Способ получения кобальтовой или кобальтохромовой тиошпинели



Способ получения кобальтовой или кобальтохромовой тиошпинели
Способ получения кобальтовой или кобальтохромовой тиошпинели
Способ получения кобальтовой или кобальтохромовой тиошпинели
C01G1/12 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2573522:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" (RU)

Изобретение может быть использовано в неорганической химии. Кобальтовую или кобальтохромовую тиошпинель получают в режиме самораспространяющегося высокотемпературного синтеза (СВС) в атмосфере воздуха. В качестве исходных веществ используют порошкообразную смесь сульфида кобальта CoS с добавлением порошка металла кобальта для синтеза Co3S4, хрома для синтеза CoCr2S4 и кристаллической серы, взятых до соответствующего стехиометрического состава с 5% избытком серы. Изобретение позволяет упростить процесс, повысить его производительность, скорость и экологическую чистоту. 1 ил., 2 табл., 4 пр.

 

Изобретение относится к области неорганической химии, а именно к технологии самораспространяющегося высокотемпературного синтеза (СВС), и может быть использовано для получения кобальтовой Co3S4 и кобальтохромовой тиошпинели CoCr2S4.

Известен способ получения тиошпинелей [R.J. Bouchard, P.A. Russo, A. Wold. Preparation and electrical properties of some thiospinels. - Inorganic Chemistry, 1965, Vol, 4, No. 5, Pp. 685-688] путем высокотемпературной комбинации металлов (чистотой 99,99%) с серой. Реакцию проводят в вакуумированной кварцевой трубке. Необходимо несколько обжигов с измельчениями в атмосфере сухого азота (около 1 часа в механической ступке) между обжигами для достижения однородности. Для синтеза Co3S4 проводят два последовательных обжига: 24 часа при 600°C и 70 часов при 700°C соответственно, для CoCr2S4 три обжига: 48 часов при 600°C, 24 часа при 900°C и 48 часов при 900°C. Авторы обнаружили, что некоторые из тиохромитов также могут быть получены по реакции соответствующих оксидных шпинелей с H2S при повышенных температурах в соответствии с общей реакцией: АВ2О4+4H2S→AB2S4+4H2O.

Известен способ получения тиохромата кадмия [SU, Патент СССР, 432095, C01B 17/20, Способ получения халькогенидной шпинели. / Е.М. Шумилкина, Н.Н. Парфенова] синтезом из порошков исходных соединений в вакууме. Для сокращения времени синтеза и упрощения технологии получения халькогенидной шпинели предлагается синтез из сульфидов осуществлять при 600-650°C в течение 0,5-1 ч и давлении в реакционной камере 10-4-5·10-5 мм рт.ст.

Известен также способ [US, Патент США, 4041140, C01B 17/20, C04B 35/70, Method of making a sulphide ceramic body. / Tsuneharu Nitta, Shigeru Hayakawa, Yukio Kasahara, Ziro Terada. Appl. No: 489,048, 1974] получения поликристаллического сульфида сульфированием оксидного материала в атмосфере сероуглерода при температуре в диапазоне от 400-1000°C.

Недостатками известных способов является длительность и многостадийность процесса, а также значительные энергетические затраты на нагревание смесей и длительную гомогенизацию, использование токсичного газообразного сероводорода.

Наиболее близким техническим решением - прототипом является способ синтеза сульфохромитов [Ф.К. Лотгеринг. О ферримагнетизме некоторых сульфидов и окислов. - Успехи физических наук, 1958, Т. 66, вып. 10, с. 247-300]. Процесс проводят путем нагревания смеси двух металлических порошков и серы в эвакуированной кварцевой трубке при температуре 600°C, 900°C в течение длительного времени. Поскольку металлические зерна обычно являются довольно грубыми, препарат после первого прокаливания не является однородным. Поэтому материал прокаливают снова почти вдвое дольше при температуре 500°C, 900°C, а затем размалывают и спрессовывают в форме шарика. Методы изготовления и получаемые фазы (идентифицированные с помощью рентгенограмм) приведены в таблице 1.

Недостатками указанного способа являются трудоемкость, многостадийность синтеза, значительные энергетические затраты на нагревание смесей до 600°C, 900°C и гомогенизацию продукта в течение длительного времени.

В заявляемом способе недостатки устраняются тем, что синтез кобальтовой и кобальтохромовой тиошпинели проводят методом СВС, который позволяет радикально удешевить получение тугоплавких материалов. Такой процесс, основанный на использовании внутренней химической энергии системы, позволяет проводить синтез при высоких температурах, малых временах синтеза, незначительных энергетических затратах. Простота оборудования, высокая технологическая производительность, высокая скорость и экологическая чистота процесса также указывают на целесообразность использования этого метода.

Исходными реактивами для получения поликристаллических образцов служат простые вещества, чистотой 99,99% масс. Для определения благоприятных условий был проведен сравнительный синтез тиошпинелей, полученных из исходных металлов и серы, а также из сульфидов металлов с добавлением металлов и серы до соответствующего стехиометрического состава (Таблица 2).

Сущность изобретения

В заявляемом способе получения кобальтовой или кобальтохромовой тиошпинели, включающем растирание, прессование исходных веществ, воспламенение, сжигание и синтез тиошпинелей в режиме СВС в атмосфере воздуха, в качестве исходных веществ используют порошкообразную смесь сульфида металла (CoS) с добавлением порошка металла кобальта для синтеза Co3S4, хрома для синтеза CoCr2S4 и кристаллической серы, взятых до соответствующего стехиометрического состава с 5%-ным избытком серы вследствие ее частичной возгонки при высоких температурах.

Заявляемое техническое решение имеет следующую совокупность существенных отличительных признаков по отношению к выбранному прототипу:

- синтез кобальтовой и кобальтохромовой тиошпинели проводят методом самораспространяющегося высокотемпературного синтеза (СВС);

- в качестве реагентов используют порошкообразный сульфид металла (CoS) с добавлением порошка металла кобальта для синтеза Co3S4, хрома для синтеза CoCr2S4 и кристаллической серы, взятых до соответствующего стехиометрического состава с 5%-ным избытком серы вследствие ее возгонки при высоких температурах;

- синтез тиошпинели в режиме горения проводят в атмосфере воздуха, т.к. быстротечность процесса не позволяет продуктам синтеза активно взаимодействовать с окружающей средой.

Осуществление изобретения достигается при выполнении технологических операций в следующей последовательности.

Для синтеза тиошпинели Co3S4 берут необходимое количество порошкообразного сульфида кобальта, кобальта и элементарной серы с 5%-ным избытком. Для синтеза CoCr2S4 берут необходимое количество порошкообразного сульфида кобальта, хрома и элементарной серы с 5%-ным избытком.

Навески реагентов растирают в агатовой ступке, затем тщательно перемешивают порошки на механической шаровой мельнице в течение 6 часов. Полученную смесь таблетируют. Таблетки сжигают в режиме СВС. Схема установки для синтеза в режиме СВС представлена на рис. 1. Платформа установки (1) снабжена газоотводным каналом (2) и электрическими клеммами (3). Таблетки (4) помещают на огнеупорную подложку (5) под нихромовую спираль (6), на которую подается напряжение для инициирования реакции. Между колоколом (7) и платформой расположена резиновая прокладка (8). В результате инициирования в прогретом поверхностном слое образца происходит возбуждение химической реакции и формирование волны синтеза, которая с определенной скоростью распространяется вдоль оси образца. Распространение волны синтеза сопровождается ярким свечением. Таблетка сгорает за несколько секунд.

В результате горения образуются твердый продукт, который при механическом воздействии легко превращается в порошок.

Предлагаемый способ реализуется в лабораторных условиях, иллюстрируется следующими примерами.

Пример 1.

Берут 1,49 г порошкообразного сульфида кобальта CoS, перемешивают с 1,93 г порошкообразного кобальта марки ТПМ и 1,66 г кристаллической серы квалификации "ос. ч" с учетом 5%-ного избытка. Навески реагентов растирают в агатовой ступке, затем тщательно перемешивают порошки на шаровой мельнице в течение 6 часов до однородного состояния. Полученную смесь таблетируют в форме цилиндра диаметром 10 мм.

Таблетку помещают на огнеупорную подложку под нихромовую спираль. Путем кратковременной подачи электрического импульса на нихромовую спираль инициируют горение и синтез кобальтовой тиошпинели. При этом в прогретом поверхностном слое образца происходит возбуждение химической реакции и формирование волны синтеза, которая с определенной скоростью распространяется вдоль оси образца. Распространение волны синтеза сопровождается ярким свечением. Таблетка сгорает за несколько секунд. В результате горения образуется твердый продукт, который при механическом воздействии легко превращается в порошок.

Согласно данным рентгенофазового анализа (РФА) продукт горения представляет собой фазу кобальтовой тиошпинели, имеющей кубическую ячейку со структурой нормальной шпинели, с параметром решетки а=9,40 .

Пример 2.

Берут 1,56 г порошкообразного сульфида кобальта CoS, перемешивают с 1,79 г порошкообразного хрома и 1,73 г кристаллической серы с учетом 5%-ного избытка, растирают и прессуют в таких же условиях, как в примере 1. По данным РФА полученный продукт представляет собой фазу кобальтохромовой тиошпинели, имеющей кубическую ячейку (тип MgAl2O4) с параметром решетки а=9,91 .

Пример 3.

Берут 3,44 г порошкообразного сульфида хрома Cr2S3, перемешивают с 1,01 г порошкообразного кобальта и 0,58 г кристаллической серы с учетом 5%-ного избытка, растирают и прессуют в таких же условиях, как в примере 1. По данным РФА полученный продукт представляет собой фазу кобальтохромовой тиошпинели, имеющей кубическую ячейку (тип MgAl2O4) с параметром решетки а=9,91 , с примесью фаз сульфидов металлов.

Пример 4.

Для сравнения был проведен синтез тиошпинелей из исходных металлов и серы в режиме СВС.

Для синтеза CoCr2S4 берут 1,01 г порошкообразного кобальта, перемешивают с 1,79 г порошкообразного хрома и 2,31 г кристаллической серы с учетом 5%-ного избытка, для синтеза Co3S4 берут 2,90 г порошкообразного кобальта перемешивают с 2,11 г кристаллической серы с учетом 5%-ного избытка, растирают и прессуют в таких же условиях, как в примере 1.

Согласно данным РФА синтез из исходных металлов и серы приводит к образованию сульфидов металлов с незначительным количеством тиошпинели (~30%), высокий экзотермический эффект приводит к разложению образующейся шпинели.

Порошки, полученные в результате сжигания смесей, изучены рентгенографически (дифрактометр D8-GADDS фирмы Bruker, метод порошка, СоКα-излучение).

Заявляемое техническое решение заключается в упрощении способа и возможности получения кобальтовой и кобальтохромовой тиошпинели с минимальными энергетическими и временными затратами за счет быстротечности процесса.

Способ получения кобальтовой или кобальтохромовой тиошпинели, включающий синтез из смеси порошков металлов и серы, отличающийся тем, что синтез кобальтовой и кобальтохромовой тиошпинели проводят в режиме СВС в атмосфере воздуха, а в качестве реагентов используют порошкообразный сульфид металла CoS с добавлением порошка металла кобальта для синтеза Co3S4, хрома для синтеза CoCr2S4 и кристаллической серы, взятых до соответствующего стехиометрического состава с 5% избытком серы вследствие частичной возгонки при высоких температурах.



 

Похожие патенты:

Изобретение может быть использовано в медицине при изготовлении контрастных веществ для получения изображений методом магнитного резонанса или флуоресценции, средств для доставки лекарств, меток для клеток.

Изобретение относится к области химии и нанотехнологии. Сначала при температуре 25÷50°C готовят раствор, содержащий, мас.%: полиакрилонитрил - 4,58; CoCl2·6H2O - 1,86; NiCl2·6H2O - 1,86; диметилформамид - 91,7, и выдерживают до полного растворения всех компонентов.

Изобретение относится к области биотехнологии, конкретно к созданию конъюгатов магнитная частица - нуклеиновая кислота, и может быть использовано для молекулярно-генетической диагностики.

Способ получения фосфатов кобальта(II)-аммония относится к промышленной экологии и к химической технологии неорганических веществ. Способ может быть использован для переработки жидких отходов получения гальванических и химических покрытий кобальтом.
Изобретение относится к области химии платиновых металлов, в частности синтезу соединений палладия, а именно синтезу гетероядерных ацетатов палладия с цветными металлами.

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошковых материалов на основе карбидов вольфрама. .

Изобретение относится к новым магнитным сульфидным соединениям кобальта и марганца, обладающих эффектом гигантского магнитосопротивления (т.е. .
Изобретение относится к области металлургии, в частности к способу получения алюмината кобальта, применяемого для поверхностного модифицирования литых деталей из жаропрочных сплавов.

Изобретение относится к способу получения твердых растворов состава CoFe2-xCrx O4 со структурой шпинели и может найти применение в химической промышленности для производства магнитных материалов и катализаторов на основе ферритов-хромитов кобальта (II).

Изобретение относится к технологии неорганических веществ, в частности к способам получения кобальта (II) сульфата из кобальтсодержащего материала. .

Изобретение может быть использовано при переработке токсичных отходов производства, содержащих хром(VI). Способ осаждения ионов хрома(VI) из растворов включает взаимодействие ионов хрома(VI) с реагентом-восстановителем в кислой среде и последующее добавление осадителя.

Изобретение относится к области защиты металла от коррозии лакокрасочными покрытиями путем введения ингибитора коррозии в грунтовки по металлу бората хрома состава 2KB5O8·K2CrO4·4H2O и изучено его влияние на коррозионно-электрохимическое поведение стали 3 в 3%-ном растворе NaCl.

Изобретение относится к способу получения оксида хрома (III), включающему стадии: a) взаимодействия хромата щелочного металла или бихромата щелочного металла с газообразным аммиаком, в частности, при температуре от 200 до 800°C, b) гидролиза реакционного продукта, полученного на стадии а), причем pH-значение воды для гидролиза перед гидролизом или щелочного маточного щелока во время или после гидролиза устанавливают равным от 4 до 11, понижая с помощью кислоты, c) выделения продукта гидролиза, выпавшего в осадок на стадии b), d) сушки продукта, полученного на стадии с), и e) кальцинирования продукта гидролиза, полученного на стадии d) при температуре от 700 до 1400°C.
Изобретение может быть использовано в металлургии. Для получения карбида хрома Cr3C2 смесь порошка хрома и сажи механически активируют в центробежной планетарной мельнице при ускорении шаров 25-45 g и соотношении шихта : шаровая загрузка по массе 1:20 в течение 30-40 мин.
Изобретение может быть использовано при изготовлении режущего инструмента, при износостойкой наплавке, для получения композиционных электрохимических покрытий и контактного материала, обладающего повышенным сопротивлением эрозионному действию электрической дуги.

Изобретение относится к области неорганической химии, конкретно к четверному соединению меди, галлия, хрома и селена, которое может найти применение в многофункциональных приборах и схемах, работающих на взаимосвязи магнитного и электрического полей.

Изобретение относится к экстракционным методам извлечения анионов металлокислот из водных растворов и может быть использовано для выделения хрома(VI) из кислых сред.

Изобретение относится к разработке новых сульфидных соединений с особыми магнитоэлектрическими свойствами, которые могут быть использованы в микроэлектронике. .

Изобретение относится к области гальванотехники и может быть использовано в процессах переработки хромсодержащих растворов, образующихся при электрохимической и химической обработке металлов с применением химических методов.

Изобретение может быть использовано в фундаментальных исследованиях и при разделении обычных и сверхтекучих жидкостей. Способ визуализации двухжидкостной структуры квантовой жидкости в оксидных расплавах включает получение оксидного расплава путем плавления тонкодисперсного порошка В2О3 с добавками ВаО или Co3O4 в соотношении: ВаО - 1,0 мол.%; В2О3 - 99.0 мол.% мол.
Наверх