Радиоприемное устройство свч

Изобретение относится к области радиотехники и может быть использовано в широкополосных СВЧ радиоприемных устройствах, входящих в состав аппаратуры радиопротиводействия и радионаблюдения. Технический результат - увеличение динамического диапазона приемного устройства на величину, превышающую 80 дБ. Устройство содержит первый входной делитель мощности на два канала, первый и второй смесители первой ступени преобразования частот, первый и второй фильтры промежуточной частоты первой ступени преобразования частот, первый и второй гетеродины, второй и четвертый делители мощности, а также третий и четвертый смесители второй ступени преобразования частот, третий и четвертый фильтры промежуточной частоты второй ступени преобразования частот, третий делитель мощности, при этом в два раза увеличена гетеродинная частота второй ступени преобразования, а само двукратное преобразование частот применено только в одном канале второй ступени приемного устройства. 3 ил.

 

Изобретение относится к области радиотехники и может быть использовано в широкополосных СВЧ радиоприемных устройствах, входящих в состав аппаратуры радиопротиводействия и радионаблюдения.

Известно радиоприемное устройство, которое содержит входной фильтр, смеситель с гетеродином, фильтр промежуточной частоты, усилитель промежуточной частоты и выходные устройства обработки радиосигналов [1]. Принятый радиосигнал через входной фильтр и входной усилитель поступает на сигнальный вход смесителя, преобразуется по частоте и через фильтр промежуточной частоты и усилитель промежуточной частоты поступает на вход устройства обработки радиосигналов. Диапазон частот входных сигналов ограничивается входным фильтром, который предназначен также для подавления «зеркального» канала приема. Для расширения диапазона частот входных сигналов и увеличения быстродействия применяют многоканальные приемники [2, 3], каждый канал которых содержит входной фильтр, смеситель с гетеродином, фильтр и усилитель промежуточных частот. Суммарная полоса рабочих частот входных фильтров радиоприемного устройства обычно перекрывает требуемый рабочий диапазон частот входных сигналов.

Общими признаками аналог изобретения являются смесители с гетеродинами, фильтры промежуточной частоты и выходные устройства обработки радиосигналов.

Недостатками аналогов являются узкая полоса входных частот каждого канала, ограничиваемая полосой пропускания входного фильтра, сложная конструкция, а также сложности настройки многоканальной системы.

Наиболее близким к заявляемому изобретению является приемное устройство, описанное в патенте РФ [4], которое выбрано в качестве прототипа. Структурная схема прототипа показана на фиг. 1. Устройство содержит входной делитель мощности 1, два смесителя первой ступени преобразования частот 2 и 3, два гетеродина 4 и 5, устройство формирования гетеродинных сигналов второй ступени преобразования частот 6, делитель мощности 7, фильтры промежуточных частот первой ступени преобразования 8 и 9, два смесителя второй ступени преобразования частот 10 и 11, фильтры промежуточной частоты второй ступени преобразования 12 и 13, делитель мощности на два 14, устройство идентификации частот 15, включающее в себя амплитудные и фазовый детекторы, и выключатель 16.

Устройство (прототип) содержит два приемных канала - основной и дополнительный, отличающиеся настройкой гетеродина. Оба канала принимают один и тот же входной сигнал с частотой ωс. Если основной приемный канал использует нижнюю настройку гетеродинов (частота гетеродина ωгн меньше частот входных сигналов ωгнс), то дополнительный канал использует гетеродин с верхней настройкой ωгв (частота гетеродина этого канала больше частот входных сигналов ωгвс). Возможен вариант, когда основной канал использует верхнюю настройку гетеродина, а дополнительный канал - нижнюю. Рабочие частоты гетеродинов и фильтров промежуточных частот каналов выбирают таким образом, чтобы рабочие полосы промежуточных частот основного и дополнительного каналов совпадали. При этом в полосе промежуточных частот каналов одновременно образуются полезные сигналы с частотами (ωсгн) и (ωгвс) и фазами (φсгн) и (φгвс). Здесь φс, φгн и φгв фазы входного и гетеродинных сигналов. Ширина диапазона промежуточных частот определяет значение ширины мгновенного диапазона частот входных сигналов, которые могут быть приняты устройством при данном значении частот гетеродинов. Ширина диапазона промежуточных частот не может превышать одной октавы, чем и ограничивает ширину мгновенного диапазона входных сигналов.

Второе преобразование частот использует в обоих каналах один и тот же гетеродинный сигнал, имеющий частоту (ωгвгн)/2. Он формируется из гетеродинных сигналов, используемых при первом преобразовании частот.

Как показано в [4], амплитуды, фазы и частоты сигналов, образующихся после второго преобразования, несут информацию о признаках полезных сигналов. Используя эти признаки можно с достаточной степенью точности идентифицировать полезные сигналы на входе приемного устройства. Для этого диапазон промежуточных частот разбивают с помощью электрических фильтров на более узкие поддиапазоны и устанавливают на выходах этих фильтров выключатели. «Паразитные» сигналы на выходе приемного устройства будут подавлены, а число возможных одновременно принимаемых сигналов будет равно количеству поддиапазонов.

Если диапазоны первых промежуточных частот обоих каналов совпадают, то после двойного преобразования образуются сигналы с одинаковыми частотами, фазами и амплитудами, причем это справедливо только для полезных входных сигналов, частоты которых находятся в диапазоне входных частот приемного устройства [4]. Это пояснено с помощью графиков, приведенных на фиг. 2.

На фиг. 2 приведены графики зависимости первых промежуточных частот каналов от значений частот сигналов на входе приемного устройства первой ступени преобразования, осуществляемые смесителями 2 и 3. Границы диапазона входных частот и диапазона промежуточных частот обозначены с помощью мелких пунктирных линий. На графике также в виде крупной пунктирной линии параллельно оси абсцисс построен отрезок прямой, соответствующий частоте гетеродинного сигнала второй ступени преобразования частот. Значение этой частоты на оси ординат зафиксировано частотами гетеродинов ωгв и ωгн и всегда находится посередине диапазона промежуточных частот первой ступени преобразования на равных расстояниях от граничных частот ωпч1 и ωпч2 [4].

Предположим, что на вход приемного устройства поступает сигнал с несущей частотой, находящейся в полосе входных частот. Для нахождения промежуточных частот каналов восстановим из точки на оси входных частот, соответствующей этой частоте, перпендикуляр, который обозначен на фиг. 2 цифрой 1. Промежуточные частоты определяются точками пересечения этого перпендикуляра с прямыми (ωсгн) и (ωгвс). Промежуточная частота основного канала определяется с помощью отрезка прямой 2, а дополнительного канала - с помощью отрезка прямой 3. Из этих построений видно, что для входной частоты отрезки перпендикуляра 1 между прямыми (ωсгн), (ωгвс) и отрезка прямой, соответствующей частоте гетеродина второй ступени, будут всегда равны друг другу. Длины этих отрезков в выбранном масштабе будут численно равны промежуточным частотам после второго преобразования частот.

Недостатком приемного устройства - прототипа, структурная схема которого показана на фиг. 1, является малый динамический диапазон приемного устройства, возможность образования в рабочем диапазоне выходных частот устройства вместе с полезным СВЧ сигналом большого числа комбинационных составляющих низких порядков, образующихся на выходах смесителей второй ступени преобразования 10 и 11. Причем количество этих составляющих существенно зависит от разности частот полезных и гетеродинных сигналов, поступающих в смесители второй ступени преобразования. Это существенно усложняет идентификацию полезных сигналов и в ряде случаев делает ее невозможной.

Попадание частот комбинационных составляющих низких порядков в рабочую полосу частот является следствием того, что значение гетеродинной частоты равно среднему значению диапазона входных частот второй ступени преобразования, т.е. на оси частот расположено посередине диапазона входных частот. На фиг. 2 отрезок прямой, соответствующий гетеродинной частоте второй ступени преобразования, проходит через точку пересечения отрезков прямых (ωсгн) и (ωгвс). Если при изменении частоты входного сигнала ее значение слева или справа по оси частот стремится к этой точке, то значение второй промежуточной частоты, равное разнице значений входного сигнала и гетеродина, стремится к нулю. При этом относительная ширина полосы промежуточных частот увеличивается, стремясь к бесконечному октав. В результате этого в полосу выходных (промежуточных) частот попадает большое число комбинационных частот. Размножение выходных СВЧ сигналов в устройствах радионаблюдения будет приводить к неоднозначности получаемых результатов. В случае радиопротиводействия - к снижению эффективности работы аппаратуры, поскольку при ограниченной мощности выходного усилителя выходная мощность будет распределяться между большим числом составляющих выходного спектра, поэтому уровень мощности полезного выходного сигнала при этом будет намного меньше требуемого значения.

Часть комбинационных составляющих и гетеродинные сигналы можно подавить путем использования балансных или двойных балансных смесителей. При этом число комбинационных составляющих в выходном спектре частот уменьшится, но проблема решена не будет.

Общие признаки прототипа и изобретения являются входной делитель мощности 1, смесители первой ступени преобразования частот 2 и 3, гетеродины 4 и 5, фильтры первых промежуточных частот первой ступени преобразования частот 8 и 9, смесители второй ступени преобразования частот 10 и 11, фильтры промежуточных частот второй ступени преобразования 12 и 13, делитель мощности на два 14, блок идентификации частот 15 и выключатель 16.

Техническая задача изобретения - увеличение динамического диапазона приемного устройства.

Техническим результатом изобретения является увеличение динамического диапазона приемного устройства на величину, превышающую 80 дБ.

Поставленная задача в устройстве решается путем увеличения в два раза гетеродинной частоты второй ступени преобразования, а само двукратное преобразование частот применено только в одном канале второй ступени приемного устройства.

Изобретение поясняется чертежами.

На фиг. 1 приведена электрическая схема преобразователя частоты - прототип.

На фиг. 2 приведены графики зависимости первых промежуточных частот каналов от значений частот входных сигналов приемного устройства (значение частоты гетеродина второй ступени преобразования совпадает со средним значением промежуточной частоты).

На фиг. 3 приведена структурная схема приемного устройства по изобретению.

На фиг. 1 и 3 введены обозначения: 1, 7, 14, 17 - первый, второй, третий, четвертый делители мощности на два, 2 и 3 - первый и второй смесители первой ступени преобразования частот, 10, 11 - третий, четвертый смесители второй ступени преобразования, 4 и 5 - первый и второй гетеродины первой ступени преобразования частот, 6 - устройство формирования гетеродинного сигнала второй ступени преобразования частот (фиг. 1), 8, 9, 12, 13, первый, второй, третий, четвертый - фильтры промежуточных частот, 15 - блок идентификации частот, 16 - выключатель.

Все делители мощности на два 1, 7, 14, 17 имеют один входной и два выходных канала. Первый делитель мощности 1 работает в диапазоне частот входных сигналов приемного устройства СВЧ, второй и четвертый делители мощности на два 7 и 17 работают в диапазоне рабочих частот гетеродинов 4 и 5, третий делитель мощности на два 14 работает в диапазоне промежуточных частот. Первый и второй смесители первой ступени преобразования частот 2 и 3 работают в диапазоне частот входных сигналов приемного устройства СВЧ и отличаются частотами гетеродинных сигналов. Гетеродины первой ступени преобразования частот 4 и 5 отличаются частотами генерируемых сигналов. Устройство формирования гетеродинного сигнала второй ступени преобразования частот 6 (фиг. 1) содержит амплитудные и фазовые детекторы, а также делитель частоты на два. Третий и четвертый смесители второй ступени преобразования 10 и 11 осуществляют преобразование промежуточных частот. Блок идентификации частот 15 содержит амплитудные и фазовые детекторы. Выключатель 16 имеет первый высокочастотный вход, а также второй вход управляющих сигналов.

Все перечисленные выше устройства, входящие в схему на фиг. 3 в настоящее время широко применяются в технике СВЧ. Для расчета и проектирования этих устройств могут быть использованы имеющиеся пакеты прикладных программ, например, пакет программ фирмы «Applied Wave Research)) «Microwave Office)). В блоке идентификации частот 15 могут быть использованы амплитудные и фазовые детекторы или, например, микросхемы типа «AD8302» фирмы «Analog Devices)).

Технический результат изобретения достигается благодаря тому, что приемное устройство СВЧ (фиг. 3) содержит первый входной делитель мощности на два канала 1, первый и второй смесители первой ступени преобразования частот 2 и 3, первый и второй фильтры промежуточной частоты первой ступени преобразования частот 8 и 9, первый и второй гетеродины 4 и 5, второй и четвертый делители мощности на два 7 и 17, а также третий и четвертый смесители второй ступени преобразования частот 10 и 11, третий и четвертый фильтры промежуточной частоты второй ступени преобразования частот 12 и 13, третий делитель мощности на два 14, блок идентификации частот 15 и выключатель 16.

Первый выход первого входного делителя мощности на два 1 соединен с сигнальным входом первого смесителя первой ступени преобразования частот 2, выход которого соединен с первым фильтром первой промежуточной частоты первой ступени преобразования частот 8. Второй выход первого входного делителя мощности на два 1 соединен с входом второго смесителя первой ступени преобразования частот 3, выход которого соединен со вторым фильтром первой промежуточной частоты первой ступени преобразования частот 9, выход которого соединен с сигнальным входом четвертого смесителя второй ступени преобразования частот 11, выход которого соединен с входом четвертого фильтра промежуточных частот второй ступени преобразования 13. Первый выход третьего делителя мощности на два 14 соединен с первым входом блока идентификации частот 15, а второй выход с первым входом выключателя 16. Выход блока идентификации частоты 15 соединен со вторым входом выключателя 16. Выход первого гетеродина 4 соединен с входом второго делителя мощности на два 7, первый и второй выходы которого соединены соответственно с гетеродинными входами первого смесителя первой ступени преобразования частот 2 и с гетеродинным входом четвертого смесителя второй ступени преобразования частот 11. Выход второго гетеродина 5 соединен с входом четвертого делителя мощности на два 17, выходы которого соединены соответственно с гетеродинным входом второго смесителя первой ступени преобразования частот 3 и с гетеродинным входом третьего смесителя второй ступени преобразования частот 10. Выход первого фильтра первых промежуточных частот первой ступени преобразования частот 8 соединен с входом третьего делителя мощности на два 14. Выход четвертого фильтра промежуточных частот второй ступени преобразования 13 соединен с сигнальным входом третьего смесителя второй ступени преобразования частот 10, выход которого соединен с входом третьего фильтры промежуточных частот второй ступени преобразования 12, выход которого соединен со вторым входом блока идентификации частот 15.

Устройство (фиг. 3) работает следующим образом. Входной сигнал делится первым входным делителем мощности 1, после чего поступает на сигнальные входы смесителей 2 и 3 первой ступени преобразования. Предположим, что смеситель 2 работает в режиме с нижней настройкой гетеродина (ωгнс), а смеситель 3 - в режиме с верхней настройкой (ωгвс). Здесь ωс - частота входного сигнала, ωгн - частота гетеродина 4, ωгв - частота гетеродина 5. После преобразования частот входных сигналов на выходе фильтра промежуточной частоты 8 образуется сигнал с частотой (ωсгн) и фазой (φсгн), а на выходе фильтра промежуточной частоты 9 с частотой (ωгвс) и фазой (φгвс). Здесь φс, φгн и φгв - фазы входного и гетеродинных сигналов. Поскольку диапазоны промежуточных частот смесителей 2 и 3, сформированные фильтрами 8 и 9, выбраны одинаковыми, оба этих сигнала находятся одновременно в диапазоне промежуточных частот этих смесителей.

Идея предлагаемого решения заключается в следующем. Если в схеме на фиг. 1 формировать с помощью устройства 6 гетеродинный сигнал с частотой (ωгвгн) и фазой (φгвгн) и подавать его только на один из смесителей второй ступени преобразования, например на гетеродинный вход смесителя 11, а смеситель 10 и фильтр 12 исключить из схемы, то на выходе фильтра 13 будет образован сигнал с частотой

и фазой

Таким образом, в обоих каналах будут сформированы одинаковые сигналы с равными частотами и фазами, которые будут одновременно подводится к блоку идентификации частот 15, в котором формируется сигнал, открывающий выключатель 16 для передачи полезного сигнала для дальнейшей обработки.

При очевидной простоте реализации этот метод обладает существенным недостатком. Приемные устройства рассматриваемого типа предназначены для работы в широком диапазоне рабочих частот входных сигналов, превышающих в ряде случаев несколько октав. Однако мгновенная полоса частот принимаемых сигналов не может быть шире диапазона промежуточных частот приемного устройства, ширина которого на промежуточных частотах ограничена одной октавой. При этом необходимо учитывать, что при уменьшении значений несущих частот преобразуемых сигналов, т.е. при преобразовании вниз по оси частот, относительная ширина преобразуемых диапазонов частот остается постоянной, а относительная ширина увеличивается. Это является основным ограничением ширины мгновенной полосы частот принимаемых сигналов. Для уменьшения времени просмотра диапазона частот входных сигналов обычно стремятся увеличивать ширину мгновенного диапазона частот. Однако увеличение относительной ширины диапазона промежуточных частот резко увеличивает число частот комбинационных составляющих низких порядков в выходном спектре частот приемного устройства. Поэтому во второй ступени преобразования частот целесообразно использовать двойное преобразование по известной схеме, описанной, например, в [5].

В предполагаемом изобретении (фиг. 3) сигнал первой промежуточной частоты с частотой (ωгвс) и фазой (φгвс) с выхода смесителя 3 через фильтр 9 поступает на сигнальный вход смесителя 11, на гетеродинный вход которого через делитель мощности 7 поступает гетеродинный сигнал с частотой ωгн и фазой φгн. После преобразования в смесителе 11 на выходе фильтра 13 выделяется сигнал с частотой ωгн+(ωгвс) и фазой φгн+(φгвс), который поступает на сигнальный вход смесителя 10, на гетеродинный вход которого через делитель мощности 17 поступает гетеродинный сигнал с частотой ωгв и фазой φгв. После преобразования сигнала в смесителе 10 на выходе фильтра 12 выделяется сигнал с частотой

и фазой

Таким образом, в результате преобразований частот сигналов получаем в обеих ветвях схемы на фиг. 3, на выходах фильтров 8 и 12 сигналы с одинаковыми частотами (ωсгн) и фазами (φсгн). Сигнал с выхода фильтра 8 через делитель мощности 14 подводится к первому входу блока идентификации частот 15 и к выключателю 16, а сигнал с выхода фильтра 12 подводится ко второму входу блока идентификации частот 15. Блок идентификации частот 15 устанавливает наличие сигналов в обеих ветвях устройства и в случае равенства частот или фаз этих сигналов открывает выключатель 16, с выхода которого сигнал из одного плеча устройства передается для дальнейшей обработки.

Очевидно, что ничего принципиально не изменится, если использовать в смесителе 2 верхнюю настройку гетеродина, а в смесителе 3 - нижнюю. В этом случае на выходах обеих ветвей схемы будут получены одинаковые сигналы с инвертированным по сравнению с предыдущим вариантом спектрами, что никак не повлияет на процесс идентификации полезных сигналов.

Проиллюстрируем работу схемы, приведенной на фиг. 3, примером. Предположим, что диапазон частот входных сигналов 10,0…11,0 ГГц, частота гетеродина 4 - ωгн=9,0 ГГц, а гетеродина 5 - ωгв=12,0 ГГц. Тогда после преобразования частоты сигнала смесителем 2 при последовательном изменении частоты входного сигнала от 10,0 ГГц до 11,0 ГГц промежуточная частота на выходе фильтра 8 будет изменяться от 1,0 ГГц до 2 ГГц, а после преобразования смесителем 3 на выходе фильтра 9 из-за инверсии спектра будет изменяться от 2 ГГ до 1 ГГц. Далее после преобразования смесителем 11 на выходе фильтра 13 частота сигнала будет изменяться от 11,0 ГГц до 10,0 ГГц и после преобразования в смесителе 10 на выходе фильтра 12 - от 1,0 ГГц до 2,0 ГГц. Нетрудно видеть, что таким же образом при преобразовании частот будут изменяться и фазы сигналов. Таким образом, при любых изменениях частот входных сигналов в диапазоне входных рабочих частот устройства на первый и второй входы блока идентификации частот 15 всегда будут поступать сигналы с одинаковыми частотами и фазами (ωсгн) и (φсгн).

Очевидно, что в качестве гетеродинных сигналов смесителей 10 и 11 могут быть использованы сигналы любых двух других генераторов, значения частот которых могут отличаться от частот гетеродинов 4 и 5. При этом значения частот этих генераторов должны отличаться друг от друга на величину, равную разнице значений частот гетеродинов 4 и 5.

Отличительные признаки изобретения

Введен четвертый делители мощности на два 17, причем выход первого гетеродина 4 соединен с входом второго делителя мощности на два 7, первый и второй выходы которого соединены соответственно с гетеродинными входами первого смесителя первой ступени преобразования частот 2 и с гетеродинным входом четвертого смесителя второй ступени преобразования частот 11, кроме того, выход второго гетеродина 5 соединен с входом четвертого делителя мощности на два 17, выходы которого соединены соответственно с гетеродинными входами второго смесителя первой ступени преобразования частот 3 и с гетеродинным входом третьего смесителя второй ступени преобразования частот 10, причем выход первого фильтра первых промежуточных частот первой ступени преобразования частот 8 соединен с входом третьего делителя мощности на два 14, при этом выход четвертого фильтра промежуточных частот второй ступени преобразования 13 соединен с сигнальным входом третьего смесителя второй ступени преобразования частот 10, выход которого соединен с входом третьего фильтры промежуточных частот второй ступени преобразования 12, выход которого соединен со вторым входом блока идентификации частот 15, выход которого соединен с вторым входом выключателя 16.

Литература

1. Н.И. Чистяков, М.В. Сидоров, В.С. Мельников. «Радиоприемные устройства», «Связьиздат», Москва, 1959 г., стр. 17.

2. З.М. Горбачевская. Приемные устройства быстрого распознавания СВЧ-сигналов для современных систем радиоэлектронной борьбы. «Обзоры по электронной технике», Сер. I, «Электроника СВЧ», вып. 3(869), 1982 г., стр. 12, 13.

3. В.И. Щербак, И.И. Водянин. Приемные устройства систем радиоэлектронной борьбы. «Зарубежная радиоэлектроника», №5, 1987 г., стр. 55-60.

4. Патент РФ №2329598 от 23 июня 2006 г., «Радиоприемное устройство и его варианты».

5. Патент РФ №2136110 от 23 апреля 1987 г., «Станция радиотехнической разведки».

Радиоприемное устройство сверхвысокой частоты (СВЧ), содержащее первый входной делитель мощности на два, первый и второй смесители первой ступени преобразования частот, первый и второй гетеродины, второй делитель мощности на два, первый и второй фильтры первых промежуточных частот первой ступени преобразования частот, третий и четвертый смесители второй ступени преобразования частот, третий и четвертый фильтры промежуточных частот второй ступени преобразования, третий делитель мощности на два, блок идентификации частот и выключатель, причем первый выход первого входного делителя мощности на два соединен с сигнальным входом первого смесителя первой ступени преобразования частот, выход которого соединен с первым фильтром первой промежуточной частоты первой ступени преобразования частот, причем второй выход первого входного делителя мощности на два соединен с входом второго смесителя первой ступени преобразования частот, выход которого соединен со вторым фильтром первой промежуточной частоты первой ступени преобразования частот, выход которого соединен с сигнальным входом четвертого смесители второй ступени преобразования частот, гетеродинный вход которого соединен со вторым гетеродинным делителем мощности на два, а выход соединен с входом четвертого фильтра промежуточных частот второй ступени преобразования, при этом первый выход третьего делителя мощности на два соединен с первым входом блока идентификации частот, а второй выход - с первым входом выключателя, причем выход блока идентификации частоты соединен со вторым входом выключателя, отличающееся тем, что введен четвертый делитель мощности на два, причем выход первого гетеродина соединен с входом второго делителя мощности на два, первый выход которого соединен с гетеродинным входом первого смесителя первой ступени преобразования частот, а второй - с гетеродинным входом четвертого смесителя второй ступени преобразования частот, кроме того, выход второго гетеродина соединен с входом четвертого делителя мощности на два, выходы которого соединены соответственно с гетеродинными входами второго смесителя первой ступени преобразования частот и с гетеродинным входом третьего смесителя второй ступени преобразования частот, причем выход первого фильтра первых промежуточных частот первой ступени преобразования частот соединен с входом третьего делителя мощности на два, при этом выход четвертого фильтра промежуточных частот второй ступени преобразования соединен с сигнальным входом третьего смесителя второй ступени преобразования частот, выход которого соединен с входом третьего фильтра промежуточных частот второй ступени преобразования, выход которого соединен со вторым входом блока идентификации частот.



 

Похожие патенты:

Изобретение относится к системам беспроводной связи. Раскрыты модули, системы и способы обеспечения возможности беспроводной работы для электронных устройств.

Изобретение относится к технике связи и может использоваться для передачи сигналов в морской среде по гидроакустическому каналу связи. Технический результат состоит в повышении помехоустойчивости и достоверности передачи данных в условиях распространения сигнала в многолучевом канале связи при условии равенства и превышении помехи над сигналом.

Способ увеличения объема частотного ресурса относится к радиотехнике и может быть использован для создания дополнительных ресурсов передачи и получения информации с помощью радиоволн.

Изобретение относиться к области приема радиосигналов в железнодорожных радиостанциях. Технический результат заключается в повышении помехоустойчивости и качества радиоприема за счет повышения степени подавления зеркального канала в приемнике.

Изобретение относится к области радиотехники. Способ борьбы с гармонической помехой при автокорреляционном методе приема информации с использованием шумоподобных сигналов включает вычисление комплексных огибающих первого и второго периодов принимаемого сигнала, вычисление с помощью дискретного преобразования Фурье спектральных функций этих комплексных огибающих, умножение спектральной функции первого периода сигнала на комплексно-сопряженную спектральную функцию второго периода сигнала, вычисление с помощью обратного дискретного преобразования Фурье взаимно-корреляционной функции между этими комплексными огибающими, выбор максимальной компоненты взаимно-корреляционной функции и сравнение ее с порогом, при этом вычисляют квадраты огибающих спектральных функций первого и второго периодов сигнала, вычисляют дисперсии квадратов огибающих спектральных функций первого и второго периодов сигнала, осуществляют нормировку квадратов огибающих спектральных функций первого и второго периодов сигнала на соответствующие им дисперсии, в нормированных спектральных функциях первого и второго периодов сигнала выполняют поиск максимальных компонент и определяют их позиции, сравнивают значения отобранных максимальных компонент с величиной установленного порога, который определяют в соответствии с допустимой величиной вероятности ложной идентификации гармонической помехи, в случае превышения ими установленного порога в спектральных функциях комплексных огибающих первого и второго периодов элементы, находящихся на позициях отобранных максимальных компонент и их окрестностях, обнуляют, причем окрестности позиций отобранных максимальных компонент определяют уровнем гармонической помехи.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении надежности функционирования устройства.

Изобретение относится к системам беспроводной связи и предназначено для предоставления истории информации, ассоциированной с информацией времени, способно отображать внутреннюю или внешнюю ассоциированную информацию, ассоциированную с информацией времени, как один элемент информации, и способно интуитивно предоставлять историю информации, ассоциированной с соответствующим временем, путем управления информацией времени.

Изобретение относится к технике связи и может быть использовано для реализации корреляции элементарных сигналов для многоканального поиска. Технический результат - эффективная экономия ресурсов памяти и снижение издержек и сложности аппаратного обеспечения, а также повышение гибкости операции корреляции.

Изобретение относится к мобильному устройству. Техническим результатом является предотвращение возникновения явления смыкания между сенсорной панелью и панелью отображения, а также сокращение вероятности возникновения сбоя, когда пользователь касается панельного блока через окно крышки.

Изобретение относится к радиотехнике и может быть использовано в панорамных приемниках станций радиопомех, радиопеленгаторах, средствах радиомониторинга и аналогичных устройствах для обнаружения источников радиоизлучения (ИРИ) в условиях шума неизвестной интенсивности.
Изобретение относится к технике беспроводной связи и может использоваться для обеспечения пассажирского поезда беспроводной адресной аварийной сигнализацией и внутренней связью. Технический результат состоит в повышении надежности работы устройства. Для этого устройство содержит корпус, системную плату УПАС с контактной колодкой, блок питания комплексный, плату ТАРБ плюс, динамик и микрофон. На основании корпуса УПАС с внутренней стороны закреплены системная плата УПАС, выполненная с возможностью подключения к линии электропитания пассажирского вагона посредством контактной колодки, блок питания комплексный и плата ТАРБ плюс, к выходам которой подключены динамик и микрофон, закрепленные внутри на крышке корпуса УПАС. На плате ТАРБ плюс расположен разъем для подключения антенны DECT. Блок питания комплексный и плата ТАРБ плюс подключены к системной плате УПАС. На крышке корпуса УПАС выполнено средство подведения выходов линий сигнализаций, установленных в пассажирских вагонах, к контактной колодке системной платы УПАС. На крышке корпуса УПАС расположен разъем для подключения считывателя электронного ключа регистрации, на основании корпуса УПАС установлено средство ввода кабелей от систем вагонной сигнализации, а также от системы питания устройства. 1 з.п. ф-лы.

Изобретение относится к области радиотехники и может быть использовано в приемниках глобальных навигационных спутниковых систем, использующих широкополосные сигналы, манипулированные по фазе псевдослучайной последовательностью. Техническим результатом изобретения является повышение вероятности обнаружения навигационного сигнала, при использовании на объектах, имеющих большую скорость перемещения, путем воспроизведения копии сигналоподобной помехи с учетом времени задержки и последующей компенсацией помехи из входной смеси «сигнал-помеха». В обнаружителе с компенсатором помехи обеспечивается, в том числе, и совпадение по времени (синхронизм) опорной псевдослучайной последовательности с псевдослучайной последовательностью, которой манипулируется помеха, для чего в компенсатор помехи включены, в том числе, обнаружитель помехи, вход которого является входом компенсатора помехи и подключен к входу обнаружителя с компенсатором помехи, а выход обнаружителя помехи подключен к одному из входов системы слежения за задержкой, на другой вход которой поступает огибающая сигналоподобной помехи с выхода первого перемножителя, один вход которого подключен к входу компенсатора помехи, а на другой вход поступает сигнал с выхода системы слежения за фазой. 1 ил.

Изобретение относится к радиотехнике и может быть в радиотехнических устройствах для обнаружения источников радиоизлучения (ИРИ) в условиях шума неизвестной интенсивности. Техническим результатом изобретения является повышение чувствительности цифрового обнаружителя панорамного приемника сигналов со случайной амплитудой и начальной фазой в условиях шума с неизвестной интенсивностью с постоянным уровнем ложных тревог (ПУЛТ) на основе уменьшения порогового отношения сигнал/шум на входе, определяющего его чувствительность при заданных значениях вероятности обнаружения и ложной тревоги. Это соответствует увеличению дальности обнаружения ИРИ при наличии сигнала ИРИ, и обеспечивает сокращение времени анализа радиоэлектронной обстановки в заданной анализируемой полосе частот для априори неизвестной загруженности полосы частот ИРИ, а также обеспечение ПУЛТ в соответствии с заданными вероятностями обнаружения и ложной тревоги в случае отсутствия сигнала ИРИ. В цифровом оценочно-корреляционном компенсационном обнаружителе реализуется цифровой метод измерения средней дисперсии шума в канале обнаружения сигнала и ее компенсации путем алгоритмического вычитания на входе порогового блока. Компенсационный обнаружитель содержит процессор БПФ (1); схему косинусного преобразования (2); схему синусного преобразования (3); цифровую линию задержки (4); первый перемножитель (5); первый квадратор (6); второй квадратор (7); накопитель (8); сумматор (9); второй перемножитель (10); регистр хранения коэффициента усреднения 1/Н (11); первую схему вычитания (12); вторую схему вычитания (13); схему выбора максимума (14); накопитель, имеющий М входов (15); электронный ключ (16); схему сравнения (17); третью схема вычитания (18); третий перемножитель (19); четвертый перемножитель (20); регистр хранения коэффициента усреднения 1/М (21); регистр хранения значения функции, определяющей уровень порога обнаружения (22). 1 ил.

Изобретение относится к области шумоподавления в принимаемом многоканальном FM-радиосигнале и может использоваться, в частности в стереофоническом FM-радиоприемнике. Достигаемый технический результат - повышение качества звука путем повышения подавления шума в принимаемом многоканальном FM-радиосигнале. Устройство для подавления шума в принимаемом многоканальном FM-радиосигнале представлено как принимаемый средний сигнал и принимаемый побочный сигнал, содержит модуль определения параметров, сконфигурированный для определения одного или нескольких параметров, служащих признаками корреляции и/или декорреляции между принимаемым средним сигналом и принимаемым побочным сигналом, и модуль шумоподавления, сконфигурированный для генерирования побочного сигнала с подавленным шумом из принимаемого среднего сигнала с использованием одного или нескольких параметров. 3 н. и 29 з.п. ф-лы, 6 ил.

Изобретение относится к области радиотехники и может быть использовано в радиотелеметрических системах для получения информации с подвижных объектов. Достигаемый технический результат - увеличение подавления паразитного побочного излучения соседнего канала передатчика. Радиопередающее устройство содержит выходной усилитель мощности, блок контроля параметров, блок управления сигналом, переключатель частот, первый синтезатор частот, второй синтезатор частот, амплитудный модулятор, первый управляемый аттенюатор, второй управляемый аттенюатор, первый управляемый делитель частоты, второй управляемый делитель частоты. 2 ил.

Изобретение относится к средствам передачи данных для аудиосигнала посредством аудиоинтерфейса. Технический результат заключается в обеспечении возможности передачи восходящего канала для звукового сигнала. В данном устройстве первый вывод аудиоинтерфейса соединен с выходной сигнальной клеммой устройства генерирования звукового сигнала восходящего канала с помощью первой цепи, а второй вывод - с помощью второй цепи. Первый вывод аудиоинтерфейса является выводом микрофона или заземляющим выводом, а второй вывод аудиоинтерфейса является другим выводом микрофона или заземляющим выводом. Первая и вторая цепи являются аттенюаторами. 2 н. и 6 з.п. ф-лы, 9 ил.

Изобретение относится к области геофизических и технологических исследований скважин в процессе бурения. Техническим результатом является расширение функциональных возможностей для передачи информации с любым каналом связи. Предложен электрический разделитель-ретранслятор, содержащий составной металлический корпус с присоединительными резьбами на обоих концах, состоящий из верхнего и нижнего переводников, а также промежуточной изоляционной вставки, расположенной между ними, соединенных между собой резьбовыми соединениями, в которых отдельные металлические части изолированы друг от друга слоем диэлектрика. Кроме того, устройство содержит участок наружного покрытия из диэлектрического материала, диэлектрическую втулку с каналом для прохождения бурового раствора и установленный внутри диэлектрической втулки электронный блок, подсоединенный одним контактом через металлические детали к нижнему переводнику, а другим контактом - к верхнему переводнику. При этом электронный блок снабжен приемопередатчиком сигналов и блоком питания и помещен в дополнительный металлический кожух, снабженный центраторами, который установлен в канале для прохождения бурового раствора с возможностью его беспрепятственного прохождения, и закреплен к нижнему переводнику при помощи гайки со штырем, выполняющих функцию электрического контакта нижней части металлического кожуха электронного блока с указанным переводником. Вход электронной схемы соединен с контактным штырем электрическими проводами, а вход электронного блока в верхней части металлического кожуха соединен проводной связью с электрическим разъемом для ответного соединения с электронным блоком основной телесистемы. 3 ил.

Изобретение относится к области радиотехники и может быть использовано в приемниках глобальных навигационных спутниковых систем, использующих широкополосные сигналы, манипулированные по фазе псевдослучайной последовательностью. Техническим результатом изобретения является повышение помехоустойчивости приема навигационного сигнала путем воспроизведения копии сигналоподобной помехи с учетом времени задержки и последующей компенсацией помехи из входной смеси «сигнал-помеха». В навигационном приемнике с компенсатором помех на его вход поступает смесь навигационного сигнала и сигналоподобной помехи, излучаемой отечественным средством радиоэлектронного противодействия, находящимся в пределах радиовидимости приемника глобальных навигационных спутниковых систем. В канале формирования копии помехи обнаружитель помехи является обнаружителем сигнала с известными параметрами и неизвестным временем задержки и настроен на обнаружение только сигналоподобной помехи. В канале формирования копии помехи осуществляется воспроизведение копии помехи, синхронной по времени задержки с обнаруженной сигналоподобной помехой, с последующим вычитанием сформированной копии помехи из входной смеси навигационного сигнала и сигналоподобной помехи. 1 ил.

Изобретение относится к радиотехнике и может быть использовано в передатчиках сигналов глобальных навигационных спутниковых систем. Достигаемый технический результат - обеспечение возможности работы с псевдошумовыми фазомодулированными сигналами при одновременном повышении точности определения аппаратной задержки выходного сигнала передатчика. Устройство определения аппаратной задержки выходного сигнала передатчика содержит формирователь отсчетов модулирующей последовательности, цифроаналоговый преобразователь, модулятор, усилитель мощности, направленный ответвитель, антенно-фидерный блок, аналого-цифровой преобразователь, блок цифровой обработки, пассивный частотно-независимый сумматор, фильтр нижних частот, при этом блок цифровой обработки содержит фильтр контролируемого сигнала, фильтр опорного сигнала, блок определения фазы опорного сигнала, блок сравнения фаз, корреляционный блок .1 з.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике, в частности к способам оценки частотного сдвига, и может быть использовано в аппаратуре беспроводных телекоммуникационных систем, использующих OFDM сигналы, а также в контрольно-измерительном оборудовании. Технический результат состоит в повышении точности оценки сдвига несущей частоты при низких отношениях сигнал/шум и частотно-селективных замираниях, при использовании одного пилотного OFDM символа, состоящего из 2 одинаковых повторяющихся частей. Для этого дополнительно вводятся: операция устранения частотного сдвига в цифровом виде для каждого OFDM символа, содержащегося в кадре, операция уточненной оценки частотного сдвига по N символам, следующим за пилотным символом, при условии что в уточненной оценке могут участвовать только те OFDM символы, которые могут быть безошибочно демодулированы, после грубой оценки частотного сдвига, операция оценки передаточной функции канала связи по пилотным поднесущим, эквалайзирование, операция восстановления спектра каждого OFDM символа к первоначальному виду, заданному в передатчике, по минимальному расстоянию между полученным отсчетом спектра и соответствующим ему, регламентированным стандартом, по которому работает система связи, расчет отношения спектра одного из OFDM символов, участвующего в уточненной оценке частотного сдвига, к каждому из OFDM символов, участвующему в уточненной оценке частотного сдвига, умножение спектра каждого принятого OFDM символа, участвующего в уточненной оценке частотного сдвига, на рассчитанное отношение, расчет разности фаз между соседними OFDM символами, участвующими в уточненной оценке частотного сдвига, усреднение рассчитанных значений разности фаз, расчет уточненной оценки частотного сдвига как отношения усредненной оценки разности фаз на 2π и на длительность одного OFDM символа, расчет результирующей оценки частотного сдвига как суммы грубой и уточненной оценки. 4 ил.
Наверх