Система передачи данных по многолучевому каналу связи

Изобретение относится к технике связи и может использоваться для передачи сигналов в морской среде по гидроакустическому каналу связи. Технический результат состоит в повышении помехоустойчивости и достоверности передачи данных в условиях распространения сигнала в многолучевом канале связи при условии равенства и превышении помехи над сигналом. Для этого формируют, излучают и принимают информацию пакетами, состоящими из двух частей - синхронизирующей и информационной. Передаче данных предшествует передача синхронизирующей части, имеющей вид некоторого числа сигналов, модулированных целыми периодами последовательности максимальной длины (М-последовательности). Информационная часть представляет собой последовательность некоторого числа сигналов, модулированных функциями Адамара, поэлементно просуммированными по модулю два с М-последовательностью. 3 ил.

 

Изобретение относится к морской технике, а именно к области передачи сигналов в морской среде, и может применяться для передачи информации по гидроакустическому каналу связи, отличающемуся многолучевым распространением из-за рефракции, обусловленной распределением скорости звука по глубине, и наличия отражающих звук водной поверхности и дна моря.

Известно радиогидроакустическое устройство для дистанционного отсоединения подводного изделия и контроля его местоположения на поверхности моря (патент RU 2297641 С1, опубл. 20.04.2007), которое содержит канал излучения гидроакустических кодированных широкополосных сигналов управления и канал приема сигналов управления. Канал излучения сигналов управления содержит формирователь модулирующего кода, задающий генератор, фазовый манипулятор, усилитель мощности и гидроакустический излучатель. Канал приема сигналов управления содержит гидрофон, усилитель, демодулятор, два дешифратора, электромагнитное реле. В качестве гидроакустических кодированных сигналов управления используются сложные сигналы с фазовой манипуляцией.

Известна система скрытной гидроакустической связи (патент RU №2397915 С1, опубл. 27.08.2010 г.), содержащая передающий тракт, выполненный с возможностью формирования и излучения широкополосного частотно-модулированного (частотно-манипулированного) сигнала, и приемный тракт, включающий в себя антенну, усилитель-ограничитель шумоподобного сигнала, усилители высокой и низкой частот, частотный детектор, телефон водолаза. Приемный тракт выполнен с возможностью поступления сигнала с усилителя-ограничителя шумоподобного сигнала на амплитудный детектор без восстановления несущей, а после него - на высокочастотный полосовой фильтр, настроенный на частоту удвоенной частотно-модулированной (частотно-манипулированной) несущей частоты, и далее - на усилитель этой удвоенной несущей частоты.

Из радиосвязи известны системы передачи данных посредством широкополосных/шумоподобных сигналов (ШПС), обладающие повышенной скрытностью и помехоустойчивостью. Примеры таких систем приведены в книге Варакина Л.Е. «Системы связи с шумоподобными сигналами», изд. «Радио и связь», М., 1985 г. Одним из применяемых методов модуляции шумоподобных сигналов является фазовая модуляция или фазовая манипуляция (ФМ). В качестве прототипа принята блок-схема системы связи с фазоманипулированными ШПС, которая приведена в книге Варакина Л.Е. на стр. 18, рис. 1.9. Особенность прототипа состоит в использовании информационного сигнала в качестве источника синхронизирующих данных.

Общим недостатком указанных технических решений является снижение достоверности передачи данных в случае приема сигналов при многолучевом распространении.

Задачей настоящего изобретения является создание системы передачи данных по многолучевому каналу связи с улучшенными характеристиками - помехоустойчивостью и достоверностью. Улучшение помехоустойчивости и достоверности передачи данных достигается за счет формирования, излучения и приема информации пакетами, состоящими из двух частей - синхронизирующей и информационной.

С этой целью в систему передачи данных по многолучевому каналу связи, содержащую передающий тракт, выполненный с возможностью формирования и излучения широкополосного фазомодулированного/фазоманипулированного (ФМ) сигнала, и приемный тракт, включающий в себя электроакустический приемник, блок подготовки сигнала, смеситель (демодулятор), коррелятор и синхронизатор, в передающий тракт, выполненный с возможностью генерирования синхронизирующей части посылки, состоящей из некоторого числа ФМ сигналов, модулированных/манипулированных целыми периодами М-последовательности посредством генератора М-последовательности, введен блок формирования информационной части, содержащий последовательно соединенные генератор функций Адамара, переключатель синхронизация-информация, поэлементный сумматор по модулю два сигнала и М-последовательности. В приемный тракт после последовательно соединенных блока подготовки сигнала, демодулятора, коррелятора и синхронизатора, выполненного с возможностью поступления сигнала с выхода коррелятора на устройство взвешенного накопления, а после него - на пороговое устройство и далее - на определитель задержки максимума и устройство управляемой задержки, введен блок приема информационной части посылки, включающий в себя последовательно соединенные коррелятор огибающая сигнала - матрица функций Адамара, определитель смещения максимума функции взаимной корреляции и блок памяти, а также генератор М-последовательности и поэлементный сумматор по модулю два сигнала и М-последовательности, выполненный с возможностью поступления сигнала с выхода устройства управляемой задержки на один вход и с выхода генератора М-последовательности - на другой вход, и подачи выходного сигнала на вход коррелятора.

Информационная часть представляет собой последовательность некоторого числа сигналов, модулированных/манипулированных функциями Адамара, поэлементно просуммированными по модулю два с М-последовательностью.

Вследствие независимой работы передатчика и приемника в приеме при циклическом заполнении может проявляться несовпадение начального адреса буфера с началом блока данных. Для правильного приема информации требуется, чтобы весь блок данных находился в буфере памяти, то есть необходим синхронизирующий сигнал.

Передаче данных предшествует передача синхронизирующей части, имеющей вид некоторого числа сигналов, модулированных/манипулированных целыми периодами последовательности максимальной длины (М-последовательности).

Вначале принимается синхронизирующий сигнал, производится его оптимальная обработка в корреляторе, выполняется взвешенное накопление выхода коррелятора. Итог накопления сравнивается с порогом. Если порог превышен, принимается решение о наличии сигнала. В накопленном выходе коррелятора определяется наибольший из максимумов, то есть ищется максимум, соответствующий лучу наибольшей интенсивности. Взвешенное накопление и отработка синхронизатора по наибольшему из максимумов функции взаимной корреляции (ФВК) обеспечивает повышение достоверности передачи данных.

Определяется смещение максимума, которое передается в устройство управляемой задержки. По истечении времени задержки начинается поступление данных в многоканальный коррелятор, выполняющий оптимальную обработку информационной части сигнала. В выходе коррелятора находится максимум, определяется его абсцисса, являющаяся передаваемыми данными. Выполняется запись абсциссы в блок памяти. Когда в блок памяти помещено все предусмотренное число данных, данные выдаются получателю информации.

Суть изобретения поясняется чертежами, где:

- на фиг. 1 представлена блок-схема передающего тракта,

- на фиг. 2 представлена блок-схема приемного тракта,

- на фиг. 3 представлены диаграммы временных и взаимокорреляционных функций М-последовательности (синхронизация) и функции Адамара (информация).

Цифрами на чертежах обозначены:

на фиг. 1

1 - источник информации,

2 - генератор М-последовательностей,

3 - генератор несущего колебания,

4 - фазовый манипулятор (модулятор),

5 - усилитель мощности,

6 - электроакустический излучатель,

7 - блок формирования информационной части пакета,

8 - источник уровня «логический нуль»,

9 - генератор функций Адамара,

10 - переключатель синхронизация-информация,

11 - поэлементный сумматор по модулю два;

на фиг. 2

12 - электроакустический приемник,

13 - блок подготовки сигнала,

14 - демодулятор,

15 - коррелятор огибающая сигнала - М-последовательность,

16 - получатель информации,

17 - синхронизатор,

18 - переключатель синхронизация-информация,

19 - устройство взвешенного накопления,

20 - пороговое устройство,

21 - определитель задержки максимума,

22 - устройство управляемой задержки,

23 - блок приема информационной части пакета,

24 - генератор М-последовательности,

25 - поэлементный сумматор по модулю два,

26 - коррелятор огибающая сигнала - матрица функций Адамара,

27 - определитель смещения максимума ФВК,

28 - блок памяти;

на фиг. 3

3.1 - диаграмма М-последовательности до синхронизации,

3.2 - диаграмма выхода взаимного коррелятора сигнал - М-последовательность до синхронизации,

3.3 - диаграмма М-последовательности после синхронизации,

3.4 - диаграмма выхода взаимного коррелятора сигнал - М-последовательность после синхронизации,

3.5 - диаграмма функции Адамара,

3.6 - диаграмма выхода взаимного коррелятора сигнал - матрица функций Адамара.

Работа системы передачи данных по многолучевому каналу связи происходит следующим образом.

В передающем тракте после поступления от источника информации 1 данных, предназначенных для передачи, переключатель синхронизация-информация 10 устанавливается в положение «синхронизация». Тем самым обеспечивается подача от источника уровня «логический нуль» 8 на вход поэлементного сумматора по модулю два 11, благодаря чему элементы М-последовательности от генератора М-последовательностей 2 без изменения значений (диаграмма 3.3 фиг. 3) поступают на верхний вход фазового манипулятора (модулятора) 4, на другой вход фазового манипулятора (модулятора) 4 подается сигнал от генератора несущего колебания 3.

Далее переключатель синхронизация-информация 10 устанавливается в положение «информация» и поступившие от источника информации 1 данные поступают на генератор функции Адамара 9 порядка, соответствующего поступившему числу (диаграмма 3.5 фиг. 3). Функция Адамара через переключатель синхронизация-информация 10 подается на один из входов поэлементного сумматора по модулю два 11, на другой вход поэлементного сумматора по модулю два 11 поступают поэлементно значения М-последовательности от генератора М-последовательностей 2.

Последовательно соединенные генератор функций Адамара 9, переключатель синхронизация-информация 10 и поэлементный сумматор по модулю два 11 образуют блок формирования информационной части пакета 7.

Суммарный сигнал подается на вход фазового манипулятора/модулятора 4, на другой вход фазового манипулятора/модулятора 4 подается сигнал от генератора несущего колебания 3. ФМ сигнал проходит усилитель мощности 5 и посредством электроакустического излучателя 6 излучается в водную среду.

Приемный тракт находится в состоянии ожидания поступления сигнала связи, то есть на электроакустический приемник 12 (фиг. 2) воздействуют только шумы моря. При воздействии акустического сигнала от передающего тракта на электроакустический приемник 12 электрический сигнал поступит на блок подготовки сигнала 13. Блок подготовки сигнала 13 включает в себя устройства усиления, полосовой фильтрации и аналого-цифрового преобразования. Сигнал с блока подготовки сигнала 13 поступает на демодулятор 14, выполняющий умножение сигнала на синусоидальный опорный сигнал той же частоты, что и несущее колебание, и осреднение произведений. Через переключатель синхронизация-информация 18, имеющийся в синхронизаторе 17, огибающая сигнала передается в коррелятор огибающая сигнала - М-последовательность 15, где определяется ФВК огибающей сигнала с матрицей - циркулянтом М-последовательности.

В устройстве взвешенного накопления 19 выполняется взвешенное накопление значений ФВК, которые в пороговом устройстве 20 сравниваются с порогом. Если превышения порога нет, то следует продолжение состояния ожидания.

Превышение порога показывает наличие сигнала, при этом происходит обращение к определителю задержки максимума 21, где происходит определение задержки максимума ФВК, заключающееся в определении номера ячейки памяти, куда помещен максимум, и в вычитании из этого числа начального адреса буфера, отведенного для хранения ФВК.

На диаграммах 3.1, 3.2 (фиг. 3) показан в качестве примера сигнал синхронизации, имеющий один сигнальный максимум и смещение по оси абсцисс, равное 30.

Значение задержки записывается в устройство управляемой задержки 22, необходимой для настройки на максимальный луч, переключатель синхронизация-информация 18 переключает подачу сигнала на устройство управляемой задержки 22. По истечении задержки в устройстве управляемой задержки 22 сигнал синхронизации имеет вид, показанный на диаграммах 3.3, 3.4 (фиг. 3), где смещение равно нулю. Таким образом, достигнут синхронизм, и в устройстве управляемой задержки 22 начинается передача данных в блок приема информационной части пакета 23.

В сумматоре по модулю два 25 выполняется суммирование по модулю два сигнала, поступающего через устройство управляемой задержки 22, и М-последовательности, создаваемой генератором М-последовательности 24. Эта операция имеет значение восстановления данных перед приемом информации.

Прием информационной части производится коррелятором огибающая сигнала - матрица функций Адамара 26, определителем смещения максимума ФВК 27 и блоком памяти 28. В корреляторе огибающая сигнала - матрица функций Адамара 26, являющемся вторым коррелятором, определяется ФВК огибающей сигнала и матрицы функций Адамара.

На диаграмме 3.5 (фиг. 3) представлен образец функции Адамара 50 порядка, на диаграмме 3.6 показана ФВК этой же функции, в которой абсцисса максимума также равна 50, что свидетельствует о правильном распознавании данных.

Смещение максимума ФВК представляет собой данные, принятые из канала связи. Эти данные сохраняются в блоке памяти 28, откуда они выдаются получателю информации 16.

Изложенные технические решения обеспечивают работоспособность системы передачи данных по многолучевому каналу связи при отношении сигнал/помеха, равном или превышающем минус 6 дБ.

Предлагаемая система передачи данных по многолучевому каналу связи может быть использована для связи с автономными сейсмогидроакустическими станциями наблюдения, с самоходными необитаемыми подводными аппаратами - носителями аппаратуры высокого разрешения, а также для обеспечения натурных испытаний аппаратуры обнаружения морских объектов с целью передачи команд управления и данных о состоянии аппаратуры для привода кораблей-целей на гидроакустический маяк.

Система передачи данных по многолучевому каналу связи, содержащая передающий тракт, выполненный с возможностью формирования и излучения широкополосного фазомодулированного/фазоманипулированного сигнала, и приемный тракт, включающий в себя электроакустический приемник, блок подготовки сигнала, смеситель (демодулятор), коррелятор и синхронизатор, отличающаяся тем, что в передающий тракт, выполненный с возможностью генерирования синхронизирующей части посылки, состоящей из некоторого числа фазомодулированных/фазоманипулированных сигналов, модулированных/манипулированных целыми периодами М-последовательности посредством генератора М-последовательности, введен блок формирования информационной части, содержащий последовательно соединенные генератор функций Адамара, переключатель синхронизация-информация, поэлементный сумматор по модулю два сигнала и М-последовательности, в приемный тракт после последовательно соединенных блока подготовки сигнала, демодулятора, коррелятора и синхронизатора, выполненного с возможностью поступления сигнала с выхода коррелятора на устройство взвешенного накопления, а после него - на пороговое устройство и далее - на определитель задержки максимума и устройство управляемой задержки, введен блок приема информационной части посылки, включающий в себя последовательно соединенные коррелятор огибающая сигнала - матрица функций Адамара, определитель смещения максимума функции взаимной корреляции и блок памяти, а также генератор М-последовательности и поэлементный сумматор по модулю два сигнала и М-последовательности, выполненный с возможностью поступления сигнала с выхода устройства управляемой задержки на один вход и с выхода генератора М-последовательности - на другой вход, и подачи выходного сигнала на вход коррелятора.



 

Похожие патенты:

Способ увеличения объема частотного ресурса относится к радиотехнике и может быть использован для создания дополнительных ресурсов передачи и получения информации с помощью радиоволн.

Изобретение относиться к области приема радиосигналов в железнодорожных радиостанциях. Технический результат заключается в повышении помехоустойчивости и качества радиоприема за счет повышения степени подавления зеркального канала в приемнике.

Изобретение относится к области радиотехники. Способ борьбы с гармонической помехой при автокорреляционном методе приема информации с использованием шумоподобных сигналов включает вычисление комплексных огибающих первого и второго периодов принимаемого сигнала, вычисление с помощью дискретного преобразования Фурье спектральных функций этих комплексных огибающих, умножение спектральной функции первого периода сигнала на комплексно-сопряженную спектральную функцию второго периода сигнала, вычисление с помощью обратного дискретного преобразования Фурье взаимно-корреляционной функции между этими комплексными огибающими, выбор максимальной компоненты взаимно-корреляционной функции и сравнение ее с порогом, при этом вычисляют квадраты огибающих спектральных функций первого и второго периодов сигнала, вычисляют дисперсии квадратов огибающих спектральных функций первого и второго периодов сигнала, осуществляют нормировку квадратов огибающих спектральных функций первого и второго периодов сигнала на соответствующие им дисперсии, в нормированных спектральных функциях первого и второго периодов сигнала выполняют поиск максимальных компонент и определяют их позиции, сравнивают значения отобранных максимальных компонент с величиной установленного порога, который определяют в соответствии с допустимой величиной вероятности ложной идентификации гармонической помехи, в случае превышения ими установленного порога в спектральных функциях комплексных огибающих первого и второго периодов элементы, находящихся на позициях отобранных максимальных компонент и их окрестностях, обнуляют, причем окрестности позиций отобранных максимальных компонент определяют уровнем гармонической помехи.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении надежности функционирования устройства.

Изобретение относится к системам беспроводной связи и предназначено для предоставления истории информации, ассоциированной с информацией времени, способно отображать внутреннюю или внешнюю ассоциированную информацию, ассоциированную с информацией времени, как один элемент информации, и способно интуитивно предоставлять историю информации, ассоциированной с соответствующим временем, путем управления информацией времени.

Изобретение относится к технике связи и может быть использовано для реализации корреляции элементарных сигналов для многоканального поиска. Технический результат - эффективная экономия ресурсов памяти и снижение издержек и сложности аппаратного обеспечения, а также повышение гибкости операции корреляции.

Изобретение относится к мобильному устройству. Техническим результатом является предотвращение возникновения явления смыкания между сенсорной панелью и панелью отображения, а также сокращение вероятности возникновения сбоя, когда пользователь касается панельного блока через окно крышки.

Изобретение относится к радиотехнике и может быть использовано в панорамных приемниках станций радиопомех, радиопеленгаторах, средствах радиомониторинга и аналогичных устройствах для обнаружения источников радиоизлучения (ИРИ) в условиях шума неизвестной интенсивности.

Изобретение относится к технике связи и может быть использовано для осуществления цифрового предыскажения основной полосы частот канала передачи. Устройство для осуществления цифрового предыскажения основной полосы частот включает в себя канал передачи, включающий в себя цифроаналоговый преобразователь, модулятор, усилитель и усилитель мощности, и дополнительно включает в себя аналоговую часть канала обратной связи, включающую в себя диодный детектор, фильтр и аналого-цифровой преобразователь, и цифровую часть канала обратной связи, включающую в себя предысказитель, блок получения режима, генератор коэффициента предыскажения и блок коррекции обратной связи.

Изобретение относится к технике передачи дискретной информации по параллельным каналам и может использоваться в радиостанциях и на приемных центрах при анализе качества радиоканалов связи и выбора для приема наилучшего из них.

Изобретение относится к системам беспроводной связи. Раскрыты модули, системы и способы обеспечения возможности беспроводной работы для электронных устройств. Модуль содержит корпус, выводы модуля, беспроводной передатчик, первый электронный компонент и источник питания. Размеры корпуса выполнены с обеспечением возможности съемной вставки в держатель источника питания указанного электронного устройства. Выводы модуля контактируют с соответствующими выводами электронного устройства. Первый электронный компонент выполнен с возможностью приема исходящих данных от электронного устройства через вывод модуля и передачи указанных исходящих данных с использованием беспроводного передатчика. Источник питания выполнен с возможностью подачи питания на электронное устройство. Способ включает вставку модуля в держатель источника питания электронного устройства, прием исходящих данных от электронного устройства и передачу указанных исходящих данных устройства с использованием беспроводного передатчика. 3 н. и 15 з.п. ф-лы, 5 ил.

Изобретение относится к области радиотехники и может быть использовано в широкополосных СВЧ радиоприемных устройствах, входящих в состав аппаратуры радиопротиводействия и радионаблюдения. Технический результат - увеличение динамического диапазона приемного устройства на величину, превышающую 80 дБ. Устройство содержит первый входной делитель мощности на два канала, первый и второй смесители первой ступени преобразования частот, первый и второй фильтры промежуточной частоты первой ступени преобразования частот, первый и второй гетеродины, второй и четвертый делители мощности, а также третий и четвертый смесители второй ступени преобразования частот, третий и четвертый фильтры промежуточной частоты второй ступени преобразования частот, третий делитель мощности, при этом в два раза увеличена гетеродинная частота второй ступени преобразования, а само двукратное преобразование частот применено только в одном канале второй ступени приемного устройства. 3 ил.
Изобретение относится к технике беспроводной связи и может использоваться для обеспечения пассажирского поезда беспроводной адресной аварийной сигнализацией и внутренней связью. Технический результат состоит в повышении надежности работы устройства. Для этого устройство содержит корпус, системную плату УПАС с контактной колодкой, блок питания комплексный, плату ТАРБ плюс, динамик и микрофон. На основании корпуса УПАС с внутренней стороны закреплены системная плата УПАС, выполненная с возможностью подключения к линии электропитания пассажирского вагона посредством контактной колодки, блок питания комплексный и плата ТАРБ плюс, к выходам которой подключены динамик и микрофон, закрепленные внутри на крышке корпуса УПАС. На плате ТАРБ плюс расположен разъем для подключения антенны DECT. Блок питания комплексный и плата ТАРБ плюс подключены к системной плате УПАС. На крышке корпуса УПАС выполнено средство подведения выходов линий сигнализаций, установленных в пассажирских вагонах, к контактной колодке системной платы УПАС. На крышке корпуса УПАС расположен разъем для подключения считывателя электронного ключа регистрации, на основании корпуса УПАС установлено средство ввода кабелей от систем вагонной сигнализации, а также от системы питания устройства. 1 з.п. ф-лы.

Изобретение относится к области радиотехники и может быть использовано в приемниках глобальных навигационных спутниковых систем, использующих широкополосные сигналы, манипулированные по фазе псевдослучайной последовательностью. Техническим результатом изобретения является повышение вероятности обнаружения навигационного сигнала, при использовании на объектах, имеющих большую скорость перемещения, путем воспроизведения копии сигналоподобной помехи с учетом времени задержки и последующей компенсацией помехи из входной смеси «сигнал-помеха». В обнаружителе с компенсатором помехи обеспечивается, в том числе, и совпадение по времени (синхронизм) опорной псевдослучайной последовательности с псевдослучайной последовательностью, которой манипулируется помеха, для чего в компенсатор помехи включены, в том числе, обнаружитель помехи, вход которого является входом компенсатора помехи и подключен к входу обнаружителя с компенсатором помехи, а выход обнаружителя помехи подключен к одному из входов системы слежения за задержкой, на другой вход которой поступает огибающая сигналоподобной помехи с выхода первого перемножителя, один вход которого подключен к входу компенсатора помехи, а на другой вход поступает сигнал с выхода системы слежения за фазой. 1 ил.

Изобретение относится к радиотехнике и может быть в радиотехнических устройствах для обнаружения источников радиоизлучения (ИРИ) в условиях шума неизвестной интенсивности. Техническим результатом изобретения является повышение чувствительности цифрового обнаружителя панорамного приемника сигналов со случайной амплитудой и начальной фазой в условиях шума с неизвестной интенсивностью с постоянным уровнем ложных тревог (ПУЛТ) на основе уменьшения порогового отношения сигнал/шум на входе, определяющего его чувствительность при заданных значениях вероятности обнаружения и ложной тревоги. Это соответствует увеличению дальности обнаружения ИРИ при наличии сигнала ИРИ, и обеспечивает сокращение времени анализа радиоэлектронной обстановки в заданной анализируемой полосе частот для априори неизвестной загруженности полосы частот ИРИ, а также обеспечение ПУЛТ в соответствии с заданными вероятностями обнаружения и ложной тревоги в случае отсутствия сигнала ИРИ. В цифровом оценочно-корреляционном компенсационном обнаружителе реализуется цифровой метод измерения средней дисперсии шума в канале обнаружения сигнала и ее компенсации путем алгоритмического вычитания на входе порогового блока. Компенсационный обнаружитель содержит процессор БПФ (1); схему косинусного преобразования (2); схему синусного преобразования (3); цифровую линию задержки (4); первый перемножитель (5); первый квадратор (6); второй квадратор (7); накопитель (8); сумматор (9); второй перемножитель (10); регистр хранения коэффициента усреднения 1/Н (11); первую схему вычитания (12); вторую схему вычитания (13); схему выбора максимума (14); накопитель, имеющий М входов (15); электронный ключ (16); схему сравнения (17); третью схема вычитания (18); третий перемножитель (19); четвертый перемножитель (20); регистр хранения коэффициента усреднения 1/М (21); регистр хранения значения функции, определяющей уровень порога обнаружения (22). 1 ил.

Изобретение относится к области шумоподавления в принимаемом многоканальном FM-радиосигнале и может использоваться, в частности в стереофоническом FM-радиоприемнике. Достигаемый технический результат - повышение качества звука путем повышения подавления шума в принимаемом многоканальном FM-радиосигнале. Устройство для подавления шума в принимаемом многоканальном FM-радиосигнале представлено как принимаемый средний сигнал и принимаемый побочный сигнал, содержит модуль определения параметров, сконфигурированный для определения одного или нескольких параметров, служащих признаками корреляции и/или декорреляции между принимаемым средним сигналом и принимаемым побочным сигналом, и модуль шумоподавления, сконфигурированный для генерирования побочного сигнала с подавленным шумом из принимаемого среднего сигнала с использованием одного или нескольких параметров. 3 н. и 29 з.п. ф-лы, 6 ил.

Изобретение относится к области радиотехники и может быть использовано в радиотелеметрических системах для получения информации с подвижных объектов. Достигаемый технический результат - увеличение подавления паразитного побочного излучения соседнего канала передатчика. Радиопередающее устройство содержит выходной усилитель мощности, блок контроля параметров, блок управления сигналом, переключатель частот, первый синтезатор частот, второй синтезатор частот, амплитудный модулятор, первый управляемый аттенюатор, второй управляемый аттенюатор, первый управляемый делитель частоты, второй управляемый делитель частоты. 2 ил.

Изобретение относится к средствам передачи данных для аудиосигнала посредством аудиоинтерфейса. Технический результат заключается в обеспечении возможности передачи восходящего канала для звукового сигнала. В данном устройстве первый вывод аудиоинтерфейса соединен с выходной сигнальной клеммой устройства генерирования звукового сигнала восходящего канала с помощью первой цепи, а второй вывод - с помощью второй цепи. Первый вывод аудиоинтерфейса является выводом микрофона или заземляющим выводом, а второй вывод аудиоинтерфейса является другим выводом микрофона или заземляющим выводом. Первая и вторая цепи являются аттенюаторами. 2 н. и 6 з.п. ф-лы, 9 ил.

Изобретение относится к области геофизических и технологических исследований скважин в процессе бурения. Техническим результатом является расширение функциональных возможностей для передачи информации с любым каналом связи. Предложен электрический разделитель-ретранслятор, содержащий составной металлический корпус с присоединительными резьбами на обоих концах, состоящий из верхнего и нижнего переводников, а также промежуточной изоляционной вставки, расположенной между ними, соединенных между собой резьбовыми соединениями, в которых отдельные металлические части изолированы друг от друга слоем диэлектрика. Кроме того, устройство содержит участок наружного покрытия из диэлектрического материала, диэлектрическую втулку с каналом для прохождения бурового раствора и установленный внутри диэлектрической втулки электронный блок, подсоединенный одним контактом через металлические детали к нижнему переводнику, а другим контактом - к верхнему переводнику. При этом электронный блок снабжен приемопередатчиком сигналов и блоком питания и помещен в дополнительный металлический кожух, снабженный центраторами, который установлен в канале для прохождения бурового раствора с возможностью его беспрепятственного прохождения, и закреплен к нижнему переводнику при помощи гайки со штырем, выполняющих функцию электрического контакта нижней части металлического кожуха электронного блока с указанным переводником. Вход электронной схемы соединен с контактным штырем электрическими проводами, а вход электронного блока в верхней части металлического кожуха соединен проводной связью с электрическим разъемом для ответного соединения с электронным блоком основной телесистемы. 3 ил.

Изобретение относится к области радиотехники и может быть использовано в приемниках глобальных навигационных спутниковых систем, использующих широкополосные сигналы, манипулированные по фазе псевдослучайной последовательностью. Техническим результатом изобретения является повышение помехоустойчивости приема навигационного сигнала путем воспроизведения копии сигналоподобной помехи с учетом времени задержки и последующей компенсацией помехи из входной смеси «сигнал-помеха». В навигационном приемнике с компенсатором помех на его вход поступает смесь навигационного сигнала и сигналоподобной помехи, излучаемой отечественным средством радиоэлектронного противодействия, находящимся в пределах радиовидимости приемника глобальных навигационных спутниковых систем. В канале формирования копии помехи обнаружитель помехи является обнаружителем сигнала с известными параметрами и неизвестным временем задержки и настроен на обнаружение только сигналоподобной помехи. В канале формирования копии помехи осуществляется воспроизведение копии помехи, синхронной по времени задержки с обнаруженной сигналоподобной помехой, с последующим вычитанием сформированной копии помехи из входной смеси навигационного сигнала и сигналоподобной помехи. 1 ил.
Наверх