Способ определения этиленгликоля в водных растворах

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды. Способ определения этиленгликоля в водных растворах включает отбор испытуемой пробы воды в мерную колбу и введение в нее внутреннего стандарта. Затем предварительно готовят градуировочные растворы, в пять мерных взвешенных колб объемом 100 мл помещают по 5 мл внутреннего стандарта. Далее определяют массу внутреннего стандарта, добавляют в мерные колбы с внутренним стандартом соответственно 0; 2; 5; 10 и 20 мл этиленгликоля. Мерные колбы взвешивают и дополняют до метки дистиллированной водой. Затем наносят на стекло из бромистого калия и исследуют методом инфракрасной спектрометрии, измеряя на Фурье-спектрометре с разрешением не хуже 1 см-1 спектр пропускания раствора в области волновых чисел 450-4000 см-1. Затем рассчитывают для каждого раствора концентрацию внутреннего стандарта Свс (г/дм3) и концентрацию этиленгликоля Сэ (г/дм3) в градуировочном растворе, с помощью программного обеспечения проводят расчет нормализованного на значение концентрации внутреннего стандарта в градуировочном растворе спектра оптической плотности в области выбранной аналитической частоты и методом базисной линии по графику определяют на определенной частоте (см-1) значение приведенной оптической плотности Dпр (дм3/мг), по полученным значениям приведенной оптической плотности Dпр (дм3/мг) и концентрации этиленгликоля Сэ (г/дм3) в растворе строят градуировочный график. Затем в предварительно взвешенную мерную колбу для испытуемой пробы воды (далее мерная колба), объемом 100 мл помещают 5 мл внутреннего стандарта, по разнице масс мерной колбы с внутренним стандартом и предварительно взвешенной мерной колбы находят массу внутреннего стандарта, мерную колбу наполняют до метки испытуемой водой, рассчитывают концентрацию внутреннего стандарта Свс (г/дм3), введенного в испытуемую пробу воды. Полученный раствор перемешивают в течение 5 мин и наносят тонким слоем на стекло из бромистого калия и проводят исследования методом инфракрасной спектрометрии, измеряя спектр пропускания пробы воды с введенным внутренним стандартом в области 450-4000 см-1. Затем с помощью программного обеспечения проводят расчет в области выбранной аналитической частоты нормализованного на значение концентрации внутреннего стандарта спектра оптической плотности и определяют методом базисной линии на выбранной аналитической частоте значение приведенной оптической плотности Dпр (дм3/мг) для испытуемой пробы воды, по градуировочному графику по измеренному значению на аналитической частоте приведенной оптической плотности Dпр (дм3/мг) определяют концентрацию этиленгликоля Сэ (г/дм3) в испытуемой пробе воды или по определенной ранее градуировочной зависимости. Техническим результатом является сокращение времени осуществления и упрощение процесса количественного определения этиленгликоля в пробах воды. 3 ил.

 

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии (далее ИК-спектрометрия) и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды, а также проб воды, использованных для экстрагирования этиленгликоля с целью его определения в различных твердых, жидких и газообразных (в том числе воздухе) объектах исследования.

Известен фотометрический метод определения содержания этиленгликоля с концентрацией 0,4-3,2 г/л в сточных водах, основанный на окислении его периодатом натрия до формальдегида и определении последнего с феноилгидразином и гексацианофератом, а при меньшей концентрации (10-400 мг/л) требующий дополнительной операции по выпариванию пробы воды на кипящей водяной бане и, наконец, при концентрации этиленгликоля в воде менее 10 мг/л требующий дополнительного извлечения этиленгликоля из пробы воды путем сорбирования этиленгликоля активированным углем, экстракции этиленгликоля в приборе Сокслета из активированного угля спиртоэфирной смесью, выпаривания раствора спиртоэфирной смеси в водяной бане и растворения полученного после выпаривания остатка в дистиллированной воде для последующего фотометрического анализа. При этом мешающими факторами являются метиловый спирт, метилметакрилат и другие соединения, окисляющиеся или разлагающиеся с образованием формальдегида, кроме того, при выпаривании проб в водяной бане теряется порядка 15-20% этиленгликоля [см. Лурье Ю.Ю. Аналитическая химия промышленных сточных вод. - М.: Химия, 1984. - 448 с. - С. 277-285].

Недостатками данного способа являются длительная и сложная процедура анализа, требующая применения химических реактивов, влияние различных мешающих факторов и низкая точность анализа при низких концентрациях этиленгликоля в испытуемой пробе воды.

Известен способ определения содержания этиленгликоля в воде с помощью метода абсорбционной хроматографии, принятый в качестве прототипа, заключающийся в том, что отбирают пробу воды, фильтруют или отстаивают пробу воды для исключения загрязнения хроматографической колонки, отбирают микрошприцем 2-3 мкл воды и вводят ее в хроматограф для получения предварительной хроматограммы, по которой корректируют условия анализа, затем для количественного анализа в мерную колбу вместимостью 25 мл вводят 20 мл пробы воды, прибавляют 1-2 мл стандартного раствора 1,3-бутандиола и доводят водой до метки, после чего проводят хромотографический анализ полученного раствора и определяют искомую концентрацию этиленгликоля по измеренной площади хроматографического пика этиленгликоля, известным значениям калибровочного коэффициента (вычисленного по данным хроматографического анализа калибровочных смесей) и массе стандартного вещества и объема испытуемой пробы воды [см. Лурье Ю.Ю. Аналитическая химия промышленных сточных вод. - М.: Химия, 1984. - 448 с. - С. 277-285].

Недостатками данного способа являются относительно длительная процедура анализа, требующая дополнительной пробоподготовки в виде фильтрации или отстаивания пробы воды для исключения загрязнения хроматографической колонки механическими примесями или высокомолекулярными соединениями, а также необходимость проведения предварительно анализа для получения представления о качественном составе пробы воды и выбора необходимого объема вводимой пробы.

Задачей настоящего изобретения является разработка высокочувствительного экспрессного способа количественного определения этиленгликоля в пробах воды, не требующего трудоемких расчетов и использования математических операций для интерпретации полученных данных.

Технический результат при осуществлении заявленного изобретения заключается в сокращении времени осуществления и упрощении процесса количественного определения этиленгликоля в пробах воды.

Поставленная задача в способе определения этиленгликоля в водных растворах, включающем отбор испытуемой пробы воды в мерную колбу и введение в нее внутреннего стандарта, решается тем, что предварительно готовят градуировочные растворы, в пять мерных взвешенных колб объемом 100 мл помещают по 5 мл внутреннего стандарта, в качестве которого используют любое соединение, растворяющееся в воде и имеющее в водном растворе полосы поглощения в инфракрасном спектре, не совпадающие или частично перекрывающиеся с полосами поглощения в инфракрасном спектре водного раствора этиленгликоля, затем определяют массу внутреннего стандарта, добавляют в мерные колбы с внутренним стандартом соответственно 0; 2; 5; 10 и 20 мл этиленгликоля, мерные колбы взвешивают и дополняют до метки дистиллированной водой, наносят на стекло из бромистого калия и исследуют методом инфракрасной спектрометрии, измеряя на Фурье-спектрометре с разрешением не хуже 1 см-1 спектр пропускания раствора в области волновых чисел 450-4000 см-1, рассчитывают для каждого раствора концентрацию внутреннего стандарта Свс (г/дм3) и концентрацию этиленгликоля Сэ (г/дм3) в градуировочном растворе, с помощью программного обеспечения проводят расчет нормализованного на значение концентрации внутреннего стандарта в градуировочном растворе спектра оптической плотности в области выбранной аналитической частоты и методом базисной линии по графику определяют на определенной частоте (см-1) значение приведенной оптической плотности Dпр (дм3/мг), по полученным значениям приведенной оптической плотности Dпр (дм3/мг) и концентрации этиленгликоля Сэ (г/дм3) в растворе строят градуировочный график, откладывая по оси ординат концентрацию этиленгликоля Сэ (г/дм3) в градуировочном растворе, а по оси абсцисс соответствующее значение приведенной оптической плотности Dпр (дм3/мг) на определенной аналитической частоте (см-1), методом наименьших квадратов проводят расчет градуировочной зависимости, затем в предварительно взвешенную мерную колбу для испытуемой пробы воды (далее мерная колба), объемом 100 мл помещают 5 мл внутреннего стандарта, по разнице масс мерной колбы с внутренним стандартом и предварительно взвешенной мерной колбы находят массу внутреннего стандарта, мерную колбу наполняют до метки испытуемой водой, рассчитывают концентрацию внутреннего стандарта Свс (г/дм3), введенного в испытуемую пробу воды, полученный раствор перемешивают в течение 5 мин, наносят тонким слоем на стекло из бромистого калия и проводят исследования методом инфракрасной спектрометрии, измеряя спектр пропускания пробы воды с введенным внутренним стандартом в области 450-4000 см-1, с помощью программного обеспечения проводят расчет в области выбранной аналитической частоты нормализованного на значение концентрации внутреннего стандарта спектра оптической плотности и определяют методом базисной линии на выбранной аналитической частоте значение приведенной оптической плотности Dпр (дм3/мг) для испытуемой пробы воды, по градуировочному графику по измеренному значению на аналитической частоте приведенной оптической плотности Dпр (дм3/мг) определяют концентрацию этиленгликоля Сэ (г/дм3) в испытуемой пробе воды или по определенной ранее градуировочной зависимости.

Отличительными признаками заявляемого изобретения являются:

- отсутствие пробоподготовки испытуемой пробы воды;

- применение метода инфракрасной спектрометрии (далее ИК-спектрометрия), что сокращает при компьютерной обработке инфракрасного спектра в несколько раз время проведения количественно анализа;

- использование в качестве внутреннего стандарта любого соединения, растворяющегося в воде и имеющего в водном растворе полосы поглощения в инфракрасном спектре, не совпадающие или частично перекрывающиеся с полосами поглощения в инфракрасном спектре водного раствора этиленгликоля, например диэтиленгликоля;

- оценка количества этиленгликоля в водном растворе с помощью градуировочного графика или градуировочной зависимости, что позволяет избежать трудоемких расчетов и использования математических операций для интерпретации полученных данных.

Заявленное изобретение поясняется с помощью фиг. 1-3.

На фиг. 1 изображен спектр пропускания водного раствора этиленгликоля с внутренним стандартом, в качестве которого используют диэтиленгликоль, в области волновых чисел 450-4000 см-1, на фиг. 2 изображен нормализованный на значение концентрации внутреннего стандарта спектр оптической плотности водного раствора этиленгликоля с внутренним стандартом, на фиг. 3 - градуировочный график зависимости концентрации этиленгликоля в водном растворе Сэ (г/дм3) от значения приведенной оптической плотности Dпр (дм3/мг).

В качестве пояснения к заявленному способу приводим следующее.

Для проведения количественного анализа готовят градуировочные растворы (далее растворы). Для этого в пять мерных предварительно взвешенных колб объемом 100 мл помещают по 5 мл внутреннего стандарта (диэтиленгликоля), колбы взвешивают и по разнице масс колб определяют массу внутреннего стандарта. Далее в мерные колбы с внутренним стандартом добавляют соответственно 0; 2; 5; 10 и 20 мл этиленгликоля, колбы взвешивают и дополняют до метки дистиллированной водой. По разнице масс колб с внутренним стандартом и с этиленгликолем и масс колб с внутренним стандартом определяют массу этиленгликоля в каждом растворе. После чего полученные растворы, начиная с первой колбы (по возрастанию концентрации этиленгликоля), наносят на стекло из бромистого калия и исследуют методом ИК-спектрометрии, измеряя на Фурье-спектрометре с разрешением не хуже 1 см-1 спектр пропускания раствора в области волновых чисел 450-4000 см-1. Рассчитывают для каждого раствора по известной массе внутреннего стандарта и объему мерной колбы концентрацию внутреннего стандарта Свс (г/дм3) и по известной массе этиленгликоля и объему мерной колбы концентрацию этиленгликоля Сэ (г/дм3) в растворе. С помощью программного обеспечения проводят расчет нормализованного на значение концентрации внутреннего стандарта в растворе спектра оптической плотности в области выбранной аналитической частоты 1046 см-1 всех градуировочных растворов (фиг. 2) и определяют методом базисной линии (фиг. 2, прямая "а") на аналитической частоте 1046 см-1 значение приведенной оптической плотности Dпр (дм3/мг) (фиг. 2, прямая "б"). По полученным значениям приведенной оптической плотности Dпр (дм3/мг) и концентрации этиленгликоля Сэ (г/дм3) в растворе строят градуировочный график (фиг. 3, прямая "а"), откладывая по оси ординат концентрацию этиленгликоля Сэ (г/дм3) в растворе, а по оси абсцисс соответствующее значение приведенной оптической плотности Dпр (дм3/мг) на выбранной аналитической частоте 1046 см-1, методом наименьших квадратов проводят расчет градуировочной зависимости, которая для представленной зависимости имеет вид Сэ=18,0·Dпр-63,8.

Отбирают испытуемую пробу воды (далее проба), в мерную предварительно взвешенную колбу объемом 100 мл помещают 5 мл внутреннего стандарта, мерную колбу взвешивают и по разнице масс колбы с внутренним стандартом и предварительно взвешенной мерной колбы находят массу внутреннего стандарта, мерную колбу наполняют до метки испытуемой водой. Рассчитывают по известной массе внутреннего стандарта и объему мерной колбы концентрацию внутреннего стандарта Свс (г/дм3), введенного в пробу воды. Полученный раствор перемешивают в течение 5 мин, наносят тонким слоем на стекло из бромистого калия и проводят исследования методом ИК-спектрометрии, измеряя спектр пропускания пробы воды с введенным внутренним стандартом в области 450-4000 см-1 (фиг. 1).

С помощью специального программного обеспечения проводят расчет в области выбранной аналитической частоты 1046 см-1 нормализованного на значение концентрации внутреннего стандарта спектра оптической плотности (фиг. 2) и определяют методом базисной линии (фиг. 2, кривая "а") на аналитической частоте 1046 см-1 значение приведенной оптической плотности Dпр (дм3/мг) (фиг. 2, прямая "б"), которое для испытуемой пробы воды составляет 7,53 дм3/г. По градуировочному графику (фиг. 3, линия "б") по измеренному значению на аналитической частоте приведенной оптической плотности Dпр 7,53 дм3/мг определяют концентрацию этиленгликоля Сэ (г/дм3) в испытуемой пробе воды, которое равно 72 г/дм3.

Аналогичный результат может быть получен по установленной градуировочной зависимости по формуле: Сэ=18,0·Dпр-63,8=72 г/дм3.

Способ определения этиленгликоля в водных растворах, включающий отбор испытуемой пробы воды в мерную колбу и введение в нее внутреннего стандарта, отличающийся тем, что предварительно готовят градуировочные растворы, в пять мерных взвешенных колб объемом 100 мл помещают по 5 мл внутреннего стандарта, в качестве которого используют любое соединение, растворяющееся в воде и имеющее в водном растворе полосы поглощения в инфракрасном спектре, не совпадающие или частично перекрывающиеся с полосами поглощения в инфракрасном спектре водного раствора этиленгликоля, затем определяют массу внутреннего стандарта, добавляют в мерные колбы с внутренним стандартом соответственно 0; 2; 5; 10 и 20 мл этиленгликоля, мерные колбы взвешивают и дополняют до метки дистиллированной водой, наносят на стекло из бромистого калия и исследуют методом инфракрасной спектрометрии, измеряя на Фурье-спектрометре с разрешением не хуже 1 см-1 спектр пропускания раствора в области волновых чисел 450-4000 см-1, рассчитывают для каждого раствора концентрацию внутреннего стандарта Cвс (г/дм3) и концентрацию этиленгликоля Cэ (г/дм3) в градуировочном растворе, с помощью программного обеспечения проводят расчет нормализованного на значение концентрации внутреннего стандарта в градуировочном растворе спектра оптической плотности в области выбранной аналитической частоты и методом базисной линии по графику определяют на определенной частоте (см-1) значение приведенной оптической плотности Dпp (дм3/мг), по полученным значениям приведенной оптической плотности Dпp (дм3/мг) и концентрации этиленгликоля Cэ (г/дм3) в растворе строят градуировочный график, откладывая по оси ординат концентрацию этиленгликоля Cэ (г/дм3) в градуировочном растворе, а по оси абсцисс соответствующее значение приведенной оптической плотности Dпp (дм3/мг) на определенной аналитической частоте (см-1), методом наименьших квадратов проводят расчет градуировочной зависимости, затем в предварительно взвешенную мерную колбу для испытуемой пробы воды (далее мерная колба) объемом 100 мл помещают 5 мл внутреннего стандарта, по разнице масс мерной колбы с внутренним стандартом и предварительно взвешенной мерной колбы находят массу внутреннего стандарта, мерную колбу наполняют до метки испытуемой водой, рассчитывают концентрацию внутреннего стандарта Cвс (г/дм3), введенного в испытуемую пробу воды, полученный раствор перемешивают в течение 5 мин, наносят тонким слоем на стекло из бромистого калия и проводят исследования методом инфракрасной спектрометрии, измеряя спектр пропускания пробы воды с введенным внутренним стандартом в области 450-4000 см-1, с помощью программного обеспечения проводят расчет в области выбранной аналитической частоты нормализованного на значение концентрации внутреннего стандарта спектра оптической плотности и определяют методом базисной линии на выбранной аналитической частоте значение приведенной оптической плотности Dпp (дм3/мг) для испытуемой пробы воды, по градуировочному графику по измеренному значению на аналитической частоте приведенной оптической плотности Dпр (дм3/мг) определяют концентрацию этиленгликоля Cэ (г/дм3) в испытуемой пробе воды или по определенной ранее градуировочной зависимости.



 

Похожие патенты:

Изобретение относится к аналитической химии, конкретно к неподвижным фазам для разделения веществ методом капиллярной газовой хроматографии, и может быть использовано в анализе различных классов химических веществ.

Изобретение относится к области газового анализа и может быть использовано для градуировки газоанализаторов и газовых хроматографов и получения градуировочных газовых смесей при анализе объектов окружающей среды, природного и попутного нефтяного газа в различных отраслях промышленности.

Изобретение относится к области физико-химического анализа, а именно к измерению удельной поверхности (УП) дисперсных, пористых и компактных материалов. Предварительно перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют.

Изобретение относится к сельскому хозяйству и может быть использовано для определения остаточных количеств биоорганического соединения (д.в. поли-NN-диметил-3,4 метилпиролидиния галогенида (хлорида)) с ярко выраженными бактерицидными и фунгипротекторными свойствами в растительных объектах (яблоки, груши, айва, сливы, персики).

Изобретение относится к области определения сорбционных характеристик веществ, а именно к способам измерения величины сорбции и построения изотерм сорбции газа (пара) в различных мембранных материалах.

Изобретение относится к аналитической химии и касается количественного определения тетрациклина в молоке и молочных продуктах. Способ определения тетрациклина в молоке и молочных продуктах заключается в предварительном сорбционном концентрировании тетрациклина природным цеолитом и последующем определении данного аналита методом высокоэффективной жидкостной хроматографии с ультрафиолетовым детектированием при длине волны 350 нм.
Изобретение относится к области контроля перемещающихся своим ходом транспортных средств и может быть использовано для досмотра с целью обнаружения скрытых предметов, веществ и материалов, запрещенных к перевозке.

Изобретение относится к области аналитической химии и может быть использовано в химической, фармацевтической и других отраслях промышленности при анализе парабенов методом высокоэффективной жидкостной хроматографии (ВЭЖХ).

Изобретение может быть использовано для анализа многокомпонентных газовых смесей в замкнутых объемах. Способ определения параметров газовой среды в герметизированном контейнере с электромеханическими приборами включает отбор пробы анализируемой газовой среды из герметизированного контейнера и измерение совокупности характеристик компонентов газовой среды, выделяющихся из объектов в герметизированный контейнер, таких как концентрация, температура и давление.
Изобретение относится к области прогнозирования процессов старения синтетических полимерных материалов (СПМ) в зависимости от продолжительности их эксплуатации или хранения.

Потоковый газовый хроматограф предназначен для определения качественного и количественного состава различных газов, например природного газа на технологических потоках предприятий газовой, нефтеперерабатывающей и других отраслей промышленности. Хроматограф содержит корпус (1, 2) со штуцерами (3.1-3.6) ввода и вывода газов и расположенные в корпусе устройство (5) для подготовки и ввода пробы, теплоизолированный аналитический блок (13), систему трубопроводов, соединяющих функциональные компоненты хроматографа между собой и со штуцерами ввода и вывода газов; и средства управления направлениями газовых потоков. Устройство (5) для подготовки и ввода пробы включает в себя регуляторы давления (6, 7) и расхода (8), измеритель расхода (9) и дроссель (10), а аналитический блок (13) содержит термостат (14), в котором размещены хроматографическая аналитическая колонка (15), детектор (16) и дозирующий объем (17). Согласно изобретению средства управления направлениями газовых потоков включают в себя электронный блок (4) управления и связанные с ним управляемые запорные клапаны (11.1-11.20), установленные в соответствующих трубопроводах, при этом электронный блок (4) управления выполнен с возможностью независимого управления каждым запорным клапаном. Техническим результатом изобретения является повышение точности измерения состава газа и повышение уровня автоматизации при регламентных работах, расширение функциональных возможностей хроматографа и областей его применения. 8 з.п. ф-лы, 1 ил.

Изобретение относится к области аналитической химии и может быть использовано для определения содержания ЛХС (летучих хлорорганических соединений): четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана в донных отложениях. Способ определения содержания ЛХС в донных отложениях с применением анализа равновесного пара включает определение ЛХС на капиллярной хроматографической колонке в потоке газа-носителя, представляющем собой азот, образование и регистрацию пламенно-ионизационным детектором исследуемых ионов, образующихся в пламени. При этом готовят основной раствор с концентрацией ЛХС 8 мг/см3, хорошо сохраняющийся 2 месяца при температуре от -2°C до -10°С, готовят промежуточный раствор с концентрацией ЛХС 10 мг/дм3 разведением основного раствора водой очищенной. Затем готовят градуировочные растворы для диапазона концентраций ЛХС 0,05-2,5 мг/дм3 разведением водой очищенной промежуточного раствора, градуируют хроматограф. Далее вводя в него предварительно отобранную паровую фазу градуировочных растворов, строят градуировочный график. Причем после термостатирования исследуемого образца отбирают паровую фазу и парофазным шприцем вводят в испаритель хроматографа, полученные данные обрабатывают компьютерной программой GCsolution, которой комплектуется хроматографический комплекс SHIMADZU GC-2010, и получают качественную идентификацию и количественные показания прибора. Содержание каждого компонента Ci, мг/кг, сухого вещества вычисляют математически. Техническим результатом является повышение логичности и точности анализа, достижение приемлемых результатов повторяемости (сходимости) параллельных проб и удобство выполнения анализа в условиях экологического мониторинга. 6 табл, 2 ил.
Изобретение относится к аналитической химии, а именно к способам определения карбоновых кислот в водных растворах глиоксаля. В процессе синтеза глиоксаля образуются примеси гликолевой и глиоксалевой кислот, которые мешают дальнейшему его использованию, так как наряду с последним вступают в реакции конденсации, сильно загрязняя продукты на основе глиоксаля. С целью анализа разделения кислот проводят на колонке Zorbax Sb-Aq размерами 150×3 мм, размер зерна 5 мкм. При этом адсорбировавшиеся на колонке кислоты элюируют смесью: 99% вода, 1% ацетонитрил+Н3PO4, pH=2, со скоростью 0,5 мл/мин. Причем в качестве детектора используют спектрофотометрический детектор с длиной волны 210 нм с последующим определением площадей хроматографических пиков глиоксалевой и гликолевой кислот в водном растворе глиоксаля. Техническим результатом является разработка способа хроматографического определения гликолевой и глиоксалевой кислот с целью определения их массовой доли в растворе глиоксаля. 1 пр.

Настоящее изобретение относится к биохимии, в частности к лигандам для аффинной хроматографии на основе различных доменов белка A (SpA) Staphylococcus. Лиганд содержит либо несколько доменов C, либо несколько доменов B, либо несколько доменов Z белка SpA. При этом каждый из указанных доменов содержит делецию 3 или 4 последовательных аминокислот с N-конца, начиная с положения 1, или делецию 3 последовательных аминокислот с N-конца, начиная с положения 2. Указанные домены белка SpA в лигандах могут дополнительно содержать аминокислотную мутацию в положении 29 для уменьшения Fab-связывания. Настоящее изобретения раскрывает матрицу для аффинной хроматографии, содержащую один из возможных указанных лигандов, прикреплённый к твёрдой подложке. Также изобретение раскрывает способ аффинной очистки с использованием указанной матрицы. Лиганд для аффинной хроматоргафии, содержащий по меньшей мере пять доменов C белка SpA, каждый из которых содержит мутацию для уменьшения Fab-связывания, а также делецию 4 аминокислот с N-конца, начиная с положения 1, является стабильным в основных условиях. Настоящее изобретение позволяет уменьшить фрагментацию при применении настоящих лигандов и матриц в способах очистки. 11 н. и 15 з.п. ф-лы, 9 ил., 4 табл., 12 пр.

Группа изобретений относится к определению массовой доли ацетальдегида, выделяющегося в полиэтилентерефталате (ПЭТ) или его композитах. Способ определения массовой доли ацетальдегида в ПЭТ или его композитах включает запаивание пробы в стеклянные ампулы диаметром 5-6 мм на воздухе или путем вакуумирования, помещение ампул в термостат при температуре 120±2°С и выдерживание в течение 2 ч, последующее помещение ампул в термостатированную ячейку с ударным механизмом, продуваемую инертным газом и нагреваемую до температуры 20-80°С, с последующим вскрытием ампул с помощью ударного механизма и оценкой содержания ацетальдегида методом газовой хроматографии. Также представлено устройство для определения массовой доли ацетальдегида в ПЭТ или его композитах. Достигается повышение точности и надежности анализа. 2 н.п. ф-лы, 4 ил.

Изобретение относится к аналитической химии органических соединений и может быть использовано для идентификации диэтиламина и изопропилового спирта в газовых смесях. Способ идентификации диэтиламина и изопропилового спирта в газовых смесях характеризуется тем, что в качестве тест-устройств для идентификации диэтиламина и изопропилового спирта используют массив из четырех пьезокварцевых резонаторов с собственной частотой колебаний 10 МГц, электроды которых модифицируют нанесением на них из индивидуальных растворов пчелиного воска (ПчВ), полиэтиленгликоль себацината (ПЭГС), полиэтиленгликоль фталата (ПЭГФ) и апиезона L (ApL) так, чтобы масса каждой пленки сорбента после удаления растворителя сушкой в сушильном шкафу при температуре 40-50°С в течение 15-20 мин составила 15-20 мкг, которые затем помещают в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8» и выдерживают в нем в течение 5 мин для установления стабильного нулевого сигнала. Затем в стеклянный пробоотборник объемом 50 см3 помещают 5,0 г анализируемого мелкоизмельченного образца, например, блочного пластикового изделия или изделия с тонкопленочным покрытием с площадью поверхности 100 см2, плотно закрывают пробоотборник полиуретановой пробкой, выдерживают при температуре 20±1°С в течение 15 мин для получения равновесной газовой фазы. Далее содержание диэтиламина и изопропилового спирта определяют по сигналам сенсоров, для чего в случае блочного пластикового изделия или изделия с тонкопленочным покрытием из пробоотборника отбирают шприцем через полиуретановую пробку 5 см3 равновесной газовой фазы или такой же объем в случае другой газовой смеси и инжектируют ее в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8», с помощью программного обеспечения, в котором заложена программа фиксирования максимальных сигналов всех сенсоров, фиксируют изменение частоты колебаний каждого пьезосенсора ΔF, Гц, в течение 60 с и рассчитывают отношение откликов сенсоров - параметры и . Делают вывод о присутствии диэтиламина в смеси, если параметр А1 составляет 0,13±0,03, и если в газовой смеси присутствует изопропиловый спирт, то параметр А2 составляет 2,0±0,4. Техническим результатом является разработка способа идентификации диэтиламина и изопропилового спирта в различных газовых смесях, позволяющего идентифицировать их без многостадийной подготовки пробы, обеспечивать высокую чувствительность, точность и экспрессность.

Изобретение относится к химической промышленности и может быть использовано, в частности, для исследования каталитических газохимических процессов. Установка для исследования каталитических газохимических процессов включает в себя каталитический реактор, газовый хроматограф, средства контроля давления, выполненные в виде первого и второго манометров, средство регулирования давления, выполненное в виде регулятора давления, средство для контроля температуры, выполненное в виде, по меньшей мере, одного датчика температуры, запорно-регулирующую арматуру, выполненную в виде вентилей. Установка дополнительно содержит блок подачи газа, систему нагрева и охлаждения каталитического реактора, сепаратор с системой циркуляции захоложенной воды, компрессор, ресиверы высокого и низкого давления, фильтр, вакуумный насос, первый и второй переключатели потока газа, редуктор, выход которого соединен с газовым хроматографом, а также регуляторы расхода газа. Техническим результатом является обеспечение возможности подбора эффективного катализатора, поиска оптимальных условий процесса преобразования компонентов синтез-газа в газообразные и жидкие углеводороды, что позволяет усовершенствовать существующие процессы и разработать новые. 1 ил.

Изобретение относится к области хроматографии и может быть использовано для анализа и исследования лекарственных препаратов на основе амлодипина и валсартана, обладающих схожестью химической структуры и сорбционных свойств. Способ хроматографического разделения твердой комбинированной лекарственной формы, содержащей амлодипин и валсартан, методом обращенно-фазовой ВЭЖХ с использованием ультрафиолетового спектрофотометрического детектора. Причем анализ проводят на хроматографической колонке Luna С18 (2) размером 150×4,6 мм, заполненной октадецилсилил силигагелем с размером частиц 5 мкм, в градиентном режиме, при котором при разделении происходит сорбция компонентов лекарственной формы на колонке Luna С18 (2) 150×4,6 мм, 5 мкм. При этом в качестве органического модификатора используют триэтиламин, являющийся ионпарной добавкой к подвижной фазе в количестве 1%, а в качестве растворителя пробы используют метанол и смесь из подвижных фаз А и В. Температура термостатирования колонки составляет 30°С, детектирование осуществляется при длине волны 237 нм, поток подвижной фазы 1 мл/мин. Техническим результатом является возможность за короткое время хроматографирования получить достаточное разрешение между пиками веществ и высокое число теоретических тарелок для обоих компонентов, что позволяет произвести корректный количественный расчет данных действующих веществ в анализируемой пробе. 2 ил.

Изобретение относится к области масс-спектрометрии. Особенностями способа являются вертикальная ориентация мениска жидкости в пространстве, из вершины которого происходит эмиссия заряженных частиц в неоднородном постоянном электрическом поле и организации встречного потока фонового газа при нормальных условиях. Встречный поток фонового газа при нормальных условиях устраняет излишки не распыленного раствора (жидкости), образующиеся на внешней стороне капилляра, из области распыления, не влияя на стабильность распыления и монодисперсность заряженных частиц. Режим стабильной эмиссии заряженных частиц (ионный ток) существует только при условии, что расстояние от торца капилляра, по которому поступает раствор, до противоэлектрода составляет 6-9 мм, длина внутреннего капилляра, выступающего из внешнего, составляет 3-4 внешних диаметра внутреннего капилляра, внутренний диаметр внешнего коаксиального капилляра в два раза больше внешнего диаметра внутреннего капилляра. При этом режим распыления имеет устойчивый характер в течение десятков минут. Регулируемые параметры распыления - величина электрического напряжения, подаваемого на противоэлектрод, и поток отбираемого газа из коаксиального канала между капиллярами, после настройки на стабильный режим имеют гистерезис и при необходимости могут быть уменьшены без потери эффекта. Технический результат - возможность получения воспроизводимого долговременного стабильного тока заряженных частиц электрораспылением в широком диапазоне объемных скоростей растворов анализируемых веществ при нормальных условиях и соответственно стабильного ионного тока анализируемых веществ, поступающих в анализатор. 8 ил.

Изобретение относится к области пищевой промышленности, а именно к спиртовому производству, и может быть использовано для количественного определения мальтозы, глюкозы, фруктозы в полупродуктах спиртового производства. Способ определения мальтозы, глюкозы, фруктозы в полупродуктах спиртового производства предусматривает хроматографическое разделение определяемых углеводов с использованием жидкостного хроматографа с рефрактометрическим детектором на хроматографической аналитической колонке RHM-Monosaccharide Phenomenex Н+, заполненной сорбентом, смолой с 8% со степенью сшивки, в водородной ионной форме (300×7,8 мм, размер частиц 8 мкм). При этом скорость потока подвижной фазы (дистиллированная вода) 0,6 см3/мин, давление 2,3 МПа, максимальная температура в колонке 80°С и качественное и количественное определение мальтозы, глюкозы, фруктозы по полученной хроматограмме. Подготовка пробы представляет собой центрифугирование в течение 7 мин при 13000 об/мин. Техническим результатом является уменьшение времени анализа, повышение чувствительности, а также упрощение анализа. 2 табл.
Наверх