Полимерно-битумное вяжущее

Изобретение относится к полимерно-битумным вяжущим, содержащим битум нефтяной дорожный и термопластичную полимерную добавку на основе модифицированного полиэтилентерефталата, которые применяются в строительстве верхних слоев дорожного полотна. В качестве термопластичного полимера оно содержит полимерную добавку на основе модифицированного полиэтилентерефталата, полученную путем совместной термохимической деструкции вторичного полиэтилентерефталата в присутствии олигопропиленгликоля или глицерина. Соотношение компонентов следующее, мас.%: полимерная добавка - 6-9, битум - остальное. Результатом является улучшение эксплуатационных характеристик полимерно-битумного вяжущего. 1 з.п. ф-лы, 2 табл.

 

Изобретение относится к строительным материалам, а именно в строительстве верхних слоев дорожного полотна.

Известна полимерно-битумная композиция (патент РФ №2258721, МПК C08L 95/00, C09D 195/00, опубл. 20.08.2005), содержащая битум, дивинилстирольный термоэластопласт и пластификатор, дополнительно содержит антиоксидант, в качестве которого использована полиэтилсилоксановая жидкость. Технический результат, по свидетельствам авторов, достигается также за счет того, что при получении полимерно-битумной композиции исходное количество битума делится на две части, первую часть 10-60% от исходного количества предварительно нагретого битума с температурой не ниже 90°C смешивают с пластификатором с использованием высокооборотной мешалки в течение 10-30 минут, полученную смесь догревают до 110°C и вводят дивинилстирольный термоэластопласт и антиоксидант с последующей обработкой на оборудовании с высоким напряжением сдвига при одновременном нагревании до 140-165°C, полученную полимерно-битумную смесь вводят во вторую часть 40-90% от исходного количества битума и диспергируют до получения однородной массы. Данное техническое решение трудно применить в промышленных условиях ввиду того, что гомогенность (однородность) вяжущего существенно зависит от последовательности смешения компонентов и строгого выдерживания температурных и временных режимов. Это приводит к недостаточной повторяемости условий эксперимента в промышленных условиях и, соответственно, не обеспечивает стабильности качества продукции.

Известна композиция (патент РФ №2412223, МПК C08L 95/00, опубл. 20.02.2011), которая содержит битум и полимерный компонент, при этом в качестве битума используется битум кровельный и битум строительный, в качестве полимерного компонента - стирол-бутадиен-стирольный полимер линейного и/или радиального типа. При этом в технологическую цепь включен смеситель-гомогенизатор, отличающийся скоростью вращения ротора 800-10000 об/мин, с величиной капиллярных отверстий или зазора узких щелей - 100-800 мкм.

Предлагаемая технология получения полимерно-битумного вяжущего предусматривает внедрение дорогостоящего и сложного оборудования. При этом использование битума (строительный битум) и полимеров с высокой температурой размягчения существенно усложняет процесс приготовления вяжущего. Возможно забивание капилляров гомогенизатора. Строительный битум значительно хуже совмещается с полимерами типа стирол-бутадиен-стирол. Таким образом, предлагаемое техническое решение трудно реализовать без использования пластификаторов.

Известна композиция (патент РФ №2297990, МПК С04В 26/26, C08L 95/00, опубл. 27.04.2007), в состав которой, помимо битума, полимера и ПАВ, входит индустриальное масло. Использование индустриальных масел приводит к ускоренному старению композиций и требует дополнительных компонентов - ингибиторов окисления.

Наиболее близкой по компонентному составу (прототипом) к предлагаемому полимерно-битумному вяжущему может служить композиция (патент РФ №2138459, МПК С04В 26/00, C08L 95/00, E04D 5/00, опубл. 27.09.1999), содержащая отходы термопластичных полимеров 1,0-69 мас. %, отработанное минеральное масло 10-30 мас. %, битум - остальное.

Недостатком данной композиции является зависимость эксплуатационных характеристик вяжущего от соотношения полимер-пластификатор и необходимость обязательного присутствия последнего.

При этом свойства композиции существенно будут зависеть от качества и природы используемых отходов полимеров, что не обеспечивает постоянства эксплуатационных свойств предлагаемой композиции. По свидетельствам авторов нижний предел содержания пластификатора в композиции составляет 5%. Его количество в меньшей пропорции не позволит осуществить пластификацию битума. Превышение верхнего предела содержания пластификатора в композиции будет способствовать ухудшению адгезионных свойств материала. Кроме того, эксперименты показали, что известная композиция не соответствует требованиям ГОСТ Р 52056-2003.

Задачей изобретения является создание полимерно-битумного вяжущего с улучшенными эксплуатационными характеристиками и возможность использования отходов термопластичных полимеров типа полиэтилентерефталата. Полимерно-битумное вяжущее обладает улучшенными эксплуатационными характеристиками, соответствующими ГОСТ Р 52056-2003.

Техническим результатом по сравнению с прототипом является упрощение технологического процесса (нет высокооборотистых смесителей) и обеспечение однородности композиции. В разработанной композиции смешение ведут с помощью мешалки лопастного типа со скоростью вращения, не превышающей 60 об/мин. При этом нет необходимости измельчать гранулы полимера до указанных размеров, он свободно диспергируется в разогретом битуме, что является преимуществом, так как отпадает необходимость в дорогостоящем гомогенизаторе.

Поставленная задача решается, а технический результат достигается тем, что полимерно-битумное вяжущее, включающее термопластичный полимер и битум, в качестве термопластичного полимера содержит полимерную добавку на основе модифицированного полиэтилентерефталата, полученную путем совместной термохимической деструкции смесей вторичного полиэтилентерефталата (в присутствии олигопропиленгликоля или глицерина) при следующем соотношении компонентов мас.%:

полимерная добавка на основе модифицированного полиэтилентерефталата - 6-9;

битум - остальное.

Предлагаемая композиция не содержит пластификатора, а улучшенная термостабильность полимерно-битумного вяжущего подтверждена экспериментальными данными (относительно малые изменения эксплуатационных показателей после прогрева).

В качестве полимерной добавки используются модифицированный полиэтилентерефталат (олигоэфирный модификатор), полученный путем термохимической деструкции смесей вторичного полиэтилентерефталата в присутствии олигопропиленгликоля или глицерина.

В качестве вторичного полиэтилентерефталата использовались измельченные бытовые бутылки. Полимерную добавку готовят в обогреваемом реакторе с мешалкой в среде инертного газа - азота. Сначала вторичный полиэтилентерефталат (измельченные отходы полиэтилентерефталата) и многоатомный спирт - олигопропиленгликоль (лапрол-202) в процентном соотношении ПЭТФ:олигопропиленгликоль 45:55 мас.% или олигопропилентриол (глицерин) в процентном соотношении ПЭТФ:олигопропилентриол 55:45 мас. % загружают в реактор, расплавляют, затем полученную смесь нагревают до температуры 240-260°C в течение 1-2 часов и после этого охлаждают до 20-25°C.

Таким образом было приготовлено две полимерные добавки: модифицированная полимерная добавка на основе продуктов термохимической деструкции вторичного полиэтилентерефталата в присутствии олигопропиленгликоля (лапрол-202) (далее полимерная добавка-1) с температурой каплепадения 97°C и модифицированная полимерная добавка на основе продуктов термохимической деструкции вторичного полиэтилентерефталата в присутствии олигопропилентриола (глицерин) (далее полимерная добавка-2) с температурой каплепадения 65°C.

Результаты испытаний полимерно-битумного вяжущего с использованием полимерных добавок в различных концентрационных пределах представлены в таблицах 1 и 2.

Предлагаемое изобретение решает следующие поставленные задачи:

- улучшение эксплуатационных характеристик полимерно-битумного вяжущего по сравнению с прототипом (патент РФ №2138459), соответствие нормам ГОСТ Р 52056-2003;

- улучшение технологического решения (отсутствие необходимости введения в технологическую цепочку высокооборотистых смесителей);

- улучшенная гомогенность (однородность) полимерно-битумного вяжущего без использования дополнительного оборудования для измельчения гранул полимерной добавки;

- улучшенная термостабильность (незначительные изменения показателей пенетрации и температуры размягчения по кольцу и шару после прогрева);

- отсутствие необходимости применения пластификатора;

- за счет процесса совместной химической деструкции вторичного полиэтилентерефталата в присутствии олигопропилендиола или глицерина решается проблема усреднения продукта, ввиду чего нет потребности в предварительной подготовке и сортировке полимеров;

- предлагаемый способ получения полимерных добавок решает важную экологическую проблему утилизации вторичных полиэтилентерефталатных отходов. Полученными полимерными добавками можно заменить дорогостоящий стирол-бутадиен-стирольный каучук;

- данное технологическое решение реализуемо в промышленном объеме.

1. Полимерно-битумное вяжущее, включающее термопластичный полимер и битум, отличающееся тем, что в качестве термопластичного полимера оно содержит полимерную добавку на основе модифицированного полиэтилентерефталата, полученную путем совместной термохимической деструкции вторичного полиэтилентерефталата в присутствии олигопропиленгликоля или глицерина, при следующем соотношении компонентов мас.%:
полимерная добавка на основе модифицированного полиэтилентерфталата 6-9
битум остальное.

2. Полимерно-битумное вяжущее по п.1, отличающееся тем, что в качестве исходного вторичного полиэтилентерефталата используют бытовые отходы полиэтилентерефталата.



 

Похожие патенты:

Изобретение относится к автодорожной отрасли, к получению асфальтобетона с улучшенными физико-механическими свойствами для дорожного покрытия с использованием вяжущего на основе битума марки БНД с применением модифицирующей добавки.

Изобретение относится к составам асфальтобетонных смесей и может быть использовано при выполнении ремонтных и строительных работ асфальтобетонных покрытий автомобильных дорог и аэродромов.

Изобретение относится к области прикладной органической химии, а именно к способу модификации нефтеполимерных смол и применению полученной смеси для изготовления мишеней-тарелочек для стендовой стрельбы дробью из огнестрельного оружия.

Изобретение относится к применению в битумной композиции производного органического гелеобразующего агента, которое имеет молярную массу не более 2000 г/моль и включает по меньшей мере один донор водородных связей D, по меньшей мере один акцептор водородных связей А и по меньшей мере один компатибилизатор С в битуме.

Изобретение относится к дорожному покрытию, а именно к покрытиям из щебня с применением вяжущих материалов, и может быть использовано для однослойного покрытия проезжей части мостовых сооружений.

Изобретение относится к области химии и нефтехимического производства и может быть использовано для применения при строительстве, реконструкции и ремонте дорог, мостов и аэродромов в качестве полимерно-битумного вяжущего.

Изобретение относится к области строительного производства в автодорожной отросли и может быть применено при изготовлении асфальтобетона, в том числе с использованием нанотехнологий.

Изобретение относится к дорожному строительству, а именно к технологии приготовления асфальтобетонных смесей для проведения ямочного ремонта дорожного полотна, а также устройства оснований и покрытий автомобильных дорог.

Изобретение относится к применению от 2 до 6 масс.% восков Фишера-Тропша в сшитой битумно-полимерной композиции для улучшения устойчивости сшитой битумно-полимерной композиции к агрессивным химическим агентам.

Изобретение относится к дорожному строительству. Технический результат - более глубокое проникновение полимеризованного битума вглубь асфальтобетона с восстановлением утраченной эластичности и гибкости битумной составляющей дорожного покрытия, с эффективной изоляцией асфальтобетона от неблагоприятного атмосферного воздействия.
Изобретение относится к способу регенерации полезных компонентов из окрашенного полиэфирного волокна. .

Изобретение относится к способу получения жёстких пенополиуретанов на основе сложных полиэфирполиолов, которые могут быть использованы для изготовления теплоизоляционных и конструкционных материалов и изделий в строительной, холодильной, авиационной, автомобильной, мебельной и других отраслях промышленности.

Настоящее изобретение относится к способу извлечения лактида из полилактида (ПЛ), в котором а) ПЛ приводят в контакт с гидролизирующей средой в расплаве и гидролитически разлагают в олигомеры ПЛ, имеющие среднечисленную молярную массу Mn от 162 до 10000 г/моль, измеренную с помощью кислотно-основного титрования карбоксильных групп, причем гидролизирующую среду добавляют в количестве от 50 ммоль до 10 моль на кг массы ПЛ, и б) олигомеры ПЛ затем подвергают циклической деполимеризации в лактид. Кроме того, настоящее изобретение относится к устройству, основанному на объединении устройства гидролиза и реактора деполимеризации, с помощью которого можно выполнять описанный выше способ. Сутью способа по изобретению является частичный гидролиз первоначально используемых полимерных материалов в сочетании с циклической деполимеризацией. 4 н. и 20 з.п. ф-лы, 4 ил., 2 пр.

Изобретение предназначено для получения активированного минерального порошка для дорожного строительства и может быть использовано в нефтегазовой промышленности. Способ заключается в том, что сначала смешивают негашеную известь со смесью углеводородсодержащих отходов и поверхностно-активного вещества (ПАВ), затем осуществляют полное гашение извести путем добавления воды, после гашения извести добавляют отходы, образующиеся в процессе обессоливания минерализованных пластовых вод и содержащие хлорид кальция и/или хлорид натрия, после чего осуществляют итоговое перемешивание. При этом в качестве ПАВ используют ПАВ, придающее гидрофобность, а в качестве углеводородсодержащих отходов используют жидкие и/или пастообразные углеводороды, представляющие собой нефтешламы, получаемые при зачистке трубопроводов и оборудования нефтегазового комплекса. Изобретение обеспечивает повышение экологической и экономической эффективности способа получения активированного минерального порошка, повышение срока службы и уменьшение себестоимости асфальтобетонных смесей, изготовленных с применением полученного порошка. 2 табл., 3 пр.

Изобретение относится к получению полистирольных композиций на основе полистирола и нефтяных битумов. Получаемые полистирольные композиции могут быть использованы в качестве связующего при получении композиционных материалов, в промышленном и гражданском строительстве для кровельных, гидроизоляционных работ, в дорожном строительстве в качестве связующих для ремонта асфальтобетонных покрытий. Способ получения полистирольных композиций заключается в термической полимеризации стирола в среде нефтяного битума при температуре 120-180°C в течение 0,5-3 ч при следующем соотношении компонентов в композиции, мас.%: стирол - 25-50, нефтяной битум - остальное. Результатом является сокращение длительности процесса, а также обеспечение возможности проведения процесса приготовления композиций в непрерывном режиме и уменьшение стоимости получаемой композиции. 2 табл., 13 пр.
Изобретение относится к области материалов для дорожного покрытия, в частности к модифицированным асфальтобетонным смесям, и может быть использовано в дорожном и аэродромном строительстве. Асфальтобетонная смесь содержит щебень, песок, минеральный порошок, битум в качестве вяжущего и дополнительно включает в составе вяжущего битумно-солевую массу в соотношении 10-35% от массы битума. Используемая битумно-солевая масса является отходом при уничтожении химического оружия. Технический результат заключается в повышении механических характеристик асфальтовых смесей, в частности прочности на сжатие и раскалывание. 2 з.п. ф-лы

Изобретение относится к области производства битумно-полимерных строительных и гидроизоляционных материалов, используемых для гидроизоляционной защиты бетонных, кирпичных, надземных и подземных сооружений, а также может использоваться в гражданском, аэродромном и дорожном строительстве для заливки швов и трещин, дорожных покрытий и конструкций. Мастика включает дорожный битум, дивинилстирольный термоэластопласт, пластификатор - индустриальное масло, резиновую крошку, в качестве минерального наполнителя - дисперсный шунгит и наномодификатор, в качестве которого использовали одностенные или многостенные углеродные нанотрубки, при следующем соотношении компонентов, мас.%: наномодификатор - 1·10-3-6·10-3, индустриальное масло - 2-9,4, термоэластопласт - 2,5-3,5, резиновая крошка - 3-5, наполнитель - 7, битум - остальное. Способ приготовления мастики включает нагрев битума до 160°С, введение в него при постоянном перемешивании полимера и резиновой крошки до полного растворения полимера, последующее смешение с минеральным наполнителем до однородного состояния мастики. Дополнительно во время нагрева битума модифицируют пластификатор, путем введения в него наномодификатора и ультразвукового диспергирования полученного раствора, после чего наномодифицированный пластификатор вводят в разогретый битум совместно с полимером и резиновой крошкой. Результатом является повышение теплостойкости композиции, растяжимости и ее эластичности. 2 н.п. ф-лы, 2 табл.

Изобретение относится к комплексным модификаторам, улучшающим свойства органического вяжущего и материалов на его основе, используемых в строительстве, таких как слои дорожной одежды, защитные, изоляционные, гидрофобные покрытия, композитные материалы и т.д. Модификатор содержит низкомолекулярный полиолефиновый термопласт, форполимер, волокносодержащий наполнитель с длиной волокон до 5 мм, недеструктированный высокомолекулярный полимер при следующем соотношении компонентов, мас.%: низкомолекулярный полиолефиновый термопласт - 40-60, форполимер - 15-20, волокносодержащий наполнитель - 10-15, недеструктированный высокомолекулярный полимер - остальное. Техническим результатом является значительное улучшение основных эксплуатационных свойств дорожных покрытий и оснований. 4 з.п. ф-лы, 25 табл., 5 пр.

Изобретение относится к вибрационному демпфирующему материалу для использования в связанной демпфирующей системе и к демпфирующему изделию со связанным слоем, применяемому в автомобилях для глушения шума. Демпфирующий материал со связанным слоем состоит из битумного материала, связующего материала и канифольного усилителя клейкости, при этом битумный материал представляет собой битум, имеющий проницаемость 160/220 и измеренную методом кольца и шара температуру размягчения между 35 и 43°C. Демпфирующий материал демонстрирует лучшее поведение, чем используемые в настоящее время материалы, а также является самоклеящимся. 2 н. и 8 з.п. ф-лы, 3 ил.
Наверх