Способ оценки фрикционного взаимодействия элементов свитых изделий

Изобретение относится к области трибологии и триботехники и может использоваться для качественной оценки фрикционного взаимодействия при изучении трибологических свойств свитых изделий типа стальных канатов, тросов и других подобных изделий. В частности, способ полезен при выборе смазочных материалов, используемых для обработки («пропитки») стальных канатов. Задачей изобретения является повышение точности и достоверности экспериментального анализа фрикционного взаимодействия элементов свитых изделий. Способ оценки фрикционного взаимодействия элементов свитых изделий, заключающийся в том, что одним концом изделие закрепляют неподвижно, а со стороны свободного конца воздействуют осевым усилием, которое прикладывают одновременно ко всем элементам изделия, последовательно испытывают эталонное и контролируемое изделия равной между собой и превышающей шаг свивки длины, при этом прикладывают дополнительное силовое воздействие в виде крутящего момента и поворачивают изделия вокруг вертикальной оси в направлении свивки на одинаковый угол, обеспечивающий режим трения скольжения между элементами, после чего снимают воздействие, фиксируют свободные возвратно-крутильные колебания, определяют логарифмические декременты затухания в обоих случаях, по соотношению которых оценивают фрикционное взаимодействие между элементами сравниваемых свитых изделий. Технический результат заключается в качественной оценке фрикционного взаимодействия элементов свитых изделий, при обеспечении высокой точности и достоверности исследования. 1 табл.

 

Изобретение относится к области трибологии и триботехники и может использоваться для качественной оценки фрикционного взаимодействия при изучении трибологических свойств свитых изделий типа стальных канатов, тросов и других подобных изделий. В частности, способ полезен при выборе смазочных материалов, используемых для обработки («пропитки») стальных канатов.

Общеизвестным способом оценки различных смазочных материалов являются сравнительные испытания ряда выбранных смазок в идентичных условиях с фиксацией энергосиловых затрат при использовании известных критериев, например коэффициента или силы трения, величины износа трибосопряжения, характеристик стабильности процесса (наличия фрикционных колебаний, уровня температур в контактной зоне) и т.п. Одна из смазок в этом случае может быть использована в качестве условного эталона, по отношению к которому экспериментально определяется эффективность остальных смазочных материалов.

Однако такой подход затруднительно использовать, например, для таких специфических объектов трения, как свитые изделия: канаты, кабели, различные синтетические тросы, скрученные пряди нитей и т.п. Сложность испытаний смазочных материалов в этом случае обусловлена тем, что процесс трения в зависимости от варианта их нагружения может быть сосредоточен не только или не столько на внешней поверхности объекта, а внутри него - в частности, на поверхностях контакта между отдельными элементами изделия: нитями, проволоками, прядями и т.д.

Известен способ для определения фрикционных характеристик между элементами внутри свитых изделии (Патент РФ №2408869 С1, 2009, Бюл. №1, «Способ определения силы трения и коэффициента трения»), заключающийся в том, что витое изделие одним концом закрепляют неподвижно, а со стороны свободного конца на один из составляющих изделие элементов воздействуют осевым усилием, вытягивают элемент из свитого изделия и определяют силу и коэффициент трения по расчетным зависимостям.

Недостатком способа-прототипа являются неадекватные условия испытаний и рабочего состояния свитого изделия. Покажем это на примере стального каната. Так, при его осевом нагружении происходит некоторое уменьшение диаметра изделия и увеличение шага свивки, которые обусловлены снижением или исчезновением технологических зазоров между элементами каната как в осевом, так и в радиальном направлении.

Из практики известно, что при осевом растяжении каната происходит своего рода «раскручивание» (поворот вокруг собственной оси), это приводит к появлению взаимного скольжения между элементами каната в окружном направлении. Таким образом, при знакопеременных осевых нагрузках, характерных для значительной группы используемых на практике канатов, этот фактор также нуждается в контроле (оценке) и учете при выборе смазочного материала.

Совокупность указанных факторов приводит к изменению напряженно-деформированного состояния в зоне контакта между элементами внутри свитого изделия и отражается на трибологических показателях их взаимодействия (сила и коэффициент трения).

В способе-прототипе нагружению подвергается лишь один из элементов свитого изделия, что и приводит к искажению реальной схемы нагружения. Определенная таким образом сила трения не может быть отнесена ко всем элементам, составляющим витое изделие, так, например, она не отражает условия трения элементов внешнего ряда из-за отсутствия силового воздействия на них снаружи изделия.

Также к недостаткам данного способа следует отнести невозможность заранее определить необходимую, для проведения испытаний, длину свитого элемента, так, при превышении некоторого значения действующая сила трения может превысить предел прочности исследуемого элемента, что приведет к его разрушению.

В целом указанные недостатки снижают функциональные возможности способа.

Задачей изобретения является расширение функциональных возможностей способа за счет повышения достоверности сравнительного анализа фрикционных свойств смазочных материалов, применяемых при эксплуатации свитых изделий.

Поставленная задача достигается тем, что способ оценки фрикционного взаимодействия элементов свитых изделий, заключающийся в том, что одним концом изделие закрепляют неподвижно, а со стороны свободного конца на один из составляющих изделие элементов воздействуют осевым усилием, реализуется так, что осевое усилие прикладывают одновременно ко всем элементам изделия, последовательно испытывают эталонное и контролируемое изделия равной между собой и превышающей шаг свивки длины, при этом прикладывают дополнительное силовое воздействие в виде крутящего момента и поворачивают изделия вокруг вертикальной оси в направлении свивки на одинаковый угол, обеспечивающий режим трения скольжения между элементами, после чего снимают воздействие, фиксируют свободные возвратно-крутильные колебания, определяют логарифмические декременты затухания в обоих случаях, по соотношению которых оценивают фрикционное взаимодействие между элементами сравниваемых свитых изделий.

Способ реализуется следующим образом.

Гибкий элемент (канат, прядь и т.п.) обрабатывают эталонным смазочным материалом, также допускается использовать и необработанный, так называемый «сухой» образец. Прикладывают первоначальное вертикальное осевое усилие путем закрепления на образце груза массой М, а также вводят дополнительное силовое воздействие в виде момента кручения свободного конца каната на некоторый угол φ, постоянный для каждого эксперимента, затем воздействие снимают. Под действием упругих сил канат будет стремиться занять исходное состояние равновесия. При этом регистрируют отклик системы в виде затухающих возвратно-крутильных колебаний и вычисляют его логарифмический декремент затухания по известной зависимости:

где ϑэт - логарифмический декремент затухания для эталонного образца;

A(t) - амплитуда колебаний в момент времени t;

A(t+T) - амплитуда колебаний в момент времени t+T;

δ - коэффициент затухания;

Т - период колебаний.

Затем повторяют эксперимент с аналогичным образцом, обработанным смазочным материалом №1, далее смазочным материалом №2 и т.д., в каждом случае ведется регистрация картины затухающих колебаний с определением логарифмического декремента затухания ϑ№1, ϑ№2…ϑ№n.

В качестве критерия фрикционных характеристик смазочных материалов используется отношение логарифмических декрементов затухания к логарифмическому декременту затухания эталонного образца

где n - количество исследуемых образцов смазочных материалов.

Очевидно, что чем меньше величина отношения логарифмических декрементов затухания, тем лучше фрикционные характеристики смазочного материала по сравнению с эталоном. Также для оценки смазочных материалов между собой можно использовать прямое сравнение логарифмических декрементов затухания.

Помимо применения для сравнительной оценки эффективности смазочных материалов, способ может быть успешно использован и для оценки происходящих изменений состояния фрикционного взаимодействия между элементами свитого изделия после различных внешних воздействий, в частности:

1. работы во влажной, коррозионной, запыленной, атмосфере;

2. после критического или экстремального ударного (импульсного, знакопеременного, циклического), температурного (холод, высокие температуры) нагружения, сложных комбинированных воздействий, в том числе с наложением вибрации и т.п.

Учитывая доступность и простоту способа, он может также применяться на контрольных операциях или в межоперационных переходах в цикле технологического изготовления различных свитых изделий.

Во всех перечисленных случаях способ может быть дополнительным информативным источником при рассмотрении триботехнических проблем, особенно в случаях, когда прямой теоретический подход не дает решения.

Таким образом, технический эффект изобретения достигается за счет использования явления возвратно-затухающих колебаний для сравнительной интегральной оценки фрикционного взаимодействия между элементами свитого изделия, с наложением необходимых ограничений на объект исследования и режимы испытаний.

В частности, длина отрезка свитого изделия должна превышать шаг свивки, что обеспечивает полную реализацию очага контактирования между элементами со всеми его особенностями. Очевидно, она может быть увеличена исходя из конструктивных особенностей объекта исследования.

Угол начального закручивания изделия должен обеспечивать достижение режима трения скольжения и устанавливается опытным путем.

В любом случае параметры угла закручивания и длины для всех образцов партии должны быть одинаковыми.

В предлагаемом способе фиксируется интегральная характеристика для оценки фрикционного взаимодействия, т.к. она более полно и точно отражает характер контактных процессов между элементами в свитом изделии.

Способ реализуется с помощью установки, принципиальная схема которой приведена на фиг. 1. Установка содержит неподвижное основание 1, на котором закреплен канат 2, взаимодействующий с грузом 3 датчик угла поворота (энкодер) 4, аналого-цифровой преобразователь (АЦП) 5, подключенный информационным выходом к компьютеру обработки данных (ПК) 6, посредством линий связи 7, и аналоговым входом к датчику угла поворота 4.

Перед началом испытаний образец находится в исходном положении равновесия. На предварительном этапе требуется подготовить необходимое количество одинаковых образцов канатов, обработанных сравниваемыми смазочными материалами.

Процедура испытаний начинается с отклонения груза 3 от положения статического равновесия путем поворота относительно вертикальной оси на некоторый угол φ. Далее система начинает совершать возвратно-крутильные колебания относительно вертикальной оси, регистрируемые компьютером обработки данных (ПК) 6, поступающие с информационного выхода аналого-цифрового преобразователя (АЦП) 5. В процессе сравнительной оценки смазочных материалов программа обработки данных, функционирующая на ПК, строит графики затухающих колебаний, вычисляет логарифмический декремент затухания колебаний и обеспечивает ведение архива испытаний.

Пример практической реализации способа

Объект контроля - стальной канат по DIN 30553,0; конструкция каната 6×7 (1+6), диаметр каната 3 мм, диаметр прядей 1 мм, угол свивки прядей 0,303 рад, угол свивки проволок в пряди 0,201 рад, шаг свивки прядей 20 мм, шаг свивки проволок в пряди 10 мм.

Выбраны 5 модельных состава смазочных материалов на основе шунгита, серпентинита и Торсиола-55 ГОСТ 20458-89.

Испытывались отрезки каната длиной 120 мм.

Угол закручивания составил 90°.

Полученные результаты эксперимента по сравнительной оценке фрикционных свойств смазочных материалов приведены в таблице.

Полученные результаты испытаний показывают, что предложенный способ может использоваться для сравнения фрикционных характеристик различных смазочных материалов.

Способ оценки фрикционного взаимодействия элементов свитых изделий, заключающийся в том, что одним концом изделие закрепляют неподвижно, а со стороны свободного конца воздействуют осевым усилием и определяют характеристики по расчетным зависимостям, отличающийся тем, что осевое усилие прикладывают одновременно ко всем элементам изделия, последовательно испытывают эталонное и контролируемое изделия равной между собой и превышающей шаг свивки длины, при этом прикладывают дополнительное силовое воздействие в виде крутящего момента и поворачивают изделия вокруг вертикальной оси в направлении свивки на одинаковый угол, обеспечивающий режим трения скольжения между элементами, после чего снимают воздействие, фиксируют свободные возвратно-крутильные колебания, определяют логарифмические декременты затухания в обоих случаях, по соотношению которых оценивают фрикционное взаимодействие между элементами сравниваемых свитых изделий.



 

Похожие патенты:

Изобретение относится к испытательной технике для трибологических исследований. Прибор для одновременной оценки оптических и трибологических характеристик смазочного материала позволяет измерить их при заданных значениях скорости сдвига и толщины смазочного слоя.
Изобретение относится к способу предотвращения задиров в парах трения. Перед работой к образцу и контробразцу из материалов пары прикладывают точечную нагрузку Р при использовании смазочной композиции без антифрикционных добавок и определяют силу трения Fтр при возникновении задира, затем в смазочную композицию добавляют антифрикционные добавки и измеряют нагрузку Рд, при которой происходит задир, после чего рассчитывают коэффициент трения по формуле Fтр/Рд, где Fтр - сила трения при задире с использованием смазочной композиции без добавок, и пару трения перед работой смазывают композициями при значениях этого коэффициента не более 0,05.

Группа изобретений относится к области оперативного контроля коэффициента сцепления колеса с дорожным покрытием. Способ определения коэффициента сцепления колеса с дорожным покрытием заключается в определении величины силового вращающего момента, приложенного к ступице или к диску тестируемого колеса.

Изобретение относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения при взаимном перемещении образцов.

Изобретение относится к экспериментально-теоретическому определению фрикционных характеристик пары трения, а именно установлению в паре трения соотношения между коэффициентами трения покоя и трения скольжения.

Использование относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения. Способ определения динамического коэффициента внешнего трения заключатся в том, что используют два образца, верхний из которых помещают на плоской рабочей поверхности нижнего.

Изобретение относится к способам измерения и используется для оценки состояния поверхности взлетно-посадочной полосы аэродрома. В способе определения коэффициента сцепления аэродромного покрытия, включающем измерение динамических характеристик колес самолета при его движении по аэродромному покрытию, осуществляют формирование ведущего (переднего) и ведомого (заднего) колес шасси, ведомое (заднее) колесо формируют путем создания постоянного динамического торможения колесу шасси, колесо без динамического торможения считается ведущим, при этом динамическое торможение формируется с помощью тормозной системы колеса шасси, которое может отключаться при разбеге самолета, измеряют частоты вращения ведущего (переднего) и ведомого (заднего) колес шасси, устанавливают зависимость разницы вращения ведущего (переднего) и ведомого (заднего) колес от сцепных качеств аэродромного покрытия, а сцепные качества аэродромного покрытия определяют по установленной зависимости после проезда по нему самолета и измерения частот вращения ведущего (переднего) и ведомого (заднего) колес шасси.

Изобретение относится к области метрологии и может быть использовано при определения физико-механических свойств материалов и, в частности, коэффициента гистерезисных потерь материала.

Устройство для измерения переходного сопротивления, износостойкости и антифрикционных свойств гальванических покрытий, выполненное в одном блоке с комплектом сменных принадлежностей, позволяет проводить исследования вышеперечисленных свойств в соответствии с требованиями ГОСТ 9.302-88.

Изобретение относится к области сельского хозяйства и может быть использовано для исследования физико-механических свойств корнеклубнеплодов. Устройство для исследования физико-механических свойств корнеклубнеплодов содержит раму (1) с прикрепленными к ней электродвигателем (2), на валу которого установлен сменный диск (3) с исследуемой поверхностью, и направляющей (4), на которой установлена подвижная тележка (5).

Изобретение относится к мясной промышленности, к устройствам для определения коэффициента трения мясного и рыбного сырья. Устройство состоит из диска, закрепленного на вертикальной оси, шкалы, расположенной по радиусу диска. Вращение диска осуществляется от электромотора с преобразователем частоты через ременную передачу. Определение коэффициента трения К выполняется по формуле К=4π2n2R/g, где n - число оборотов диска, R - радиус вращения образца в момент сброса, g - ускорение свободного падения. Техническим результатом является снижение трудоемкости измерений коэффициента трения. 1 ил.

Изобретение относится к области сельскохозяйственного машиностроения, а именно к методам исследования коэффициентов трения сыпучих материалов. Способ определения коэффициента трения сыпучих материалов заключается в том, что исследуемый материал размещается в цилиндре на вращающейся винтовой поверхности, установленной по оси цилиндра. Причем частота ее вращения определяется по формуле , где g - ускорение свободного падения, м/с2; D - диаметр винтовой поверхности, м; kV - коэффициент уменьшения линейной скорости частицы. Затем в процессе определения коэффициента трения определяется объем исследуемого материала, перемещенного за один оборот вращающейся винтовой поверхности, по формуле , где Q - объем перемещенного материала, м3; t - продолжительность опыта, с. При этом коэффициент трения определяют по формуле, где η - отношение шага S к диаметру D винтовой поверхности; λ - отношение диаметра D0 винтовой линии центров давления сыпучего материала на винтовой поверхности к диаметру винтовой поверхности D. Техническим результатом является повышение точности определения коэффициента трения сыпучих материалов. 1 ил.

Группа изобретений относится к способам измерения и используется для определения коэффициента сцепления аэродромного покрытия. Технической задачей изобретения является разработка способа и устройства, позволяющие определять коэффициент сцепления покрытия непосредственно при движении самолета по аэродрому. Технический результат по способу достигается тем, что в способе определения коэффициента сцепления аэродромного покрытия, включающем измерение динамических характеристик колес средства при его движении по аэродромному покрытию, дополнительно определяют динамические характеристики корпуса средства, за счет установки на объекте устройств, а сцепные качества аэродромного покрытия определяют по величине разности величин скорости перемещения корпуса объекта и скорости перемещения корпуса объекта, определяемой по скорости вращения колес объекта. При нулевой разности коэффициент сцепления аэродромного покрытия - максимален, при достижении разности скоростей величины порога формируется оповещающий сигнал и осуществляется запись сигналов, пропорциональных скоростям и разностного сигнала. Устройство для измерения коэффициента сцепления аэродромного покрытия содержит датчик 1 измерения частоты вращения колеса, блок 2 определения скорости корпуса объекта по частоте вращения колеса, блок 3 измерения скорости корпуса объекта, блок 4 вычитания, пороговое устройство 5, блок 6 оповещения и регистрирующую аппаратуру 7, причем выход датчика 1 измерения частоты вращения колеса через блок 2 определения скорости корпуса объекта по частоте вращения колеса соединен с первыми входами соответственно блока 4 вычитания и регистрирующей аппаратуры 7, выход блока 4 вычитания через пороговое устройство 5 соединен с входом блока 6 оповещения и третьим входом регистрирующей аппаратуры 7. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способам измерения трения в подшипниках. Способ определения коэффициента трения подшипника заключается в создании усилия на подшипник от нагрузочного устройства. При этом создается дополнительное усилие от силовозбудителя. Причем усилия, приложенные к подшипнику от нагрузочного устройства и от силовозбудителя, создаются на равных, но противоположных плечах с последующим расчетом коэффициента трения по формуле , где F1 - усилие, приложенное к подшипнику от силовозбудителя; F2 - усилие, приложенное к подшипнику от нагрузочного устройства; L - плечо приложения силы; D - диаметр подшипника. Техническим результатом является создание устройства, обеспечивающего определение коэффициента трения подшипника. 4 ил.

Изобретение относится к устройствам, предназначенным для определения сцепных качеств дорожных и аэродромных покрытий. Устройство содержит взаимодействующий с покрытием рабочий орган в виде имитатора (9) автомобильной шины, устройства вертикального нагружения в виде, например, пневмоцилиндра (1), систему измерения вертикальных и касательных усилий с динамометрическими тягами (6) и (30), а также систему подачи жидкости на покрытие перед рабочим органом в виде трубопровода (43) с краном (42), подключенных к емкости с жидкостью, дополненных дозатором (45). При этом имитатор (9), состоящий из жесткой пластины (14), демпфирующего элемента (12) и протекторной резины, крепится к раме автомобиля. Система измерения возникающих при скольжении имитатора (9) вертикальных и касательных усилий содержит динамометрические тяги (6) и (30). При скольжении имитатора в зону его контакта с покрытием жидкость подается при помощи дозатора (45), состоящего из верхней воздушной полости (46) и нижней полости (47) для жидкости. Техническим результатом является обеспечение возможности сокращения времени проведения одного замера коэффициента сцепления, что повышает производительность и сокращает необходимое для проведения замеров количество жидкости. 5 з.п. ф-лы, 3 ил.

Изобретение относится к измерительным средствам, предназначенным для непрерывного измерения коэффициента сцепления колес с поверхностью искусственных взлетно-посадочных полос. Устройство измерения коэффициента сцепления колес с аэродромными покрытиями содержит несущую раму, опирающуюся на два несущих колеса, рычажную подвеску с измерительным колесом, рычаг с независимым грузом, пружинным амортизатором и демпфером, соединенный с подвеской посредством первой подшипниковой опоры, тормозной генератор, цепную передачу, датчик тока торможения, датчики угловых скоростей измерительного колеса и одного из несущих колес, управляемый трехфазный выпрямитель, нагрузочное сопротивление, тензометрическую систему, состоящую из тензодатчика и блока преобразования сигналов тензодатчика, компьютерный пульт управления и индикации и систему автоматического управления скольжением (торможением) измерительного колеса. В устройство также введены тяга с шаровыми опорами на концах и вспомогательная балка, скрепленная с несущей рамой посредством второй подшипниковой опоры. Основание рычажной подвески измерительного колеса присоединено к вспомогательной балке посредством третьей подшипниковой опоры. Тормозной генератор установлен на вспомогательной балке, а его вал связан цепной передачей со ступицей измерительного колеса. Тензодатчик встроен в консоль, жестко закрепленную одним концом на несущей раме, а свободный конец консоли с тензодатчиком соединен со вспомогательной балкой посредством тяги с шаровыми опорами на концах так, что продольная ось тяги горизонтальна и лежит в вертикальной плоскости продольной симметрии несущей рамы. В результате повышается точность и стабильность измерения коэффициента сцепления. 3 ил.

Изобретение относится к области метрологии и может быть использовано при определения физико-механических свойств материалов и, в частности, коэффициента гистерезисных потерь материала. Способ определения гистерезисных потерь в испытуемом образце механическим осциллятором заключается в том, что после настройки положения равновесия задают начальную амплитуду колебаний, регистрируют амплитуды затухающих колебаний осциллятора, при этом выбирают осциллятор в виде крутильной системы, в которой на нити диаметром от 100 до 600 мкм и длиной порядка 1 м подвешивают шаровое тело, при котором нить сохраняет примерно трехкратный запас прочности на разрыв, для снижения скорости дрейфа положения равновесия до начала измерений держат нить подвеса под нагрузкой, задают начальную амплитуду колебаний, после затухания маятниковых качаний по амплитудам крутильных колебаний измеряют период колебаний T и добротность системы Q1=πn/ln(ϕ0/ϕn), где ϕ0 - начальная амплитуда колебаний, при которой отношение произведения ϕ0 на диаметр нити к ее длине не превышает 5⋅10-6, ϕn - амплитуда после n полных колебаний, вычисляют определяемую вязким трением подвешенного к нити тела диаметром d о воздух добротность Q0=kT/(4πqμd3), k=4π2J/T2 - крутильная жесткость нити, J - момент инерции вокруг оси вращения, μ - коэффициент динамической вязкости воздуха, q=1+ln(100/T), определяют добротность системы Q2=Q1Q0/(Q0-Q1), обусловленную гистерезисными потерями в нити подвеса, и коэффициент гистерезисных потерь C=π/Q2. Технический результат – упрощение измерение гистерезисных потерь. 1 ил., 1 табл.

Изобретение относится к измерительной технике и может найти применение в вакуумном и электронном приборостроении, ядерной технике и других областях, требующих высокой чистоты поверхностей, работающих в условиях контролируемой внешней среды, в частности очень жестких требований к поверхностям катодов для приборов ночного видения, к стенкам вакуумных камер и приборов в установках термоядерного синтеза, поверхностям приборов для измерения вакуума, и может быть использовано при давлениях в диапазоне 105-10-10 Па, при влажности рабочей атмосферы в диапазоне 0.1-0,95 RH и температурах от -40 до +150°С. Устройство контроля чистоты поверхности объектов содержит расположенные последовательно полированные неподвижную прижимную пластину, подвижную пластину с исследуемой поверхностью, неподвижную базовую пластину. Также устройство содержит стойку, на которой закреплена неподвижная базовая пластина и упругие пластины, одна из которых соединена с прижимной пластиной и обеспечивает силу прижатия, а вторая, через соединительный элемент, прикреплена к исследуемой пластине и обеспечивает силу страгивания, тензодатчик, установленный и закрепленный на второй упругой пластине. Кроме того, устройство содержит пьезоприводы, связывающие упругие пластины с базой, и измеритель силы страгивания, соединенный с тензодатчиком. При этом в устройство введены дополнительно блок измерения давления, блок измерения давления насыщающих паров, блок измерения температуры, блок измерения влажности, блок задания режима, спецвычислитель. При этом на поверхности пластин нанесены тонкие полированные пленки, имеющие энергию Еа адсорбции, идентичную исследуемой поверхности, выходы блока измерения давления, блока измерения давления насыщающих паров, блока измерения температуры и блока измерения влажности соединены с входами блока задания режима, а выходы измерителя силы страгивания и блока задания режима подключены к входам спецвычислителя. Техническим результатом является повышение достоверности результатов измерений для объектов, имеющих разный химический состав поверхностей и соответственно разные энергии адсорбции Еа, что расширяет их область применения. 4 ил.

Изобретение относится к исследованию дисперсных материалов путем определения их физических свойств механическим способом, а более конкретно внутреннего трения порошков. Способ определения внутреннего трения порошкового материала включает размещение дозы исследуемого порошка в подвижную каретку, где действием сдвиговой деформации свободная поверхность исследуемой дозы порошкового материала образует криволинейный профиль откоса, по которому судят о коэффициенте внутреннего трения порошкового материала, при этом профиль свободной поверхности дозы порошкового материала фиксируют фотоэлектрическим прибором. Новым является то, что при перемещении исследуемой дозы порошкового материала вдоль примыкающей опоры исключают торможение приводной стенки сквозной каретки, а величину внутреннего трения определяют из соотношения: f=х/y, измеренных фотоэлементом, где: y - координата максимальной высоты сформированного профиля откоса свободной поверхности дозы исследуемого порошка; х - удаление «у» от приводной стенки каретки. Устройство для реализации предложенного способа содержит связанную с приводом каретку для размещения исследуемой дозы порошкового материала, имеющую форму параллелограмма с оптически прозрачной боковиной, освещаемой фотоэлектрическим прибором, сообщающимся с измерителем. Новым является то, что связанная с толкателем приводная стенка сквозной каретки без дна, примыкающей к опоре продольного ее перемещения, выполнена рифленой посредством поперечных треугольных рифлей, совмещенных между собой, причем образующие рифлей наклонены к плоскости приводной стенки под углом, превышающим угол естественного откоса исследуемого порошкового материала, в диапазоне 45-60°. Технический результат – разработка более точного способа измерения коэффициента внутреннего трения порошковых материалов и устройства для его реализации, простого и надежного. 2 н.п. ф-лы, 4 ил., 1 табл., 1 прил.

Изобретение относится к области трибометрии для исследования процессов трения, износа и трибоЭДС как при сухом трении, так и со смазкой. Машина трения содержит стол с жестким основанием, электродвигатель, неподвижную бабку, в которой в подшипниковой опоре размещен приводной вал, один конец которого через муфту соединен с электродвигателем, а другой - с ведущей головкой с контрэлементом, к которому прижимается торцом образец с помощью механической системы в виде рычагов, при этом образец закреплен в образцедержателе, расположенном на валу в подвижной бабке, и вал, вращающийся вокруг своей оси и перемещающийся вдоль оси для передачи усилия на образец с помощью механической системы в виде рычагов, при этом момент трения уравновешивается маятником, жестко связанным с образцедержателем с определением момента по шкале. Неподвижная бабка выполнена в виде приводного узла, состоящего из двух корпусов. Внешний корпус установлен на подшипниках на внутреннем корпусе, являющемся корпусом для подшипниковой опоры приводного вала, одним концом через муфту соединенного с валом электродвигателя с частотным регулированием оборотов, а на другом конце вала электродвигателя установлен контрэлемент в виде ролика, изолированного от приводного вала втулкой и шайбами из изолятора. К боковой поверхности ролика прижат подпружиненный электрический контакт для снятия трибоЭДС, а подвижная бабка выполнена в виде измерительной системы - трубы, расположенной соосно с приводным валом, в которой внутри размещены подвижно последовательно образцедержатель, установленный на шпонке на упоре, состоящий из ролика и обоймы и механическая система для создания нормальной нагрузки, состоящая из тензодатчика силы, прижимов, с размещенной между ними калиброванной пружиной и винта, упирающегося в прижим и размещенного на резьбе в крышке трубы измерительной системы. Усилия от вращательного момента через фиксатор на образцедержателе передается на поводковый кронштейн, жестко связанный с внешним корпусом, на котором симметрично горизонтально расположены два ряда планок, упирающихся в первом ряду через регулировочные винты в тензодатчики в вертикальных стойках, жестко связанных с основанием, а второй ряд планок служит для измерения «трения покоя» при зафиксированном стопорным винтом приводном вале. Регулировочный винт одной планки второго ряда упирается в тензодатчик силы, нагружаемый снизу через пружину винтом, размещенным вместе с тензодатчиком силы в вертикальной стойке на основании, а другая планка второго ряда своим регулировочным винтом упирается в головку индикатора (датчик перемещения) на кронштейне на основании, при этом износ трибопары замеряется размещенным на трубе индикатором. Технический результат: расширение функциональных возможностей машины трения с обеспечением проведения испытаний при нагрузках статических, вибрационных (при широком диапазоне управляемых параметров), а также режимах реверсивного движения, фреттинга, замер «трения покоя» с учетом предыстории функционирования трибоузла, замер трибоЭДС (в т.ч. для полимеров прямых и обратных пар), температуры, износа с отображением в реальном времени, обеспечение проведения исследований при чередовании режимов, а также получение взаимодополняющей информации, возможность проводить испытания по двум схемам: торцовой и вал - частичный подшипник. 3 н. и 2 з.п. ф-лы, 15 ил.
Наверх