Красный нитридный люминофор

Изобретение относится к области светотехники и может быть использовано при изготовлении светодиодов и систем преобразования света. Нитридный люминофор с красным свечением, возбуждаемый излучением в диапазоне длин волн 200-570 нм, имеет общую формулу Lis(M(1-x)Eux)1MgmAlnSipNq, где M=Sr, Ca, Ba, взятые отдельно или их смесь, 0,045≤s≤0,60; 0,005≤х≤0,12; 0≤m≤0,12; 0≤n≤1,0; 1,0≤р≤2,40; 3,015≤q≤4,20; причём для всех композиций 2,0≤р+n≤2,40 и q≠4. Полученный люминофор имеет повышенную яркость и более узкую полосу люминесценции. 1 з.п. ф-лы, 1 ил., 2 табл., 6 пр.

 

Изобретение относится к области светотехники и, в частности, к нитридным люминофорам с красным цветом свечением, возбуждаемым излучением в диапазоне длин волн 200-570 нм. Красные нитридные люминофоры находят широкое практическое применение в LED технологии и в системах преобразования света.

Известно, что в последнее десятилетие были созданы различные по составу и кристаллической структуре люминофоры с красным цветом свечения на основе алюмонитридосиликатов щелочноземельных металлов, активированных европием. Они используются главным образом как компоненты, добавляемые к гранатным люминофорам, с целью повышения индекса цветопередачи у LED источников белого света. Величина этого индекса у смешанных композиций может превосходить 90 и приближаться к максимальному значению, равному 100.

Состав наиболее известных нитридных люминофоров соответствует общей формуле:

(Sr,Ca,Ba)1-x-y-z(Na,K,Rb)z(Mg,Mn,Zn,Cd)a(B,Al,Ga)bSic(Li,Cu)d(P)eNq-nOn:Eux, в которую кроме европия могут быть включены иттрий и все редкоземельные элементы. Поскольку нитриды могут содержать некоторое количество кислорода, замещающего азот в соединении, то приведенная формула, строго говоря, соответствует оксоалюминонитридосиликатам щелочных металлов.

До настоящего времени в литературе отсутствуют достоверные данные о положительной роли в формировании свойств красных люминофоров таких элементов, как Na, К, Rb, Li, Cu, Р, а также многих редкоземельных элементов, за исключением Y, La и активирующих примесей, таких как Eu, Се и Sm. Учитывая это, общая формула для красных нитридных может быть представлена в упрощенной форме:

(M(1-x)Eux)rАlySizNQ,

где символ М обозначает кальций, стронций, барий, взятые порознь или совместно. Если отнести индексы у элементов в записанной формуле к индексу «r», то значения их будут соответствовать величинам, приведенным в Табл. 1:

Композиции, несодержащие алюминий, характеризуются меньшей устойчивостью к внешним воздействиям и, в частности, имеют низкую температурную устойчивость свечения. По этой причине в настоящее время основное внимание уделяется изучению люминофоров, содержащих четыре катиона М, Eu, Аl и Si.

Концентрация европия (x) в указанных люминофорах по отношению к щелочноземельным металлам изменяется от 0,005 до 0,20. При этом яркость свечения достигает наибольших величин при значениях «x» около 0,01-0,03, а максимум в спектре люминесценции располагается около 620-630 нм. Увеличение концентрации европия приводит к снижению яркости и одновременному сдвигу максимума в длинноволновую область.

В группе люминофоров состава (M(1-x)Eux)rAlySizNQ известен единственный патент [US 8093798], в котором приведены данные о характеристиках композиций, приготовленных с участием лития, вводимого в в состав люминофора в виде фторида лития.

Известна также патентная заявка WO 2013175336 A1, представленная корпорацией Филипс, в которой заявлен люминофор, относящийся к классу литий-алюминонитридов щелочноземельных металлов, активированных европием, церием, самарием и соактивированных Pr, Yb, Nd, Gd, Tb.

Его общая формула представлена в виде:

(Sr,Ca,Ba)1-x-y-z(Na,K,Rb)z(Mg,Mn,Zn,Cd)a(B,Al,Ga)b(Si,Ge,Ti,Hf)c(Li,Cu)d(P,V,Nb,Ta)eN4:(Еu,Sm,Yb)x(Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er)and Tm)y

Люминофоры, отвечающие записанной формуле, принадлежат к структурному типу, отличающемуся от упоминавшихся ранее алюмонитридосиликатов щелочноземельных металлов.

В простейшем случае состав нового нитридного люминофора сводится к формуле Sr[LiAl3]N4:Eu. Иными словами авторы рассматривали предложенный люминофор как нитридное соединение стехиометрического состава. По этой причине ими было наложено жесткое ограничение на значение индекса у азота - во всех нитридных композициях подстрочный индекс около азота должен быть равен 4.

Наиболее близким к заявляемому нами люминофору является патент [US 8093798], выбранный нами в качестве прототипа. Авторами были получены образцы (Ca0.97Eu0.01Ce0.01Li0.01)5Al4Si8Ni18 и (Ca0.94Eu0.02Li0.04)5Al3.8Si8.2N18, содержащие, как видно, не более 4 мольный % лития. В обоих случаях, литий вводился в кристаллическую решетку как элемент, замещающий Са2+ . В первом из приведенных составов одновременно с литием вводили трех-зарядный ион Се3+ для компенсации дефицита заряда. В итоге два двухзарядных иона Са2+ замещали на два иона (Li и Се3+) также с суммарным зарядом 4+. Во втором случае зарядовую компенсацию другим ионом не проводили. В этом случае литий, по формальному признаку, частично замещал стронций. Для сохранения значения индекса 18 у азота было уменьшено содержание алюминия и увеличено содержание кремния. Согласно приведенным данным, введение лития без зарядового компенсатора приводит к снижению яркости на 7%, не сопровождается заметным сдвигом положения максимума, но уменьшает полуширину спектра на 6-8 нм.

Совместное допирование кристаллов Li1+ и Се3+ также не привело к улучшению оптических характеристик и ухудшало температурную устойчивость свечения.

Задачей настоящего изобретения является создание люминофора с повышенной яркостью и более узкой полосой люминесценции, что позволяет расширить номенклатуру нитридных люминофоров. Поставленная задача решается посредством красного нитридного люминофора, возбуждаемого излучением в диапазоне длин волн 200-570 нм и имеющего состав, который отвечает общей формуле:

Lis(M(1-x)-Eux)1MgmAlnSipNq

где M=Sr, Са, Ва, взятые порознь или совместно, и где значения индексов у элементов, входящих в состав соединения, составляют:

0,045≤s≤0,60

0,005≤x≤0,12

0≤m≤0,12

0≤n≤1,0

1,0≤p≤2,40

3,015≤q≤4,20,

с ограничением, что для всех композиций 2,0≤p+n≤2,40 и q≠4.

В отличие от прототипа люминофор включает литий или совместно литий и магний, т.е. элементы, обладающие наименьшими ионными радиусами. Указанные элементы вводятся в кристаллическую решетку в виде нитридов, которые могут достраивать нитридную подрешетку, а также частично замещать щелочноземельные металлы. Специфичность действия лития и магния обусловлена тем, что ионные и Шенноновские радиусы их в любом координационном окружении значительно меньше, чем у кальция и стронция. Поэтому как Li1+, так и Mg2+ могут размещаться как в узлах кристаллической решетки, так и в междоузлиях.

Получаемые при этом люминофоры относятся к группе активированных европием литий-алюминонитридосиликатов щелочноземельных металлов Lis(M(1-x)-Eux)1MgmAlnSipNq, где символ М обозначает в указанной общей формуле стронций, кальций, барий, взятые порознь или совместно.

Предлагаемый нами люминофор отличается от прототипа значительным увеличением содержания лития и тем, что литий вводится в люминофор в виде нитрида. Отличие от люминофоров, заявленных в [WO 2013175336 A1] и описанных в [P. Pust, V. Weiler, C. Hecht а.о: Nature Materials, 2014, June, pp. 1-5], состоит в том, что в общей формуле предлагаемого соединения сняты ограничения по постоянству индекса у азота, равного 4. Иначе говоря, предлагаемая композиция не относится к классу стехиометрических нитридных соединений.

Примеры практического выполнения

В примерах №№1-2 дано сравнение оптических свойств 4 пар красных нитридных люминофоров, приготовленных в присутствии нитрида лития и без него. При этом содержание других элементов и условия синтеза в каждой паре образцов были идентичны.

В примере №3 сравниваются попарно свойства люминофоров, при синтезе которых активирующую добавку европия вводили в шихту в виде нитрида европия и оксида европия.

В примере №4 приведены данные о свойствах образцов, содержащих совместно литий и магний при вариации содержания магния.

В примере №5 дано сравнение свойств образцов, содержащих различные количества алюминия.

В примерах №6 приведены данные об оптических свойствах люминофоров, содержащих различные концентрации европия.

Синтез красных люминофоров осуществляли с использованием нитридов металлов: Sr3N2, EuN, Mg3N2 , полученных прямым синтезом из элементов Sr и Mg (3N: by Changlong Co. LTD), Eu (metal 4N: by Baotou rare earth element Co. LTD). Остальные нитриды были приобретены в различных компаниях, а именно: Li3N и Ca3N2(3N: Alfa-Aesa (Shanghai) Co. Ltd.), AlN (3N: by Sigma (Tianjin) Co. LTD), Si3N4 (3N: by Japanese Yubu Co.. LTD). Для введения европия использовали оксид ( Eu2O3-4N: by Yangzhong rare earth Co LTD) или нитрид европия, полученный из элементов. При этом значимых различий в оптических характеристиках у образцов обнаружено не было.

Наряду с указанными веществами для синтеза люминофоров использовали плавни - галогениды металлов (CaF2, BaF2, ВаСl2, SrF2), вводимые в смесь исходных веществ в количестве 1,5-5 масс. %. Плавни присутствуют на стадии синтеза в расплавленном состоянии. Они увеличивают скорость транспорта реагирующих веществ и способствуют получению гомогенного продукта.

Смешивание и измельчение исходных веществ проводили в среде сухого азота в герметичных шкафах (gloves-box) с камерой шлюзования и системой вакуумирования. Полученную смесь исходных веществ загружали в тигель из нитрида бора с крышкой. После загрузки в печь образец в течение 5 часов нагревали в потоке газовой смеси 3Н2+N2 до 1700°C.

Продолжительность прокаливания составляла 5 часов, после чего образец охлаждали до 100°C в течение 8 часов. Размер частиц у приготовленных образцов (D50) составлял по данным о лазерном рассеянии света 8-10 мк.

Светотехнические характеристики всех приготовленных красных люминофоров [цветовые координаты (х,у), положение максимума (λпик), ширина полосы излучения на длине волны, отвечающей положению максимума (Δλ), и пиковая интенсивность люминесценции (L)] приведены в таблице №2.

Пример №1

Чтобы установить, как влияет введение лития на оптические характеристики люминофоров, в полностью идентичных условиях были приготовлены три образца (табл. 2). Образец №1-0 имел состав Sr0,99Eu0,01Si2,20N3,60 и не содержал лития. В образце №1-1 часть стронция была замещена на литий. В образце №1-2 нитрид лития был введен в дополнение к нитриду стронция.

Светотехнические характеристики приготовленных образцов приведены в таблице №2. Как видно, частичное замещение стронция на литий приводит к снижению яркости, тогда как введение его дополнительно к стронцию повышает яркость и заметно сужает спектр.

Пример №2

В данном примере представлены результаты измерений светотехнических параметров для трех пар люминофоров, отличающихся тем, что в одном случае образец не содержал лития, а другой, того же катионного состава, был дополнительно допирован литием. Как видно, во всех случаях введение лития приводило, как и в первом примере, к сужению спектра и возрастанию яркости свечения.

Пример №3

В данном примере были синтезированы две пары образцов, отличающиеся тем, что в случае образцов (№3-1 и 3-3-65) европий вводили в виде нитрида, а случае №3-2 и №3-4 - в виде оксида.

Как видно, замена нитрида европия на оксид не приводит к значимым изменениям оптических свойств образцов. Этот результат согласуется с ожидаемым, поскольку при прокаливании при 1700°С в азот-водородной смеси оксид Eu3+ превращается в нитрид Eu2+ по реакции:

3Eu2O3+9Н2+2N2=2Eu3N2+9Н2O.

На фиг. 1 для образца №3-2 приведены совместно спектр возбуждения люминесценции (линия, располагающаяся в области длин волн 200-600 нм) и спектр люминесценции, возбуждаемый излучением с длиной волной 455 нм. Левая кривая показывает зависимость интенсивности возбуждаемой люминесценции (ось ординат - условные единицы) от длины волны возбуждающего света (ось абсцисс). Чем сильнее происходит поглощение света, тем выше интенсивность возбуждаемой красной люминесценции. Как видно, образец эффективно поглощает излучение не только в ультрафиолетовом диапазоне (200-400 нм), но и в сине-зеленой области спектра (более 60% при 500 нм и 15% при 560 нм). Справа от спектра возбуждения люминесценции приведен спектр люминесценции, наблюдаемый при возбуждении светом с длиной волны 455 нм. Максимум в спектре люминесценции располагается при 625,0 нм, а ширина спектра на половине высоты составляет 88,2 нм.

Пример №4

Данные, приведенные в таблице №2 для рассматриваемого примера, иллюстрируют поведение люминофоров при совместном легировании образцов литием и магнием. Спад яркости, наблюдаемый при мольном содержании магния в 0,15, регистрируется на фоне выделения посторонней фазы.

Пример №5

Серия люминофоров, приготовленных в данном примере, показывает, как изменяются оптические свойства при увеличении содержания алюминия. Видно, что введение алюминия в кристаллическую решетку сопровождается расширением полосы люминесценции и небольшим сдвигом максимума в длинноволновую область.

Пример №6

Оптические характеристики, иллюстрирующие поведение образцов, приведенных в табл. №2, отражают влияние таких параметров состава, как концентрация кремния, европия и лития, оказывающих влияние на свойства литий-алюмонитридосиликатов щелочноземельных металлов. Смещение максимума в спектре люминесценции в длинноволновую область вплоть 650 нм, наблюдаемое при повышении концентрации европия, сопровождается заметном спадом яркости красной люминесценции. Несмотря на это образцы с высокой концентрацией европия представляют значительный практический интерес.

Как видно из примеров №1-6, во всех случаях введение нитрида лития в матрицу алюминонитридосиликатов щелочно-земельных металлов (M(1-x)Eux)1AlnSipNq приводит к получению образцов, обладающих более яркой красной люминесценцией. Сравнение яркостей образцов, содержащих литий с безлитиевыми люминофорами, показало, что введение лития сопровождается повышением яркости люминесценции от 5 до 20% и уменьшением ширины полосы красной люминесценции от 3 до 9 нм. Стоит отметить также, что различие яркостей у образцов с замещением стронция на литий и с введением лития в дополнение к стронцию может достигать 26%.

1. Красный нитридный люминофор, возбуждаемый излучением в диапазоне длин волн 200-570 нм, состав которого отвечает общей формуле:
Lis(M(1-x)Eux)1MgmAlnSipNq,
где M=Sr, Ca, Ba, взятые порознь или совместно, и где значения индексов у элементов, входящих в состав соединения, составляют:
0,045≤s≤0,60
0,005≤х≤0,12
0≤m≤0,12
0≤n≤1,0
1,0≤р≤2,40
3,015≤q≤4,20.

2. Красный нитридный люминофор по п. 1, отличающийся тем, что для всех композиций 2,0≤р+n≤2,40 и q≠4.



 

Похожие патенты:

Изобретение может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений, в частности нейтронов. Сцинтилляционное стекло получают из композиции SiO2, Li2CO3, MgO, Al2O3, AlF3, CeO2, а для подавления окисления ионов церия в стекло вводят добавку металлического кремния (Si) в количестве 0,001-10 мас.%.

Изобретение относится к получению алюминатных люминофоров, активированных ионами редкоземельных металлов, и может быть использовано при производстве материалов для источников и преобразователей света.

Изобретение относится к светотехнике, в частности к полимерным люминесцентным композициям, применяемым для изготовления устройств общего и местного освещения. Полимерная композиция, возбуждаемая синим светодиодом, содержит прозрачный поликарбонат с показателем текучести расплава 6-40 г/10 мин, фотолюминофор - иттрия-гадолиния алюмогаллиевый гранат, активированный церием, формулы (YGd)3(AlGa)5O12:Ce, воск полиэтиленовый в виде порошка с размером частиц 18-30 мкм, термостабилизатор - Ultranox 626 и Tinuvin 360.

Изобретение относится к химической промышленности и может быть использовано в светодиодах белого свечения. Люминофор имеет общую стехиометрическую формулу ( Y 0,65 ± x   G d 0,30 ± x   L u 0,01   T b 0,01   C e 0,03 ) 3   ( A l 19   y B 0,1 ) 2   ( A l O 3,96 C l 0,02 P 0,02 ) 3 0.05 ≤ x ≤ 0.15,   0.02 ≤ y ≤ 0.04 с квантовым выходом Q>0,9, кубическую структуру граната с пространственной группой Ia3d со спектральными параметрами: λв = 460+_3 нм; λиз = 570+_3 нм, где λиз - длина волны возбуждения люминофора; λиз - длина волны излучения люминофора.

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров для покрытий флуоресцентных ламп. Гамма оксид алюминия, полученный из квасцов, в количестве 85%-95% по массе смешивают с 0,4%-1,8% по массе спекающего агента - NH4F и 2,5%-13% по массе зародышей альфа оксида алюминия.
Изобретение относится к «светящимся» картону или бумаге и может быть использовано для декоративно-прикладных работ, в художественном и детском творчестве, в полиграфии и рекламе при изготовлении фотографий, рисунков, визиток.

Изобретение относится к светотехнике и может быть использовано в синеизлучающих светодиодах твердотельных источников белого света. Люминесцирующий материал на основе алюмината иттрия, включающего оксид церия, соответствует общей формуле (Y1-xCex)3±αAl5O12+1,5α, где х - атомная доля церия, равная 0,01-0,20; 0<α≤0,5 или 0>α≥1,5.
Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, содержащих редкоземельные элементы, которые могут быть применены для изготовления светодиодных источников освещения.

Изобретение относится к новым люминесцентным материалам для устройств красного свечения, особенно к области новых люминесцентных материалов для СИД и их использованию в устройствах красного свечения.

Изобретение относится к области светотехники и, в частности, к люминесцирующим материалам, светящимся в желто-оранжевой области спектра и используемым в твердотельных источниках белого света.

Изобретение относится к защитному признаку для защиты ценных документов, прежде всего для обеспечения их подлинности. Защитный признак включает люминесцентный пигмент, который имеет неорганическую кристаллическую решетку, легированную люминофором, выбранным из редкоземельных ионов эрбия, гольмия, неодима, тулия, иттербия, и который для излучения люминесцентного света выполнен с возможностью оптического возбуждения.

Изобретение может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений, в частности нейтронов. Сцинтилляционное стекло получают из композиции SiO2, Li2CO3, MgO, Al2O3, AlF3, CeO2, а для подавления окисления ионов церия в стекло вводят добавку металлического кремния (Si) в количестве 0,001-10 мас.%.
(57) Изобретение относится к составам оптических стекол и может быть использовано в лазерных системах в качестве активных сред ап-конверсионных лазеров с диодной накачкой, преобразующих инфракрасное лазерное излучение в видимую область, а именно в зеленую область спектра.

Изобретения относятся к химической промышленности и светотехнике и могут быть использованы в светодиодах для эмиссии окрашенного или белого света. Люминесцентное вещество с силикатными люминофорами, легированными Eu2+, содержит твердые растворы смешанных фаз оксиортосиликатов щелочноземельных и редкоземельных металлов, представленными, например, формулой (1-х)MII 3SiO5·x SE2SiO5:Eu, где 0<х≤0,2; МII представляет собой ионы двухвалентного металла, содержащие по меньшей мере один ион, выбранный из группы, состоящей из стронция и бария, и SE - редкоземельные металлы из группы, включающей Y, La, Gd.

Изобретение может быть использовано для визуализации ИК-излучения и в устройствах для скрытой записи информации. Фотостимулируемый люминофор сине-зеленого цвета свечения на основе алюмината стронция, активированного ионами Eu2+ и Dy3+ , имеет химический состав, соответствующий следующей эмпирической формуле: (Sr1-x-y-z-cEuxDyyTmzLnc)4Al14O25, где 1·10-3≤x≤5·10-2; 0≤y≤5·10-3; 1·10-5≤z≤2,5·10-2; 1·10-4≤c≤2,5·10-2; Ln - La3+ или Er3+.

Изобретение относится к новым люминесцентным материалам для устройств красного свечения, особенно к области новых люминесцентных материалов для СИД и их использованию в устройствах красного свечения.

Изобретение относится к электронной технике и освещению и может быть использовано при изготовлении осветительных и информационных устройств. .

Изобретения могут быть использованы для проверки подлинности и защиты от подделок ценных бумаг или документов, а также высококачественных товаров. Защитный признак содержит люминесцентное вещество общей формулы В0,5ХО3:Z, в котором В является щелочноземельным металлом, Х является Nb и/или Та, Z является люминесцентным активатором, например редкоземельным металлом степени окисления +3, или Ti3+, или V4+, или Cr2+, или Cr3+, или Cr4+, или Cr5+, или Mn3+, или Mn4+, или Mn5+, или Mn6+.
Наверх