Способ формирования изображения быстропротекающего процесса с помощью протонного излучения



Способ формирования изображения быстропротекающего процесса с помощью протонного излучения
Способ формирования изображения быстропротекающего процесса с помощью протонного излучения
Способ формирования изображения быстропротекающего процесса с помощью протонного излучения
Способ формирования изображения быстропротекающего процесса с помощью протонного излучения
Способ формирования изображения быстропротекающего процесса с помощью протонного излучения
Способ формирования изображения быстропротекающего процесса с помощью протонного излучения
G01N23/00 - Исследование или анализ материалов радиационными методами, не отнесенными к группе G01N 21/00 или G01N 22/00, например с помощью рентгеновского излучения, нейтронного излучения (G01N 3/00-G01N 17/00 имеют преимущество; измерение силы вообще G01L 1/00; измерение ядерного или рентгеновского излучения G01T; введение объектов или материалов в ядерные реакторы, извлечение их из ядерных реакторов или хранение их после обработки в ядерных реакторах G21C; конструкция или принцип действия рентгеновских аппаратов или схемы для них H05G)

Владельцы патента RU 2573178:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" (RU)
Федеральное Государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики - ФГУП "РФЯЦ-ВНИИЭФ" (RU)

Использование: для формирования изображения быстропротекающего процесса с помощью протонного излучения. Сущность изобретения заключается в том, что способ включает ввод протонного пучка, по крайней мере, в один магнитооптический канал, изменение ширины протонного пучка на разные величины, которое осуществляют последовательно в одном и том же магнитооптическом канале, для этого либо после прохождения части протонных сгустков через рассеиватель его удаляют или изменяют толщину, а затем пропускают оставшуюся часть протонных сгустков, либо следующие друг за другом протонные сгустки смещают относительно друг друга с помощью магнитных линз и, используя разнотолщинный рассеиватель, смещенные протонные сгустки пропускают через области рассеивателя с разной толщиной, после прохождения рассеивателя с помощью системы согласующих магнитных линз формируют протонный пучок с параметрами, соответствующими параметрам области исследования и последующей магнитооптической системы формирования протонного изображения, и просвечивают область исследования, пропуская поочередно протонные сгустки различной ширины, при использовании нескольких магнитооптических каналов просвечивание области исследования осуществляют под разными углами, после чего прошедший протонный пучок направляют в магнитооптическую систему формирования протонного изображения, состоящую, по крайней мере, из двух различных по апертуре линзовых систем, апертура каждого набора соответствует протонному пучку определенной ширины, оба набора линз системы формирования теневого протонного изображения размещают последовательно в одном магнитооптическом канале. Технический результат: обеспечение возможности получения высококачественного изображения области исследования. 3 з.п. ф-лы, 6 ил.

 

Изобретение относится к способам исследования быстропротекающих процессов, основанным на пропускании излучения через исследуемую область с последующим получением изображения, и может найти применение при исследовании материалов и объектов, подвергаемых динамическому нагружению, в частности радиографических способах регистрации изображений, сформированных с помощью протонного излучения.

Задачей, стоящей в рассматриваемой области техники, является получение высококачественного изображения области исследования при приемлемых затратах на строительство, монтаж и обслуживание исследовательского комплекса.

Из предшествующего уровня техники известны способы формирования изображений быстропротекающего процесса с помощью протонного излучения, например способ, реализуемый с помощью макета радиографического комплекса на основе протонного ускорителя У-70 (ГНЦ РФ ИФВЭ, г. Протвино). Известный способ включает в себя следующие операции: ввод протонного пучка в один магнитооптический канал, формирование с помощью системы согласующих магнитных линз протонного пучка с фазовыми параметрами, соответствующими параметрам области исследования и системе формирования изображения, просвечивание области исследования путем пропускания через нее протонных сгустков, направление прошедших через область исследования протонных сгустков в магнитооптическую систему формирования протонного изображения, состоящую из линз, апертура которых соответствует ширине сформированного протонного пучка, и формирование теневого протонного изображения в плоскости регистрации.

Один из недостатков известного способа связан с тем, что система линз, формирующих протонный пучок в области исследования, обеспечивает вывод протонного пучка с одной фиксированной шириной при том, что размер области исследования может меняться в процессе эксперимента. Это приводит к неэффективному использованию энергии протонов и снижению качества протонных изображений.

Для обеспечения эффективного использования протонов и повышения качества протонных изображений необходимо использовать, по крайней мере, два канала, реализующих известный способ, с магнитными линзами малой и большой аппретуры, а так же дополнительные системы разветвленной доставки излучения (с числом каналов не менее 2-х) к месту проведения эксперимента, стоимость и габариты которых составят существенную часть стоимости всего комплекса.

Известен способ формирования изображения быстропротекающего процесса, который может быть реализован с помощью проектного варианта радиографического комплекса AHF, выполненного на основе синхротрона (Proton radiography, Physies Division Progress Report, 1999-2000, p. 156-168). Данный способ был принят в качестве прототипа как наиболее близкий к заявляемому способу по количеству сходных признаков и решаемой задаче. В комплексе AHF канал вывода протонного пучка за пределы периметра синхротрона связан с разветвленной системой доставки протонного пучка к месту проведения исследований, содержащей до 12-и каналов доставки.

Способ, который можно реализовать с помощью радиографического комплекса AHF, включает в себя следующие операции:

- ввод протонного пучка, по крайней мере, в два магнитооптических канала с широкой и узкой апертурой, в частности - шесть с широкой и шесть с узкой апертурой,

- формирование ширины протонного пучка в каждом канале в соответствии с апертурой канала, для чего в каждом канале на пути следования протонных сгустков размещают рассеиватель. Рассеиватели выполняют в виде металлических пластин, отличающихся друг от друга толщиной, чем толще рассеиватель, тем шире пучок. При прохождении пучка через один из каналов он увеличивается в диаметре до 200 мм, при прохождении через другой - до 50 мм,

- сначала пучок направляют в канал с большой апертурой,

- после прохождения протонным пучком рассеивателя с помощью системы согласующих магнитных линз формируют протонные пучки с фазовыми параметрами, соответствующими параметрам области исследования и магнитооптической системы формирования протонных изображений,

- просвечивают область исследования, пропуская протонные сгустки сначала большей ширины,

- при уменьшении области исследования в течение одного эксперимента направляют протонные сгустки в канал с меньшей апертурой

- просвечивают область исследования, пропуская протонные сгустки меньшей ширины,

- при использовании нескольких магнитооптических каналов их располагают под разными углами по отношению к месту исследования и просвечивание области исследования осуществляют под разными углами,

- после прохождения протонных пучков с разных каналов через область исследования их направляют в соответствующие магнитооптические системы формирования протонных изображений, состоящие из линз, апертура которых соответствует ширине протонного пучка,

- формируют теневые протонные изображения в плоскости регистрации протонных изображений.

Данный способ устраняет недостатки предшествующего аналога, однако конструктивно-компоновочное решение проектного варианта радиографического комплекса AHF основано на применении большого количества магнитов, большого количества каналов формирования протонных изображений и их длины, что приводит к значительной стоимости строительства и больших затратах на обслуживание и эксплуатацию.

Техническим результатом заявляемого способа является уменьшение расходов на его осуществление при сохранении его функциональных возможностей (объем информации за время проведения одного опыта не уступает прототипу).

Указанный технический результат достигается за счет того, что в способе формирования изображения быстропротекающего процесса с помощью протонного излучения, включающем общие с прототипом признаки, а именно:

- ввод протонного пучка, по крайней мере, в один магнитооптический канал,

- изменение ширины протонного пучка путем размещения в магнитооптическом канале на пути следования протонных сгустков рассеивателя,

- после прохождения рассеивателя пучка с помощью системы согласующих магнитных линз формирование протонного пучка с параметрами, соответствующими параметрам области исследования и магнитооптической системы формирования изображения,

- поочередное просвечивание области исследования путем поочередного пропуска протонных сгустков различной ширины в одном эксперименте,

- при использовании нескольких магнитооптических каналов просвечивание области исследования осуществляют под разными углами,

- направление протонного пучка, прошедшего область исследования, в магнитооптические системы формирования протонного изображения, состоящие, по крайней мере, из двух наборов линз, апертура каждого набора соответствует ширине протонного пучка, проходящего через него,

- формирование теневых протонных изображений области исследования в плоскости изображений магнитооптической системы,

содержатся отличительные признаки, а именно:

- изменение ширины протонного пучка на различные величины осуществляют последовательно в одном и том же магнитооптическом канале,

- для этого либо после прохождения части протонных сгустков через рассеиватель его удаляют или изменяют толщину, а затем пропускают оставшуюся часть протонных сгустков,

- либо смещают часть протонных сгустков с помощью магнитных линз относительно другой части и, используя разнотолщинный рассеиватель, смещенные части протонных сгустков пропускают через области рассеивателя с разной толщиной,

- при этом оба набора линз системы формирования теневого протонного изображения размещают последовательно в одном магнитооптическом канале.

Изменение толщины рассеивателя после прохождения через него части протонных сгустков может быть осуществлено либо путем его перемещения поперек движения протонных сгустков, при этом рассеиватель выполняют разнотолщинным, либо путем удаления электровзрывом или газодинамически его слоев, при этом рассеиватель выполняют многослойным.

В качестве рассеивателя может быть использована токопроводящая литиевая линза, фокусирующая или дефокусирующая протонные сгустки.

При помощи второго набора линз системы формирования теневого протонного изображения можно формировать изображение с увеличенным масштабом.

Меняя ширину протонного пучка как в сторону увеличения, так и в сторону уменьшения в течение одного эксперимента в одном и том же магнитооптическом канале можно обойтись без дополнительных ответвлений магнитооптических каналов, при этом сохраняется объем информации о процессах, происходящих в области исследования, который возможно получить с помощью прототипа, следовательно уменьшаются затраты на осуществление способа формирования изображения.

Удаление рассеивателя после прохождения части протонных сгустков или изменение его толщины, а затем пропуск оставшейся части протонных сгустков или смещение части протонных сгустков с помощью магнитных линз относительно другой части и, используя разнотолщинный рассеиватель, пропуск смещенных частей протонных сгустков через области рассеивателя с разной толщиной позволяют осуществить изменение ширины протонного пучка поочередно на разные величины в одном магнитооптическом канале.

Изменение толщины рассеивателя после прохождения через него части протонных сгустков либо путем его перемещения поперек движения протонных сгустков, при этом рассеиватель выполняют разнотолщинным, либо путем удаления электровзрывом или газодинамически его слоев, при этом рассеиватель выполняют многослойным, позволяет быстро изменить ширину протонного пучка в требуемый момент, что исключает затраты на формирование и эксплуатацию дополнительных каналов.

Размещение наборов линз системы формирования протонного изображения последовательно, в одном магнитооптическом канале позволяет сформировать изображение при пропускании через область исследования пучков разной ширины без дополнительных разветвлений магнитооптических каналов.

На фиг. 1 изображен схематично общий вид радиографичекого комплекса, позволяющего пояснить заявляемый способ, где: 1 - тоннель большого кольца, 2 - технологическое здание, 3 - здание бустера и линак, 4 - внешняя обваловка тоннеля, 5 - здание проведения эксперимента, 6 - тоннель каналов регистрации, 7 - измерительные здания, 8 - поглотители пучка 9 - тоннель каналов разводки, 10 - исследовательский канал, 11 - переезд через тоннель, 12 - здание управления комплексом.

На фиг. 2 приведен пример размещения набора линз в системе формирования протонного изображения, при котором узкий и широкий пучки регистрируются последовательно в одном канале. Сплошными линиями показаны траектории протонов при широком пучке, штриховыми - при узком пучке.

На фиг. 3 приведен частный случай последовательного размещения системы формирования протонного изображения, при котором вторая линзовая система формирует изображение с увеличением.

На фиг. 4, 5, 6, приведены примеры реализации динамического изменения ширины протонного пучка в одном эксперименте.

На фиг. 4 - при отклонении части сгустков от другой части при пропускании пучка через разнотолщинный рассеиватель, на фиг. 5 - при перемещении разнотолщинного рассеивателя с помощью взрывного устройства, на фиг. 6 - при использовании в качестве рассеивателя токопроводящей литиевой линзы, где: 13 - разнотолщинный рассеиватель, 14 - взрывчатое вещество, 15 - ударник, 16, 17 - литиевые магнитные линзы с разным значением магнитного поля, пунктиром показана ось орбиты.

В качестве примера конкретного выполнения, поясняющего заявляемый способ, может служить следующий радиографический комплекс на основе протонного ускорителя. Комплекс содержит импульсные источники тока, линейный ускоритель с выходной энергией протонов 40 МэВ, бустер-синхротрон с выходной энергией протонов 1,2 ГэВ и основной синхротрон с выходной энергией протонов 20 ГэВ. Кольцевые магнитные структуры синхротронов содержат дипольные поворотные магниты, магнитные линзы (квадрупольные, секступольные магниты), дипольные корректирующие бамп-магниты, кикер-магниты и септум-магниты соединены между собой и линейным ускорителем вакуумными каналами транспортировки протонного пучка. Линейный ускоритель также соединен с ловушкой для аварийного сброса протонного пучка. В основное кольцо синхротрона входят четыре системы вывода на основе кикер-магнитов, которые размещают перед каналами вывода протонного пучка из синхротрона, причем один из каналов направлен наружу, а три - внутрь периметра основного синхротрона. Внутри основного синхротрона также размещены три канала, входящих в систему доставки протонного пучка к месту проведения исследования.

Каждый канал доставки протонного пучка к месту исследования включает систему формирования и регистрации протонографического изображения, элементы которой размещаются с обеих сторон исследуемого объекта, и заканчивается ловушкой для поглощения протонов. Система формирования и регистрации протонографического изображения содержит рассеиватели, каждый из которых установлен в канале доставки протонного пучка к месту исследования. Рассеиватель представляет собой двухсегментную разнотолщинную вольфрамовую пластину диаметром 15 мм, толщина одного сегмента - 1 мм, другого - 2 мм. После рассеивателя в каждом канале установлена система согласующих магнитных линз. После места проведения эксперимента 5 в канале размещают магнитооптическую систему формирования протонного изображения, состоящую из двух различных по апертуре линзовых систем, апертуры которых соответствует номиналам ширины протонного пучка. Линзовые системы формируют теневое протонное изображение области исследования в своих плоскостях изображений.

Способ формирования изображения быстропротекающего процесса с помощью радиографического комплекса на основе протонного ускорителя заключается в следующем. После заполнения кольца основного синхротрона 1 равномерно расположенными по периметру орбиты 4 сгустками протонов они подвергаются дальнейшему ускорению до энергии 20 ГэВ. Удержание протонного пучка на орбите траектории осуществляется магнитной системой кольца основного синхротрона 1, состоящей из дипольных поворотных магнитов и магнитных линз. После достижения энергии 20 ГэВ на систему управления комплексом поступает сигнал готовности. По команде с системы управления комплексом происходит синхронизированный запуск быстропротекающего процесса в объекте исследования и, с заранее заданной временной задержкой, вывод протонных сгустков из кольца основного синхротрона 1. Вывод протонных сгустков происходит в результате одновременного срабатывания кикер-магнитов каждой из 3-х систем вывода пучка внутрь кольца основного синхротрона 1. При однократном срабатывании кикер-магнитов в каждый канал вывода 2 поступает один или более сгустков протонов. Далее сгустки по каналам системы доставки пучка 3 проходят элементы системы формирования и регистрации пучка 4, а затем объект исследования 5, расположенный в геометрическом центре кольца основного синхротрона.

Каналы доставки протонного пучка 3 расположены в одной плоскости и подводятся к исследуемому объекту под углом 120° относительно друг друга. Каждый сгусток протонов, проходящий через объект, позволяет получить 1 кадр одномерного изображения. Таким образом, при максимальном числе ускоренных сгустков протонов, равном 18, имеется возможность получить до 6 кадров трехмерного изображения мгновенного состояния динамического процесса. Используемая схема вывода позволяет выпускать протонные сгустки из кольца основного синхротрона 1 последовательно один за другим или с пропуском вывода, существенно растягивая временной интервал между ними. Изменение ширины протонного пучка на разные величины осуществляют последовательно в одном и том же магнитооптическом канале, для этого следующие друг за другом протонные сгустки смещают относительно друг друга с помощью магнитных линз и, используя разнотолщинный рассеиватель 13, смещенные протонные сгустки пропускают через области рассеивателя с разной толщиной (фиг. 4).

Изменить ширину протонного пучка можно и так: после прохождения части протонных сгустков через рассеиватель его удаляют, а затем пропускают оставшуюся часть протонных сгустков, либо рассеиватель выполняют разнотолщинным и после прохождения части протонных сгустков через толстую часть рассеивателя его перемещают с помощью взрывного устройства, включающего ударник 15 и заряд взрывчатого вещества 14, и оставшуюся часть протонных сгустков пропускают через более тонкую часть (фиг. 5). Изменение толщины рассеивателя после прохождения через него части протонных сгустков можно осуществить путем удаления электровзрывом или газодинамически его слоев, при этом рассеиватель выполняют многослойным. В качестве рассеивателя можно использовать токопроводящую литиевую линзу (фиг. 6). Каналы доставки 3 завершаются протонными ловушками, где происходит полное поглощение пучка. Система на основе кикер-магнита, предназначенная для внешнего вывода протонного пучка из кольца синхротрона 1, отводит пучок в канал, который завершается также протонной ловушкой и служит для аварийного однооборотного сброса пучка, а также используется на этапе отладки систем синхротрона 1, однако этот канал можно использовать для других экспериментов.

Т.о. заявляемый способ позволяет обеспечить многокадровые, многоракурсные протонографические исследования быстропротекающих процессов в динамических системах. При этом по сравнению с аналогичными способами обладает рядом существенных преимуществ: повышенными функциональными возможностями за счет расширения объема информации, получаемой за время проведения одного опыта при уменьшении расходов на его осуществление ввиду упрощения, удешевления монтажа, отладки и обслуживания конструкции.

1. Способ формирования изображения быстропротекающего процесса с помощью протонного излучения, включающий ввод протонного пучка, по крайней мере, в один магнитооптический канал, изменение ширины протонного пучка путем размещения в магнитооптическом канале на пути следования протонных сгустков рассеивателя, после прохождения которого с помощью системы согласующих магнитных линз формируют протонный пучок с параметрами, соответствующими параметрам области исследования и последующей магнитооптической системы формирования протонного изображения, и просвечивают область исследования, пропуская поочередно протонные сгустки различной ширины, при использовании нескольких магнитооптических каналов просвечивание области исследования осуществляют под разными углами, после чего прошедший протонный пучок направляют в магнитооптическую систему формирования протонного изображения, состоящую, по крайней мере, из двух различных по апертуре линзовых систем, апертура каждого набора соответствует протонному пучку определенной ширины, и формируют теневые протонные изображения, соответствующие просвечиваемому объекту, отличающийся тем, что изменение ширины протонного пучка на разные величины осуществляют последовательно в одном и том же магнитооптическом канале, для этого либо после прохождения части протонных сгустков через рассеиватель его удаляют или изменяют толщину, а затем пропускают оставшуюся часть протонных сгустков либо следующие друг за другом протонные сгустки смещают относительно друг друга с помощью магнитных лин, и, используя разнотолщинный рассеиватель, смещенные протонные сгустки пропускают через области рассеивателя с разной толщиной, при этом оба набора линз системы формирования теневого протонного изображения размещают последовательно в одном магнитооптическом канале.

2. Способ по п. 1, отличающийся тем, что изменение толщины рассеивателя после прохождения через него части протонных сгустков осуществляют либо путем его перемещения поперек движения протонных сгустков, при этом рассеиватель выполняют разнотолщинным, либо путем удаления электровзрывом или газодинамически его слоев, при этом рассеиватель выполняют многослойным.

3. Способ по п. 1, отличающийся тем, что в качестве рассеивателя используют токопроводящую литиевую линзу.

4. Способ по п. 1, отличающийся тем, что при помощи второго набора линз системы формирования теневого протонного изображения формируют изображение с увеличенным масштабом.



 

Похожие патенты:

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах.
Изобретение относится к области радиационной дефектоскопии изделий, основанной на просвечивании изделий гамма-излучением и регистрации излучения, прошедшего через изделие.

Использование: для оценки фактического состояния и остаточного ресурса эксплуатации трубных изделий энергетического оборудования. Сущность заключается в том, что из трубы, проработавшей в энергетическом оборудовании, подготавливают один образец, а также два эталона из трубы, не бывшей в эксплуатации.
Использование: для контроля технологического процесса кучного выщелачивания урановых руд. Сущность изобретения заключается в том, что определяют количество руды и среднюю массовую долю урана, заложенной в штабель руды для выщелачивания, и сравнивают с количеством урана, извлекаемым в процессе выщелачивания на выходе из штабеля, а в лабораторных условиях моделируют технологический процесс выщелачивания с оценкой ожидаемой скорости фильтрации растворов и степени извлечения урана, при этом в штабель рудной массы укладывают горизонтально трубы-скважины диаметром, обеспечивающим перемещение по ним скважинного каротажного прибора для одновременной регистрации потока мгновенных нейтронов деления, потока рассеянных тепловых нейтронов от импульсного нейтронного источника и интенсивность естественного гамма-излучения, а для получения информации по вертикали штабеля устанавливают вертикальные трубы-скважины такого же диаметра и при этом во всех скважинах не должен скапливаться выщелачивающий раствор, что будет упрощать интерпретацию результатов каротажа.

Использование: для сепарации алмазосодержащих материалов. Сущность изобретения заключается в том, что последовательно пропускают зерна материала перед источником первичного рентгеновского излучения, возбуждают в зерне материала вторичное рентгеновское излучение, регистрируют вторичное рентгеновское излучение и разделяют зерна материала относительно заданного порогового значения критерия разделения, при этом зерна материала облучают в узкоколлимированном пучке рентгеновского излучения, позволяющем снизить уровень фона, детектором рентгеновского излучения проводят одновременную регистрацию флуоресцентного характеристического рентгеновского излучения нескольких элементов и рассеянного от зерна материала рентгеновского излучения, одновременно усиливая возбуждение линий анализируемых ХРИ выбором материала анода рентгеновской трубки и материала коллиматора и специальных фильтров первичного излучения, выделяя полезный минерал по критерию разделения с использованием двухполярной логики И, ИЛИ, где в качестве критерия разделения используют отношение интенсивности флуоресцентного характеристического рентгеновского излучения элементов к интенсивности рассеянного зерном рентгеновского излучения источника и к интенсивности флуоресцентного характеристического рентгеновского излучения материала анода рентгеновской трубки.

Использование: для определения канцерогенности вещества. Сущность изобретения заключается в том, что исследуемое вещество в твердом или жидком состоянии помещают в позитронно аннигиляционный временной спектрометр быстро-быстрых задержанных совпадений, измеряют его аннигиляционный спектр, обрабатывая который с помощью компьютера, находят значение долгоживущей временной компоненты (τ3) Ps, и если оно менее 1,005±0,005 нс, то делают вывод о наличии канцерогенных свойств у вещества, а если оно более 1,005±0,005 нс, то делают вывод об отсутствии канцерогенных свойств у вещества.

Использование: для формирования фазово-контрастных изображений. Сущность изобретения заключается в том, что при формировании фазово-контрастных изображений объекта выполняют следующие этапы: формируют основанное на поглощении изображение объекта, расположенного между источником (S) пучка рентгеновских лучей и детектором (D), указывают интересующую область (ROI) в основанном на поглощении изображении, причем интересующая область имеет ширину и положение, перемещают систему решеток между источником (S) и детектором (D), покрывая интересующую область, адаптируют поле зрения пучка рентгеновских лучей к интересующей области, генерируют сигналы посредством детектора (D) для обнаружения пучка рентгеновских лучей, при этом часть объекта (O) находится вместе с системой решеток в пределах пучка рентгеновских лучей между источником (S) пучка рентгеновских лучей и детектором, получают передаваемые данные с различных углов проекции, выполняют локальную обработку сигналов из детектора (D), и формируют изображение на основе обработанных сигналов.

Изобретение относится к области нефтедобывающей промышленности и может быть использовано при определении коллекторских свойств трещиноватых образцов породы. Сущность: определяют максимальную влажность образца спороды.

Использование: для формирования протонных изображений. Сущность изобретения заключается в том, что осуществляют формирование протонного пучка, пропускание его через объект исследования, пропускание прошедшего излучения через магнитную оптику, состоящую из квадрупольных линз, схему размещения которых подбирают предварительно с помощью метода, основанного на решении задачи минимизации функции множества переменных, используя соответствующую оптимизационную программу, в качестве информативных параметров в которой используют энергию протонного пучка, коэффициент увеличения магнитной оптики, диапазон изменения перемещений квадрупольных линз вдоль оптической оси и диапазон изменения градиентов магнитного поля в квадрупольных линзах, последующее формирование в плоскости регистрации изображения и его регистрацию, при этом в процессе формирования протонного пучка ускорение протонов осуществляют до энергии не менее 20 ГэВ, при этом к информативным параметрам добавляют разброс энергии протонов после прохождения объекта исследования, коэффициент коррекции хроматической аберрации, который определяют из условия получения безаберрационного пятна фокусировки пучка протонов в плоскости регистрации и общее расстояние от объекта исследования до плоскости регистрации.

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого кристалла картин изгибных экстинкционных контуров проводят анализ симметрии картин контуров и при выявлении элементов симметрии, отличных от тождественного преобразования, по результатам микродифракционного исследования диагностируют реальную структуру одного из симметрично равных участков нанотонкого кристалла, а затем диагностируют реальную структуру другого как симметрично равную реальной структуре исследованного участка, после чего диагностируют реальную структуру нанотонкого кристалла в целом.

Изобретение относится к рентгено-абсорбционным анализаторам содержания серы в нефти и нефтепродуктах и может быть использовано для измерения концентрации серы в технологических трубопроводах в потоке анализируемой среды. Измерительная кювета поточного анализатора серы в нефти и нефтепродуктах включает корпус кюветы, в котором расположен трубчатый корпус для пропуска потока анализируемой среды, снабженный расположенными напротив друг друга окнами, выполненными из рентгенопрозрачного материала. При этом корпус кюветы снабжен подводящим и отводящим патрубками, окна из рентгенопрозрачного материала размещены по торцам трубчатого корпуса. Также в корпусе кюветы выполнены сообщающиеся, соответственно, с подводящим и отводящим патрубками кольцевые камеры, в которых размещены концы трубчатого корпуса, напротив которых в корпусе кюветы выполнены отверстия для пропуска рентгеновского излучения. При этом по концам трубчатого корпуса около окон из рентгенопрозрачного материала выполнены отверстия, сообщающие трубчатый корпус с кольцевыми камерами, при этом окна из рентгенопрозрачного материала герметично сопряжены с корпусом кюветы. Техническим результатом является повышение точности измерений. 2 ил.

Изобретение относится к способу рентгенофазового определения криолитового отношения при электролитическом получении алюминия и может быть использовано при определении состава электролита. Способ включает отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF, при этом концентрации вышеперечисленных фаз электролита определяют по формуле: C j = ( I j a / K j a ) / ( ∑ l M I l a / K j a ) , а криолитовое отношение определяют по формуле: K O = 2 × ∑ j α j C j ∑ j β j C j где: - интенсивность аналитической линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической линии, М- количество фторидных фаз, Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе. Обеспечивается упрощение и повышение его точности определения состава электролита. 2 ил., 4 табл.

Изобретение относится к области исследований конденсированных сред нейтронами, в частности методики диагностики неоднородного состояния или низкочастотной динамики среды. Способ измерения спектра переданного импульса нейтронов включает прецессию магнитного момента нейтронов в двух областях магнитного поля до исследуемого образца и после с антипараллельным взаимным направлением магнитных полей в них и измерение разности фаз прецессии, образованных в этих областях, при этом нейтроны отражают от границ областей магнитного поля, фазу прецессии создают перпендикулярной к границам магнитных областей компонентой импульса нейтрона, при этом границы областей создают магнитными зеркалами с векторами намагниченности в них параллельными друг другу и направленными по отношению к направлению вектора напряженности магнитного поля под углом, близким или равным 90 градусам. Технический результат - повышение чувствительности к измерению переданного импульса нейтрона. 2 ил.

Изобретение относится к области измерительной техники. Способ определения массы кислорода в кислородосодержащем потоке включает облучение кислородосодержащего потока и регистрацию гамма-квантов. Облучают быстрыми нейтронами в импульсном режиме Кислородосодержащий поток, регистрируют гамма-кванты, проводят анализ полученных спектров зарегистрированных гамма-квантов, определяют количество гамма-квантов с энергией 6,13±0,62 МэВ от облученного объема. Определяют время переноса облученного объема как разницу моментов начала регистрации гамма-квантов и момента начала облучения кислородосодержащего потока. Массу кислорода рассчитывают по соотношению с учетом числа зарегистрированных гамма-квантов с энергией 6,13±0,62 МэВ, постоянной распада для азота-16, времени переноса облученного объема от источника к детектору, эффективности регистрации детектора, плотности потока быстрых нейтронов, частоты следования импульсов, длительности импульса облучения, времени облучения, сечения реакции 16O(n,p)16N, числа Авогадро и молярной массы кислорода. Технический результат - повышение точности и оперативности измерений. 1 ил.

Изобретение относится к области измерительной техники. Способ определения границ раздела сред в сепараторах сырой нефти включает облучение сепаратора с отстоявшимся скважинным флюидом, регистрацию гамма-квантов и анализ полученных спектров гамма-квантов. Производят пошаговое перемещение сверху вниз вдоль сепаратора лежащей в горизонтальной плоскости сканирующей системы. Система состоит из источника быстрых нейтронов, блока детектирования гамма-квантов и блока детектирования тепловых нейтронов. При фиксированном положении системы облучают сепаратор быстрыми нейтронами. Регистрируют гамма-кванты и тепловые нейтроны. Анализируют спектр гамма-квантов на наличие двух энергетических пиков 6,13±0,62 МэВ от кислорода и 1,78±0,18 МэВ от кремния. Повторяют процедуру в следующем положении сканирующей системы. Делают заключение о наличии границы газ-нефть по факту регистрации тепловых нейтронов. Заключение о наличии границы нефть-вода делают по факту дополнительного обнаружения гамма-квантов от кислорода. Заключение о наличии границы вода-битумы с песком делают по факту обнаружения гамма-квантов от кремния дополнительно к уже перечисленным. Технический результат - расширение диапазона концентраций газа при определении границ раздела сред в сепараторах сырой нефти. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области исследования или анализа материалов с помощью прецизионной нейтронной спектрометрии, основанной на использовании метода спин-эхо малоуглового рассеяния. Способ измерения изменения малых энергии нейтронов основан на использовании спин-эхо спектроскопии и заключается в том, что пучок поляризованных нейтронов направляют на первую - входную область прецессии спина нейтрона, обеспечивающую пространственное расщепление потока нейтронов на два состояния с разными проекциями спина на магнитное поле, и после прохождения рабочей области, в которой происходит воздействие на нейтронный пучок, обеспечивают обратное сведение пучка во второй - выходной области прецессии спина нейтрона в магнитном поле, имеющем одинаковое по величине, но противоположное по направлению магнитное поле первой области прецессии, а измерение изменений энергии нейтронов определяют по появлению ненулевого спин-эхо сигнала, при этом во входной и выходной областях прецессии спина нейтрона с магнитным полем включены совершенные монокристаллы в положении геометрии дифракции по Лауэ, увеличивающие пространственное расщепление нейтронного пучка за счет явления дифракции и тем самым величину спин-эхо сигнала, причем совершенные монокристаллы расположены таким образом, что их кристаллографические плоскости параллельны друг другу. Технический результат – повышение чувствительности способа к измерению малых изменений энергии нейтрона. 2 ил.

Использование: для рентгеноспектрального анализа тяжелых элементов. Сущность изобретения заключается в том, что анализатор тяжелых элементов содержит рентгеновскую трубку или источник гамма-излучения, коллиматор первичного пучка, держатель образца, два аналитических канала с коллиматорами и фильтрами вторичного излучения, устройство детектирования с рядами детекторов и регистрирующую аппаратуру, подключенную к выходам детекторов, при этом держатель образца выполнен с возможностью установки образца с плоской или вогнутой по сфере рабочей поверхностью на сфере, источник или фокус рентгеновской трубки расположен на упомянутой сфере, в обоих каналах коллиматоры выполнены с входной и выходной щелями, при этом в первом аналитическом канале выходная щель проходит через диаметрально противоположную источнику точку сферы перпендикулярно плоскости осей пучков, а входная щель расположена в плоскости осей пучков между держателем образца и выходной щелью, второй канал предназначен для анализа тория-урана с повышенной чувствительностью, при этом входная щель расположена в плоскости осей пучков, а выходная щель расположена на упомянутой сфере перпендикулярно входной щели под углом рассеяния выше 140°, кроме того, предусмотрена возможность либо перемещения и установки устройства детектирования под пучки на выходе обоих каналов, либо использования в канале тория-урана второго устройства детектирования. Технический результат: обеспечение возможности анализа тория и урана с повышенной чувствительностью наряду с элементами легче висмута, увеличена производительность анализов. 1 з.п. ф-лы, 2 ил.

Изобретение предназначено для исследования и модификации поверхности измеряемых объектов с помощью источников излучения. Сканирующее устройство локального воздействия включает образец (1) с первой (2) и второй поверхностями (3), зонд (4) с острием (5), закрепленный в модуле зонда (7), сканер (8), первый модуль перемещения (9) и блок управления (10). Сканер (8) и первый модуль перемещения (9) установлены на платформе (11). Зонд (4) расположен с возможностью относительного сканирования острия (5) и первой поверхности (2) образца (1). Блок управления (10) адаптирован для сканирования поверхности (2) острием (5). Зонд (4) включает модуль излучения (6). Также устройство снабжено вторым модулем перемещения (13) и пуансоном (14), установленным на третьем модуле перемещения (15), и датчиком излучения (19), установленным со стороны второй поверхности (3) образца (1) с возможностью сопряжения с модулем излучения (6). Образец (1) установлен на сканере (8), закрепленном на втором модуле перемещения (13), расположенном на платформе (11). Модуль зонда (7) с зондом (4) установлен на первом модуле перемещения (9), расположенном на платформе (11). Пуансон (14) с третьим модулем перемещения 15 установлен на платформе (11) с возможностью взаимодействия с образцом (1). Технический результат - увеличение глубины воздействия на образец, расширение диапазона воздействий. 4 з.п. ф-лы, 4 ил.

Изобретение относится к технике контроля запыленности поверхности горных выработок, промышленных помещений на предприятиях угольной, горно-металлургической и других отраслей промышленности и сельскохозяйственного производства, где присутствует взрывчатая пыль: угольная, сульфидная, мучная, пластмассовая и др. Техническим результатом является повышение эффективности и безопасности использования радиоизотопного способа измерения текущей массы пылевого осадка и упрощение конструкции устройства его реализующего. Предложен радиоизотопный способ измерения отложения пыли в горных выработках, заключающийся в использовании прямого поглощения мягкого бета-излучения пылью, осажденной на тонкую подложку-коллектор, которую располагают на детекторе, а источник углерод-14 в виде тонкой таблетки размещают на Г-образной стойке над коллектором на некоторой высоте от его центра. При этом измерение массы пылевого осадка производится в следующей последовательности. На детектор кладется тонкий коллектор, например фильтр АФА. Измеряется интенсивность I0 потока бета-частиц, прошедших через фильтр, и далее производится измерение интенсивности потока бета-частиц в процессе осаждения пыли Ii. Определяется масса пыли в мг, осевшей на 1 см2 поверхности, при этом k определяется из сравнения поверхностной плотности σi с величиной, определенной весовым методом, одновременно вычисляется погрешность измерения. Измерения σi происходят непрерывно с интервалами между измерениями, зависящими от скорости накопления осадка, до тех пор, пока погрешность Δσi/σi не достигнет заданной величины. Цикл измерения повторяется, пока величина массы осевшей пыли на фильтре не достигнет заданного значения. Результат представляется либо на цифровом табло, либо цветовыми сигналами, свидетельствующими о степени приближения массы осевшей пыли к критическому значению. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к технологии обнаружения алмазов в кимберлитовой породе. Система для обнаружения алмазов в кимберлите содержит линейный ускоритель электронов для генерации тормозного излучения дуальной энергии в диапазоне 1-10 МэВ, транспортер для подачи кимберлита в зону облучения, детекторный узел для приема излучения, прошедшего через фрагмент кимберлита, блок обработки данных для формирования данных сканирования, содержащих оценки атомных номеров и массовых толщин материалов во фрагменте кимберлита, блок автоматического анализа и отображения для финальной обработки, включающей в себя по меньшей мере кластеризацию данных сканирования и оценку вероятности нахождения во фрагменте кимберлита алмаза заданной крупности, а также визуализацию радиоскопического изображения с колоризацией сегментов изображения на основании обработанных данных сканирования. Технический результат – повышение скорости выявления фрагментов кимберлита, содержащих алмазы крупных фракций в относительно крупных кусках породы на самом раннем этапе добычи. 3 н. и 11 з.п. ф-лы, 6 ил.
Наверх