2·6H2O в стехиометрических количествах, соответствующих формуле Ca2Co2O5.

8. Способ по п. 1, отличающийся тем, что в качестве исходных веществ используют Nd(NO3)3·6H2O, Ni(NO3)2·6H2O в стехиометрических количествах, соответствующих формуле Nd2Ni2O5.

9. Способ по п. 1, отличающийся тем, что окислительное превращение метана преимущественно осуществляют при температуре на катализаторе 860-958°C.

10. Способ по п. 1, отличающийся тем, что в качестве исходной газовой смеси преимущественно используют смесь метана и молекулярного кислорода с объемным отношением метан:молекулярный кислород, равным 2:1.



 

Похожие патенты:

Изобретение относится к способу и системе для образования и обработки синтез-газа с помощью плазменной газификации отходов, включающих муниципальные твердые отходы.

Изобретение относится к способу ввода в эксплуатацию автотермического реактора для получения синтез-газа путем риформинга углеводородсодержащих сырьевых газов в реакционной камере.

Изобретение относится к высокотемпературным каталитическим окислительным способам превращения метана с получением синтез-газа и может быть использовано в химической технологии.

Изобретение относится к установкам получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном Н2 и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки углеводородных газов, а также в технологиях применения водород-метановой смеси.

Изобретение относится к способу получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном H2 и CO, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки углеводородных газов, а также в технологиях применения водород-метановой смеси.
Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан- 1,5÷3,0 мас.%, алюминий - остальное.

Изобретение относится к способу производства аммиака. Способ включает осуществление экзотермической реакции первой части потока углеводородного сырья с газообразным окислителем, содержащим молекулярный кислород, для образования синтез-газа, осуществление эндотермического реформинга второй части потока углеводородного сырья паром на катализаторе в реакторе-теплообменнике для образования синтез-газа, объединение образующихся продуктов с получением объединенного потока синтез-газа, охлаждение объединенного потока с получением пара в утилизационном паровом котле, осуществление каталитической реакции объединенного потока в реакторе каталитического сдвига монооксида углерода для производства потока, содержащего дополнительное количество Н2 и CO2, охлаждение полученного потока для получения пара, удаление CO2 из потока с получением потока, обедненного CO2, удаление потока, по существу, чистого Н2 высокого давления из потока, обедненного CO2, используя многослойные системы адсорбции со сдвигом давления, и объединение потока, по существу, чистого Н2 высокого давления с потоком, по существу, чистого N2 высокого давления для производства аммиака, при этом аммиак производят независимо от продувки контура.

Изобретение относится к способу получения метанола. Способ включает получение кислорода на установке разделения воздуха с воздушными компрессорами, приводимыми в действие газовой турбиной, нагревание потока углеводородного сырья с использованием отработанного в газовой турбине газа, экзотермическое взаимодействие первой части потока нагретого углеводородного сырья с паром или газообразным окислителем, включающим молекулярный кислород, с получением сингаза с экзотермическим выделением тепла, эндотермический риформинг второй части потока углеводородного сырья паром над катализатором в риформинг-установке с теплообменником с получением сингаза эндотермического риформинга, причем часть тепла, использованного при получении сингаза эндотермического риформинга, образуется при извлечении экзотермического тепла от образовавшегося сингаза и образовавшегося сингаза эндотермического риформинга, объединение образовавшегося с экзотермическим выделением тепла сингаза и образовавшегося сингаза эндотермического риформинга с получением потока объединенного сингаза, получение пара в котле, использующем тепло отходящего газа, охлаждением потока объединенного сингаза, отделение воды от охлажденного объединенного сингаза с получением сырья для установки по производству метанола, после отделения воды подачу охлажденного объединенного сингаза в установку по производству метанола и объединение горючего потока, выходящего из установки по производству метанола, с метановым топливом в газовой турбине.

Изобретение относится к области химии и водородной энергетики и может быть использовано в энергетике и транспортном машиностроении. Способ получения и хранения атомарного водорода включает электролиз воды с использованием в электролизной ячейке медного анода и катода из сплава дюральалюминия, периодически активируемого электрическим током, воздействие на полученный водород магнитным полем с амплитудой магнитной индукции в диапазоне от 100 до 120 гаусс и пропускание атомарного водорода через нанодисперсный углерод, содержащий углеродные нанотрубки.

Изобретение относится к способу организации производства метанола, содержащему две стадии, которые проводят при одинаковом уровне давления в проточном режиме. Первая стадия относится к стадии получения синтез-газа, включающей использование первой смеси, которая содержит кислород, второй смеси, которая содержит углеводородное газовое сырье и водяной пар, риформера, который предназначен для конверсии углеводородного газового сырья в синтез-газ, хотя бы одного теплообменного устройства, нагрев второй смеси, подачу первой смеси и второй смеси в риформер, проведение в риформере с использованием катализатора реакции конверсии углеводородного газового сырья, вывод из риформера третьей смеси, которая содержит конвертированный газ.

Изобретение относится к способу и устройству реформинга углеводородов. Способ включает сжигание расширенного выпуска из турбины и первого топлива внутри первой реформинг-установки, чтобы произвести отработавший газ. Углеводород реформируют в первой реформинг-установке, чтобы произвести реформированный углеводород. Тепло передается от отработавшего газа к первой среде. Холодильная установка приводится в действие посредством тепловой энергии от нагретой первой среды и охлаждает вторую среду. Тепло передается от одного или более окислителей к охлажденной второй среде, чтобы произвести охлажденные первый и второй окислители. Охлажденный первый окислитель и второе топливо вводят в газотурбинную установку, чтобы произвести расширенный отработавший газ из турбины и механическую энергию. Охлажденный второй окислитель сжимают в компрессоре, приводимом в действие посредством механической энергии. Сжатый второй окислитель и реформированный углеводород вводят во вторую реформинг-установку, чтобы произвести сингаз. Обеспечивается повышение производства сингаза и продуктов, изготовленных из него. 2 н. и 18 з.п. ф-лы, 1 ил.

Изобретение относится к области переработки углеводородного сырья, а конкретно к окислительной конверсии углеводородных газов в синтез-газ. Способ получения синтез-газа путем автотермической парокислородуглекислотной каталитической конверсии углеводородного сырья включает подогрев исходных сырьевых компонентов, очистку углеводородного сырья от серосодержащих соединений, смешение исходных сырьевых компонентов с образованием реакционного газового потока, осевую подачу реакционного потока внутрь трубчатого открытопористого каталитического блока радиальной фильтрации. Реакционный поток подают к первому трубчатому каталитическому элементу блока, выполненному из материала для осуществления процесса парциального окисления, с последующим прохождением частично реформированного потока через коаксиальный трубчатый зазор. Второй трубчатый каталитический элемент блока выполнен из материала для осуществления процесса пароуглекислотной конверсии. При этом на внутренней цилиндрической стенке первого каталитического элемента поддерживают температуру в интервале от 500 до 700°C, а на внутренней - в интервале от 1100 до 1600°C. Также описано устройство для получения синтез-газа. Результатом является повышение селективности и производительности по синтез-газу при прочих равных условиях сравнения по входному сырью. 2 н. и 4 з.п. ф-лы, 1 ил., 5 табл.

Способ получения выварочной поваренной соли путем размыва резервуаров под хранение газа артезианской водой. Размывают резервуар водой расходом 100-250 м3/час, отбирают рассол из резервуара с дальнейшей закачкой в утилизационные скважины, а по достижении концентрации рассола NaCl 300 г/дм3 - 316 г/дм3 направляют на солезавод, где часть неочищенного рассола пойдет в первый аппарат четырехкорпусной вакуум-выпарной установки для содово-каустической очистки для очистки от ионов Са2+ и Mg2+ и очищенный рассол идет в емкость очищенного рассола и насосом подается в первый корпус выпарной установки, а шламовые стоки направляются на установку. Технический результат заключается в том, что за счет возвратной пресной воды становится возможным ускорение размыва подземных резервуаров и уменьшение их срока строительства более чем на два года, а также снижение затрат на строительство подземных резервуаров, и обеспечивается более ранний ввод активных мощностей подземного хранения. 1 ил. получения гипса. Другая часть неочищенного рассола из емкости неочищенного рассола насосом подается во второй, третий и четвертый корпуса четырехкорпусной вакуум-выпарной установки. В корпусах рассолы кипят, и как следствие образуется соляная пульпа, которая идет на последующее центрифугирование и сушку с получением сухой товарной соли, и образуется конденсат, в объеме 56,5% от объема перерабатываемого рассола, который направляется на растворение соли в каверны. Рассол с центрифуг направляется в цикл на повторную переработку.

Изобретение относится к способу получения корочкового катализатора, включающему стадии: (i) пропитка обожженной подложки, содержащей алюминат металла, раствором, содержащим ацетат никеля, при температуре ≥40°C и сушка пропитанной подложки, (ii) обжиг сухой пропитанной подложки, чтобы образовать оксид никеля на поверхности подложки, и (iii), необязательно, повторение этапов (i) и (ii) на подложке, покрытой оксидом никеля. Изобретение также относится к корочковому каталитическому материалу для парового риформинга углеводорода, способу парового риформинга углеводорода и способу метанирования газообразного потока водорода, содержащего CO и CO2. Технический результат заключается в сведении к минимуму образования парниковых газов при обжиге. 4 н. и 11 з.п. ф-лы, 1 ил., 1 табл., 3 пр.

Изобретение относится к химической промышленности. Процесс диссоциации сероводорода на водород и серу проводят в плазме безэлектродного разряда при удельных энерговкладах в диапазоне 0,5-1,0 эВ/мол. сероводорода. Из полученной парогазовой смеси, состоящей из непродиссоциировавшего сероводорода, водорода и паров серы, выделяют элементарную серу путем сероконденсации, а сероводород отделяют от водорода и рециркулируют в зону диссоциации. Процесс сероконденсации проводят в послеразрядной зоне при оптимальной температуре парогазовой смеси ≥ 800°С. Изобретение позволяет оптимизировать процесс серосбора при плазмохимической диссоциации сероводорода. 1 ил.

Изобретения могут быть использованы в химической и металлургической промышленности. Мембранная трубка для диффузионного выделения водорода из водородсодержащих газовых смесей содержит пористую трубку (S) из металлокерамического сплава, а также содержащую палладий или выполненную из палладия мембрану (M), которая покрывает наружную сторону металлокерамической трубки (S). Металлокерамическая трубка (S) на одном конце имеет прочно соединенный с ней выполненный из газонепроницаемого материала фитинг (F). Форма фитинга (F) образована двумя пустотелыми цилиндрами (Z1 и Z2), причем наружный диаметр первого пустотелого цилиндра (Z1) равен наружному диаметру металлокерамической трубки (S), а наружный диаметр второго пустотелого цилиндра (Z2) равен внутреннему диаметру металлокерамической трубки (S). На наружную сторону металлокерамической трубки (S) нанесен керамический промежуточный слой, который заходит на цилиндрическую часть фитинга (F), причем поверх промежуточного слоя нанесена палладиевая мембрана, которая выходит за промежуточный слой и газонепроницаемо соединена с фитингом (F). Изобретения позволяют предотвратить относительное смещение и/или отклонение, и тем самым предотвратить образование трещин в мембране, и предотвратить диффузию между материалами. 3 н. и 5 з.п. ф-лы, 7 ил.

Изобретение относится к экстракции легких фракций нефти и/или топлива из природного битума из нефтеносного сланца и/или нефтеносных песков. В способе природный битум экстрагируют путем водной сепарации из нефтеносного сланца и/или нефтеносных песков при образовании твердого остатка, летучие углеводороды отгоняют из природного битума перегонкой, при этом остается нерастворимый нефтяной кокс, включающий до 10% серы, газообразные углеводороды от перегонки разделяют путем фракционной конденсации на легкие фракции нефти, сырую нефть и различные топлива. Способ отличается тем, что твердые остатки из водной сепарации и/или нефтяной кокс используют термически, при этом их превращают путем субстехиометрического окисления кислородсодержащим газом (26) в противоточном газификаторе (19), взаимодействующим с подвижным слоем сыпучего материала (21), при добавлении щелочных веществ при температурах <1800°C в газообразные продукты расщепления с низким содержанием серы, эти продукты расщепления затем преобразуются путем субстехиометрического окисления в физическое тепло, которое применяют для генерирования нагретой водной технологической среды для физического измельчения нефтеносных песков и/или нефтеносного сланца (А) и/или для отделения природного битума из массива горных пород и/или в качестве технологического тепла для тепловой разбивки природного битума, и путем добавления щелочных веществ при восстановительных условиях, газообразные серосодержащие соединения, появляющиеся в противоточном газификаторе (19), преобразуются при температурах выше 400°C из ингредиентов углерод- и серосодержащих остатков путем химической реакции с щелочными веществами в твердые серосодержащие соединения, и эти твердые серосодержащие соединения, по меньшей мере, частично обрабатывают с газообразными продуктами реакции и удаляют из газовой фазы посредством отделения мелкозернистых материалов при температурах выше 300°C. Технический результат - улучшение энергетического баланса, преодоление угрозы окружающей среде. 12 з.п. ф-лы, 2 ил.

Изобретение относится к способу синтеза углеводородов. Способ включает следующие стадии: (a) получение потока синтез-газа, обогащенного водородом, в генераторе синтез-газа, содержащем установку парового риформинга метана (SMR) и (или) установку автотермического риформинга (ATR), (b) каталитическое превращение указанного потока синтез-газа, обогащенного водородом, с получением указанных углеводородов, содержащих по меньшей мере нафту, (c) возврат по меньшей мере части указанной нафты в указанный генератор синтез-газа с получением улучшенного потока синтез-газа, обогащенного водородом, и (d) подача указанного улучшенного потока синтез-газа, обогащенного водородом, полученного на стадии (с), для превращения согласно стадии (b) для увеличения количества синтетического дизельного топлива в упомянутых углеводородах. Усовершенствование процесса обеспечивает получение максимального количества синтетического дизельного топлива и отсутствие образования малоценных побочных продуктов. 12 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к протонпроводящей мембране, содержащей катализатор дегидрирования и смешанный оксид металлов формулы (II) где молярное отношение а:b составляет от 4,8 до 6, предпочтительно от 5,3 до 6, с находится в интервале от 0 до 0,5b, и у является таким числом, что формула (II) является незаряженной, например 0≤y≤1,8. Предлагаемая протонпроводящая мембрана является устойчивой в присутствии диоксида углерода и кислых газов, что позволяет применять ее в присутствии воздуха. Изобретение в равной степени относится к протонпроводящей мембране на подложке, реактору, включающему данную протонпроводящую мембрану, способу дегидрирования вещества в таком реакторе, использование протонпроводящей мембраны, а также способу образования протонпроводящей мембраны. 6 н. и 7 з.п. ф-лы, 8 ил., 6 пр.

Изобретение относится к химической промышленности. Мембранный модуль содержит множество трубчатых мембранных элементов для переноса кислорода, вступающего в контакт со стороной ретентата мембранных элементов. Кислород, проникающий на сторону пермеата, сгорает с помощью потока синтез-газа, содержащего водород, вступающего в контакт со стороной пермеата трубчатых мембранных элементов, генерируя поток продукта реакции и радиантное тепло. Каталитический реактор содержит катализатор для ускорения реакции парового риформинга и окружен множеством трубчатых мембранных элементов для переноса кислорода. Коэффициент видимости, представляющий собой долю от всей энергии, покидающей поверхность, которая достигает другой поверхности, равен или больше чем 0,5. Изобретение позволяет генерировать тепло, необходимое для поддержания требований эндотермического нагрева реакций парового риформинга метана. 4 н. и 20 з.п. ф-лы, 13 ил.
Наверх