Многолучевая адаптивная антенная решетка

Изобретение относится к радиотехнике, в частности к антенной технике, и может быть использовано в радиотехнических системах связи, размещаемых на борту космических аппаратов (КА), функционирующих в сложной сигнально-помеховой обстановке, например, в системах космической связи с подвижными объектами. Технический результат - повышение помехоустойчивости путем снижения величины систематических ошибок в оценках пеленга на источники излучения, находящиеся в зоне ответственности адаптивной антенной решетки. Многолучевая адаптивная антенная решетка содержит N приемных элементов, диаграммообразующий блок, аналого-цифровые преобразователи, цифровой вычислитель вектора весовых коэффициентов пространственного дифференцирования, а также цифровой вычислитель вектора весовых коэффициентов пространственного накопления. 3 з.п. ф-лы, 6 ил.

 

Изобретение относится к радиотехнике, в частности к антенной технике, и может быть использовано в радиотехнических системах связи, размещаемых на борту космических аппаратов (КА), функционирующих в сложной сигнально-помеховой обстановке, например, в системах космической связи с подвижными объектами.

Известны адаптивные антенные решетки (ΑΑΡ), построенные на принципе адаптивного управления диаграммой направленности за счет изменения весовых коэффициентов по критерию минимума среднего квадрата ошибки (МСКО), [Монзинго, Р.А. Адаптивные антенные решетки. Введение в теорию / Р.А. Монзинго, Т.У. Миллер. - М.: Радио и связь, 1986. - 448 с].

Для работы ΑΑΡ указанного типа необходима точная априорная информация о направлении прихода и/или характеристиках принимаемого полезного сигнала, что является ограничивающим фактором их применения в радиотехнических системах, где подобная информация отсутствует или может измениться в течение времени (например, в системах космической связи с подвижными объектами).

Известна также адаптивная антенная решетка [RU 2466482, С1, H01Q 3/26, H01Q 21/00, 10.11.2012], содержащая N антенных элементов, блоки комплексного взвешивания сигналов, адаптивный процессор, общий сумматор, N полосовых фильтров, Μ сигнальных сумматоров и (Μ-1)·Ν блоков комплексного взвешивания сигналов, причем адаптивный процессор выполнен в виде совокупности Μ блоков формирования весовых коэффициентов, полосовые фильтры установлены на выходах антенных элементов, Μ выходов каждого полосового фильтра соединены с соответствующими входами Μ блоков формирования весовых коэффициентов непосредственно, а с соответствующими входами Μ сигнальных сумматоров - через блоки комплексного взвешивания сигналов, выходы Μ блоков формирования весовых коэффициентов подключены для соответствующей частотной составляющей полезного сигнала к управляющим входам блоков комплексного взвешивания сигналов, выходы Μ сигнальных сумматоров подключены к входам общего сумматора.

Недостатком этого технического решения является относительно низкая помехоустойчивость.

Кроме того, известна адаптивная антенная решетка [RU 2366047, С1, H01Q 21/00, 27.08.2009], содержащая N антенных элементов, соединенных через комплексные весовые умножители с соответствующими входами общего сумматора, блок формирования вектора весовых коэффициентов с управляющим входом, соединенным с устройством ввода информации о возможном направлении прихода сигнала, при этом входы блока формирования вектора весовых коэффициентов соединены с выходами соответствующих антенных элементов, а выходы блока формирования вектора весовых коэффициентов подключены к управляющим входам соответствующих комплексных весовых умножителей.

В этом техническом решении блок формирования вектора весовых коэффициентов состоит из аналого-цифрового преобразователя, конвертора, блока комплексного умножения, блока вычисления собственного вектора, блока формирования тестового сигнала, блока вычисления направлений на источник радиоизлучения, блока анализа данных, причем выходы антенных элементов соединены с соответствующими входами аналого-цифрового преобразователя, выходы которого подключены к соответствующим входам конвертора, выходы конвертора соединены с соответствующими входами блока комплексного умножения, выходы которого подключены к соответствующим входам блока вычисления собственного вектора, выходы блока формирования тестового сигнала подключены к соответствующим входам блока вычисления направлений на источник радиоизлучения и блока анализа данных, выходы блока вычисления собственного вектора подключены к соответствующим входам блока вычисления направлений на источник радиоизлучения, выход которого подключен к соответствующему входу блока анализа данных, вход которого соединен с устройством ввода информации о возможном направлении прихода сигнала, выходы блока анализа данных подключены к управляющим входам соответствующих комплексных весовых умножителей, причем входы аналого-цифрового преобразователя являются входами, вход блока анализа данных - управляющим входом, а выходы блока анализа данных - соответственно выходами блока формирования вектора весовых коэффициентов.

Недостатком этого устройства также является относительно низкая помехоустойчивость.

Наиболее близким по технической сущности и достигаемому результату к заявляемому устройству является многолучевая адаптивная антенная решетка [Адаптивная система разделения сигналов, приходящих с разных направлений / А.К. Морозов, Н.А. Лицарев // Радиотехника. - 1985. - №9. - С. 66-69], содержащая N однотипных приемных элементов и диаграммообразующий блок, группа входов которого соединена с выходами N однотипных приемных элементов через соответствующие им аналого-цифровые преобразователи, а также цифровой вычислитель вектора весовых коэффициентов пространственного дифференцирования, группа входов которого соединена с выходами аналого-цифровых преобразователей, причем выход цифрового вычислителя вектора весовых коэффициентов пространственного дифференцирования соединен со входом диаграммообразующего блока, выход которого соединен со входом цифрового вычислителя вектора весовых коэффициентов пространственного дифференцирования.

В этом устройстве осуществляется прием и обработка аддитивной суммы взаимно некоррелированных сигналов источников излучения (ИИ) на фоне пространственно-некоррелированного фонового излучения и собственных шумов приемных каналов адаптивной антенной решетки (ΑΑΡ):

где Υ=(y1,y2,…yN)T - вектор входного сигнала на приемных элементов ΑΑΡ, Sm=(Sm1,Sm2,…,SmN)T - вектор сигнала m-го ИИ на приемных элементов ΑΑΡ, η=(η12,…,ηΝ)T - вектор, являющийся аддитивной суммой пространственно-некоррелированного фонового излучения и собственных шумов приемных каналов ΑΑΡ.

Цифровой вычислитель вектора весовых коэффициентов пространственного дифференцирования обеспечивает их определение из условия обеспечения на выходе диаграммообразующего блока минимума среднего квадрата ошибки отклонения сигнала принятого первым антенным элементом, от взвешенной суммы сигналов принятых остальных (Ν-1) приемных элементов ΑΑΡ:

где е0 - сигнал на выходе диаграммообразующего блока, характеризующий ошибку отклонения сигнала принятого первым антенным элементом от взвешенной суммы сигналов, принятых остальных (Ν-1) приемных элементов ΑΑΡ, - сигнал принятый k-м приемным элементом, - коэффициенты авторегрессионной модели, определяемые на основе решения уравнения Юла-Уолкера [Марпл-мл., С.JI. Цифровой спектральный анализ и его приложения / С.Л. Марпл-мл. - М.: Мир, 1990. - 584 с].

Весовые коэффициенты wi, , M=N-1, вычисляемые цифровым вычислителем вектора весовых коэффициентов пространственного дифференцирования, являются корнями диаграммобразующего полинома (2) и связаны с его коэффициентами ai, формулами Виета [Воднев, В.Т. Основные математические формулы. Справочник / В.Т. Воднев, А.Ф. Наумович, Н.Ф. Наумович; под ред. Ю.С. Богданова. - Минск: Выш. школа, 1988. - 270с.]:

Каждый из весовых коэффициентов wi, , определяемый цифровым вычислителем вектора весовых коэффициентов пространственного дифференцирования в установившемся режиме, определяет направление на источник излучения (ИИ), сигнал которого присутствует на входе приемных элементов, т.е. содержит информацию о пеленге на ИИ:

где φi=2πdSin(θi)/λ - межэлементный фазовый набег сигнала i-го ИИ, - направление на i-й ИИ, отсчитанное от нормали к антенне, d - расстояние между приемными элементами.

Указанное обстоятельство позволяет ΑΑΡ формировать в пространстве Μ диаграмм направленностей (ДН) в направлении на ИИ.

Недостатком наиболее близкого технического решения является наличие систематических ошибок в оценках вектора весовых коэффициентов (ВВК), определяемых вычислителем вектора весовых коэффициентов пространственного дифференцирования, что обусловлено пространственно-некоррелированным фоновым излучением и внутренними шумами приемных каналов адаптивной антенной решетки (ΑΑΡ), величина которых растет с уменьшением величины сигнал/шум, приводящее к смещению диаграммы направленности (ДН) от источника излучения (ИИ). Это обусловливает относительно низкую помехоустойчивость наиболее близкого технического решения.

Задачей, на решение которой направлено изобретение, является повышение помехоустойчивости путем уменьшения систематических ошибок в оценках вектора весовых коэффициентов, вычисляемых сигнальным процессором, обусловленных пространственно-некоррелированным фоновым излучением, внутренними шумами приемных каналов адаптивной антенной решетки.

Требуемый технический результат заключается в повышении помехоустойчивости.

Поставленная задача решается, а требуемый технический результат достигается тем, что, в многолучевую адаптивную антенную решетку, содержащую TV приемных элементов и диаграммообразующий блок, группа входов которого соединена с выходами N приемных элементов через соответствующие им аналого-цифровые преобразователи, а также цифровой вычислитель вектора весовых коэффициентов пространственного дифференцирования, группа входов которого соединена с выходами аналого-цифровых преобразователей, причем выход цифрового вычислителя вектора весовых коэффициентов пространственного дифференцирования соединен со входом диаграммообразующего блока, выход которого соединен со входом цифрового вычислителя вектора весовых коэффициентов пространственного дифференцирования, согласно изобретению, введен цифровой вычислитель вектора весовых коэффициентов пространственного накопления, группа входов которого объединена с группой входов цифрового вычислителя вектора весовых коэффициентов пространственного дифференцирования, а выход соединен со вторым входом диаграммообразующего блока, выход которого соединен со входом цифрового вычислителя вектора весовых коэффициентов пространственного накопления.

Кроме того, требуемый технический результат достигается тем, что диаграммообразующий блок содержит Μ (M=N-1) последовательно соединенных линеек пространственной обработки сигналов, группа входов первой из которых является группой входов диаграммообразующего блока, а выход последней - является группой выходов диаграммообразующего блока, причем первый и второй входы линеек пространственной обработки сигналов являются, соответственно, первым и вторым входом диаграммообразующего блока.

Кроме того, требуемый технический результат достигается тем, что в диаграммообразующем блоке линейка пространственной обработки сигналов содержит Μ последовательно соединенных каскадов пространственного дифференцирования с предварительным пространственным накоплением, каждый из которых выполнен в виде блоков пространственного накопления, входы которых являются первым входом линейки пространственной обработки сигналов, блоков комплексного взвешивания сигналов, первые входы которых являются вторым входом линейки пространственной обработки сигналов, а второй вход каждого из которых соединен с выходом соответствующего ему j-го блока пространственного накопления, а также блока комплексного вычитания сигналов, первый вход которого соединен с выходом соответствующего ему (j-1)-го блока пространственного накопления, второй вход соединен с выходом j-го блока комплексного взвешивания сигналов, а выход является выходом каскада пространственного дифференцирования с предварительным пространственным накоплением.

Кроме того, требуемый технический результат достигается тем, что блок пространственного накопления содержит L-входовой сумматор, (L-1) блоков комплексного взвешивания сигналов и (L-2) блоков комплексного умножения, причем первый вход L-входового сумматора и первые входы (L-1) блоков комплексного взвешивания сигналов являются первым входом блока пространственного накопления, выходы блоков комплексного взвешивания сигналов соединены со входами L-входового сумматора, первые входы блоков комплексного умножения являются вторым входом блока пространственного накопления, вторые входы i-х блоков комплексного умножения соединены со вторыми входами i-х блоков комплексного взвешивания сигналов, а выход L-входового сумматора является выходом блока пространственного накопления.

Признаками прототипа, совпадающими с признаками заявляемого устройства, являются N приемных элементов и диаграммообразующий блок, группа входов которого соединена с выходами N однотипных приемных элементов через соответствующие им аналого-цифровые преобразователи, а также цифровой вычислитель вектора весовых коэффициентов пространственного дифференцирования, группа входов которого соединена с выходами аналого-цифровых преобразователей, причем выход цифрового вычислителя вектора весовых коэффициентов пространственного дифференцирования соединен со входом диаграммообразующего блока, выход которого соединен со входом цифрового вычислителя вектора весовых коэффициентов пространственного дифференцирования.

Изобретение направлено на достижение технического результата, заключающегося в повышении помехоустойчивости путем снижения величины систематических ошибок в оценках пеленгов на источники излучения, находящиеся в зоне ответственности адаптивной антенной решетки, для чего введены следующие существенные признаки заявляемого устройства, отличающие его от прототипа и обеспечивающие этот технический результат - цифровой вычислитель вектора весовых коэффициентов пространственного накопления, группа входов которого объединена с группой входов цифровой вычислитель вектора весовых коэффициентов пространственного дифференцирования, а выход соединен со вторым входом диаграммообразующего блока, выход которого соединен со входом цифровой вычислитель вектора весовых коэффициентов пространственного дифференцирования.

Это подтверждает достижение в предложенном техническом решении новизны и оригинальности.

Кроме того, заявителем предложен пример оригинальной конструкции диаграммообразующего блока и входящих в него узлов, а также детальные алгоритмы цифровых вычислителей, позволяющие произвести их программирование при выполнении в виде специализированных устройств вычислительной техники, что подтверждает соответствие предложения заявителя критерию промышленной применимости.

Изобретение поясняется чертежами, представленными на фигурах 1 - 4, и графиками, представленными на фигурах 5, 6.

На чертежах представлены:

на фиг. 1 - электрическая структурная схема многолучевой адаптивной антенной решетки;

на фиг. 2 - электрическая структурная схема диаграммообразующего блока;

на фиг. 3 - электрическая структурная схема i-й линейки пространственной обработки принимаемого сигнала диаграммообразующего блока (курсивом показаны номера связей в линейках пространственной обработки принимаемого сигнала;

на фиг. 4 - электрическая структурная схема блока пространственного накопления;

на фиг. 5 - результаты решения уравнения статического режима адаптивной антенной решетки относительно весовых коэффициентов wi, i = 1,2 ¯ ;

на фиг. 6 - результаты решения уравнения статического режима заявляемой адаптивной антенной решетки относительно весовых коэффициентов vi,

На чертежах обозначены:

1 - приемные элементы адаптивной антенной решетки, осуществляющие прием (регистрацию) СВЧ-сигнала источника излучения, который может быть выполнен в виде полосковой антенны [Устройства СВЧ и антенны. Проектирование фазированных антенных решеток / под ред. Д.И. Воскресенского. М.: Радиотехника, 2003, 631 с. ];

2 - диаграммообразующий блок, реализующий Μ-кратное пространственное дифференцирование принимаемого сигнала с предварительным пространственным накоплением;

3 - цифровой вычислитель вектора весовых коэффициентов каскадов пространственного дифференцирования, который может быть выполнен на базе цифрового процессора обработки сигналов, например, микросхеме TMS320C6x [Остапенко, А.Г. Цифровые процессоры обработки сигналов: Справочник. / А.Г. Остапенко, С.И. Лавлинский, А.Б. Сушков и др., - М.: Радио и связь, 1994];

4 - цифровой вычислитель вектора весовых коэффициентов каскада пространственного накопления, который может быть выполнен на базе цифрового процессора обработки сигналов, например, микросхеме TMS320C6x [Остапенко, А.Г. Цифровые процессоры обработки сигналов: Справочник. / А.Г. Остапенко, СИ. Лавлинский, А.Б. Сушков и др., - М.: Радио и связь, 1994];

5/i - линейка пространственной обработки принятого сигнала, где i= 1…М;

6 - блок пространственного накопления, осуществляющий взвешенное, относительно сигнала νi, суммирование поступающих пространственных отсчетов x1, в соответствии с соотношением

где- сигнал на выходе блока пространственного накопления, xi, - пространственные отсчеты поступающего сигнала, (·)* - операция комплексного сопряжения;

7 - блок комплексного взвешивания сигналов, осуществляющий умножение комплексных сигналов, поступающих на его соответствующие входы и реализующий соотношение

где х0 - сигнал на выходе блока комплексного взвешивания сигналов, х1 - сигнал на первом входе блока комплексного взвешивания сигналов, х2 - сигнал на втором входе блока комплексного взвешивания сигналов, "*" - знак комплексного сопряжения;

8 - блок комплексного вычитания сигналов, осуществляющий вычитание комплексных сигналов поступающих на его входы и реализующий соотношение

x0=x1-x2,

где х0 - сигнал на выходе блока комплексного вычитания сигналов;

х1 - сигнал на первом входе блока комплексного вычитания сигналов;

х2 - сигнал на втором входе блока комплексного вычитания сигналов.

9 - блок комплексного умножения сигналов, осуществляющий умножение комплексных сигналов, поступающих на его соответствующие входы, и реализующий соотношение

x0=x1·x2,

где х0 - сигнал на выходе блока комплексного умножения сигналов, х1 - сигнал на первом входе блока комплексного умножения сигналов, х2 - сигнал на втором входе блока комплексного умножения сигналов;

10 - L-входовый сумматор, осуществляет суммирования комплексных сигналов поступающих на его входы в соответствии с правилом

где х0 - сигнал на выходе L-входового сумматора, x1, пространственные отсчеты поступающего сигнала;

11 - блок комплексного взвешивания сигналов блока пространственного накопления (блок 11 выполнен аналогично блоку 7);

12 - аналого-цифровой преобразователь, осуществляющий преобразование принятого СВЧ-сигнала в цифровую форму, который может быть выполнен, например, на базе субмодуля ADM214x10M, устанавливаемого в разъем ADMX базовых модулей [, mfo@msys.rn., ЗАО "Инструментальные системы"].

Многолучевая адаптивная антенная решетка (фиг. 1) содержит N приемных элементов 1 и диаграммообразующий блок 2, группа входов которого соединена с выходами N приемных элементов через соответствующие им аналого-цифровые преобразователи 12, а также цифровой вычислитель 3 вектора весовых коэффициентов пространственного дифференцирования, группа входов которого соединена с выходами аналого-цифровых преобразователей 12, причем выход цифрового вычислителя 3 вектора весовых коэффициентов пространственного дифференцирования соединен со входом диаграммообразующего блока 2, выход которого соединен со входом цифрового вычислителя 3 вектора весовых коэффициентов пространственного дифференцирования.

Кроме того, многолучевая адаптивная антенная решетка содержит цифровой вычислитель 4 вектора весовых коэффициентов пространственного накопления, группа входов которого объединена с группой входов цифрового вычислителя 3 вектора весовых коэффициентов пространственного дифференцирования, а выход соединен со вторым входом диаграммообразующего блока 2, выход которого соединен со входом цифрового вычислителя 4 вектора весовых коэффициентов пространственного накопления.

Диаграммообразующий блок (фиг. 2) содержит Μ (M=N-1) последовательно соединенных линеек 5 пространственной обработки сигналов, группа входов первой из которых 5/1 является группой входов диаграммообразующего блока 2, а выход последней 5/М является группой выходов диаграммообразующего блока 2, причем первый и второй входы линеек 5 пространственной обработки сигналов являются, соответственно, первым и вторым входом диаграммообразующего блока 2.

В диаграммообразующем блоке 2 (фиг. 2) линейки 5 пространственной обработки сигналов (фиг. 3) содержат Μ последовательно соединенных каскадов пространственного дифференцирования с предварительным пространственным накоплением, каждый из которых выполнен в виде блоков 6 пространственного накопления, входы которых являются первым входом линейки 5 пространственной обработки сигналов, блоков 7 комплексного взвешивания сигналов, первые входы которых являются вторым входом линейки 5 пространственной обработки сигналов, а второй вход каждого из которых соединен с выходом соответствующего ему j-го блока 6 пространственного накопления, а также блока 8 комплексного вычитания сигналов, первый вход которого соединен с выходом соответствующего ему (j-1)-го блока 6 пространственного накопления, второй вход соединен с выходом j-го блока 7 комплексного взвешивания сигналов, а выход является выходом каскада пространственного дифференцирования с предварительным пространственным накоплением.

Блок 6 пространственного накопления (фиг. 4) содержит L-входовой сумматор 10, (L-1) блоков 11 комплексного взвешивания сигналов и (L-2) блоков 9 комплексного умножения, причем первый вход L-входового сумматора 10 и первые входы (L-1) блоков И комплексного взвешивания сигналов являются первым входом блока 6 пространственного накопления, выходы блоков 11 комплексного взвешивания сигналов соединены со входами L-входового сумматора 10, первые входы блоков 9 комплексного умножения являются вторым входом блока 6 пространственного накопления, вторые входы i-х блоков 9 комплексного умножения соединены со вторыми входами i-х блоков 11 комплексного взвешивания сигналов, а выход L-входового сумматора 10 является выходом блока 6 пространственного накопления.

Многолучевая адаптивная антенная решетка (ΑΑΡ) работает следующим образом.

Как следует из описанных выше фигур, адаптивная антенная решетка (фиг. 1) содержит N однотипных приемных элементов 1, N однотипных аналого-цифровых преобразователей (АЦП) 12, цифровой вычислитель 3 весовых коэффициентами wk, , (M<N) пространственного дифференцирования, цифровой вычислитель 4 вычисления весовых коэффициентов νk, пространственного накопления и диаграммообразующий блок 2 (фиг. 2), состоящий из Μ последовательно соединенных линеек 5 пространственной обработки сигналов (фиг. 2).

Каждая i-я линейка пространственной обработки сигналов (фиг. 3) содержит M-i, где «i» - номер линейки пространственной обработки, каскадов пространственного дифференцирования с предварительным пространственным накоплением, каждый из которых содержит два блока 6 пространственного накопления сигналов, каждый из которых в свою очередь и, как это показано на фиг. 4, состоит из одного L-входового сумматора 10, (L-1)-го блока 11 комплексного взвешивания сигналов, (L-2)-x блоков 9 комплексного умножения), а также блока 11 комплексного взвешивания сигналов, выполненного аналогично блоку 7 и блока 8 комплексного вычитания 8 сигналов.

В соответствии со схемой фиг. 4, в каждом j-м блоке 6 пространственного накопления каждой i-й линейки пространственной обработки сигналов диаграммообразующего блока 2 первый вход L-входового сумматора 10 соединен с выходом j-го блока 8 комплексного вычитания предыдущей (i-1)-й линейки пространственной обработки сигналов, за исключением первой линейки, в которой он соединен с выходом j-го приемного элемента 1, второй вход L-входового сумматора 10 соединен с выходом первого блока 11 комплексного взвешивания сигналов, первый вход которого соединен с выходом (j+1)-го блока 8 комплексного вычитания предыдущей (i-1)-й линейки пространственной обработки, за исключением первой, в которой он соединен с выходом (j+1)-го приемного элемента 1, второй вход первого блока 11 комплексного взвешивания сигналов соединен с i-м выходом цифрового вычислителя 4, вычисляющего весовой коэффициент νi, третий вход L-входового сумматора 10 соединен с выходом второго блока 11 комплексного взвешивания сигналов, первый вход которого соединен с выходом (j+2)-го блока 8 комплексного вычитания сигналов предыдущей (i-1)-й линейки пространственной обработки сигнала, за исключением первой, в которой он соединен с выходом (j+2)-го приемного элемента 1, второй вход второго блока 11 комплексного взвешивания сигналов соединен с выходом первого блока 9 комплексного умножения, первый и второй входы которого соединены с i-м выходом цифрового вычислителя 4, вычисляющего весовой коэффициент νi, последующие l, входы L-входового сумматора 10 соединены с соответствующим выходом последующих блоков 11 комплексного взвешивания сигналов, первый вход которых соединен с выходом j+l-1 блока 8 комплексного вычитания сигналов предыдущей (i-1)-й линейки пространственной обработки за исключением первой, в которой он соединен с выходом (j+l-1)-го антенного элемента 1, второй вход указанных блоков 11 комплексного взвешивания сигналов соединен с выходом соответствующих блоков 9 комплексного умножения, первый вход которых соединен с выходом блока 9 комплексного умножения предыдущего входа L-входового сумматора 10, вторые входы указанных блоков 9 комплексного умножения соединены с i-м выходом цифрового вычислителя 4, вычисляющего весовой коэффициент νi, выход L-входового сумматора 10 каждого j-го блока 6 пространственного накопления каждой i-й линейки пространственной обработки принимаемого сигнала подключен к первому входу j-го блока 8 комплексного вычитания 8 сигналов каждой i-й линейки пространственной обработки сигнала, второй вход которого соединен с выходом j-го блока 11 комплексного взвешивания сигналов i-й линейки пространственной обработки сигнала, первый вход которого соединен с выходом L-входового сумматора 10 (j+1)-го блока 6 пространственного накопления i-й линейки пространственной обработки сигнала, а второй вход соединен с i-м выходом цифрового вычислителя 3, вычисляющего весовой коэффициент wi, при этом выходом заявляемой адаптивной антенной решетки выход блока 8 комплексного вычитания сигналов Μ-й линейки пространственной обработки принимаемого сигнала.

В соответствии с описанием конструкции многолучевой адаптивной антенной решетки (ΑΑΡ) опишем пример работы.

Пусть в зоне ответственности ΑΑΡ находятся Μ узкополосных (в пространственно-временном смысле) источников излучения (ИИ), находящихся в дальней зоне дифракции, сигналы которых регистрируются приемными элементами 1 ΑΑΡ:

где - вектор размерности 1×N, характеризующий сигнал i-го ИИ на N приемных элементах ΑΑΡ;

φi=2πdSin(θi)/λ - межэлементный фазовый набег сигнала i-го ИИ;

θi - направление на i-й ИИ, отсчитанное от нормали к антенне;

d - расстояние между элементами антенной решетки.

Сигнал, регистрируемый N приемными элементами 1, подается на первую линейку пространственной обработки принимаемого сигнала - линейку 5/1 (фиг. 2) диаграммообразующего блока 2 таким образом, что сигнал, регистрируемый L (L<N) приемными элементами 1, начиная с первого, подается на первый блок 6 пространственного накопления линейки 5/1, сигнал, регистрируемый L приемными элементами 1, начиная со второго, подается на второй блок 6 пространственного накопления линейки 5/1 и т.д., т.е. сигнал, регистрируемый L приемными элементами 1, начиная с l-го приемного элемента 1, подается на i-й блок 6 пространственного накопления линейки 5/1, алгоритм работы которого состоит во взвешенном суммировании сигнала, регистрируемых приемными элементами 1:

где - сигнал, формируемый i-м блоком пространственного накопления 6 линейки 5/1 диаграммообразующего блока 2 (отметим верхний индекс "1" взвешенной суммы показывает номер линейки пространственной обработки принимаемого сигнала, нижний - номер блока 6 пространственного накопления в линейке 5/1 пространственной обработки принятого сигнала); ν1 - значение весового коэффициента, формируемое цифровым вычислителем 4.

Каждый из отсчетов , , сформированный i-м блоком 6 пространственного накопления линейки 5/1, подается на первый вход i-го блока 8 комплексного вычитания сигналов линейки 5/1, на второй вход которых подается значение отсчета , сформированное (i+1)-м блоком 6 пространственного накопления и взвешенное в блоке 7 комплексного взвешивания сигналов линейки 5/1 весовым коэффициентом w1, значение которого формируется цифровым вычислителем 3. В результате этого, на выходе линейки 5/1 формируется последовательность пространственных отсчетов y i 1 , значение которых определяется в соответствии с выражением:

где - взвешенные суммы, сформированные i-м и (i+1)-м блоками 6 пространственного накопления линейки 5/1.

Далее, отсчеты y i 1 сигналов, сформированные линейкой 5/1, подаются на вторую линейку пространственной обработки принимаемого сигнала - линейку 5/2 диаграммообразующего блока 2, таким образом, что отсчеты, формируемые L блоком 8 комплексного вычитания сигналов линейки 5/1, начиная с первого, подаются в первый блок 6 пространственного накопления линейки 5/2, отсчеты, формируемые L блоком 8 комплексного вычитания сигналов линейки 5/1, начиная со второго, подаются во второй блок 6 пространственного накопления линейки 5/2 и т.д., т.е. отсчеты, формируемые L блоками 8 комплексного вычитания сигналов линейки 5/1, начиная с l-го блока 8 комплексного вычитания сигналов линейки 5/2, подаются на l-й блок 6 пространственного накопления линейки 5/2, алгоритм работы которого в соответствии состоит во взвешенном суммировании отсчетов сигнала, сформированного линейкой 5/1:

где - сигнал, формируемый i-м блоком 6 пространственного накопления линейки 5/2 диаграммообразующего блока 2; ν2 - значение весового коэффициента, формируемое цифровым вычислителем 4.

Каждый из отсчетов , , сформированный i-м блоком 6 пространственного накопления линейки 5/2, подается на первый вход i-го блока 8 комплексного вычитания сигналов линейки 5/2, на второй вход которых подается значение отсчета , сформированное (i+1)-м блоком 6 пространственного накопления линейки 5/2 и взвешенное в блоке 7 комплексного взвешивания сигналов линейки 5/2 весовым коэффициентом w2, значение которого формируется цифровым вычислителем 3. В результате этого на выходе линейки 5/2 формируется последовательность пространственных отсчетов , значение которых определяются в соответствии с выражением:

где - взвешенные суммы, сформированные i-м и (i+1)-м блоком 6 пространственного накопления линейки 5/2, и т.д. - каждая 5/i-я линейка пространственной обработки принимаемого сигнала, т.е. линейка 5/i диаграммообразующего блока 2 формирует последовательность пространственных отсчетов , значения которых определяются в соответствии с выражением:

где - взвешенные суммы, сформированные i-м и (i+1)-м блоком 6 пространственного накопления линейки 5/i, при этом выходной сигнал е0 адаптивной антенной решетки формируется блоком 8 комплексного вычитания сигналов линейки 5/М диаграммообразующего блока 2, значение которого определяется в соответствии с выражением:

где - вектор, имеющий размерность 1×(М+1), элементы которого суть весовые коэффициенты wi, , формируемые цифровым вычислителем 3;

- матрица, имеющая размерность (1+M)×N и структура которой определяется вектором фокусировки , элементами которого являются весовые коэффициенты νi, , формируемые цифровым вычислителем 4.

Сигнал е0 поступает на вход "0" цифрового вычислителя 4, а на остальные его входы поступает сигнал, регистрируемый соответствующими приемными элементами 1.

Цифровой вычислитель 3 и цифровой вычислитель 4 вычисляют значения весовых коэффициентов νi, wi, в соответствии с критерием МСКО предсказания значения сигнала, регистрируемого первым антенным элементом 1 по взвешенной сумме значений сигналов, регистрируемых остальными (N-1)-м приемными элементами 1, алгоритм работы которых определяется уравнением (12) для цифрового вычислителя 3:

где W=(w1,w2,…,wM)T - вектор весовых коэффициентов цифрового вычислителя 3, - вектор производных выходного сигнала адаптивной антенной решетки по измеряемым параметрам µW - коэффициент, определяемый постоянной времени цепей обратной связи цифрового вычислителя 3, "*" - знак комплексного сопряжения,

и уравнением (13), для цифрового вычислителя 4:

где V=(ν12,…,νm)T - вектор весовых коэффициентов сигнального процессора 4, - вектор производных выходного сигнала адаптивной антенной решетки по измеряемым параметрам μV - коэффициент, определяемый постоянной времени цепей обратной связи цифрового вычислителя 4.

Вычисленные значения весовых коэффициентов νi, wi, цифровым вычислителем 3 и цифровым вычислителем 4 поступают в диаграммообразующий блок 2.

В установившемся режиме значения весовых коэффициентов νi, wi, находятся из решения системы уравнений:

где - средняя мощность ошибки предсказания (экстраполяции) значения сигнала, регистрируемого первым антенным элементом 1.

В общем случае система (14) не имеет аналитического решения. На графиках фиг. 5 представлены результаты численного решения системы (14) относительно аргументов весовых коэффициентов νi, wi, для адаптивной антенной решетки с количеством N антенных элементов 1, равным N=3, 7, 12. Система уравнений (14) решалась методом Рунге-Кутта при значении величины отношения сигнал/шум, равном 2 дБ. Результаты решения системы уравнений (14) относительно весовых коэффициентов νi, wi, представлены графиками на фиг. 5 (весовые коэффициенты wi, ) и фиг. 6 (весовые коэффициенты νi, ).

Решение системы уравнений (14) при N=3 соответствует прототипу заявляемой адаптивной антенной решетки (L=1).

Решение системы уравнений (14) при N=7, 12 соответствует заявляемой адаптивной антенной решетке, в которой в линейках 5/1, 5/2 диаграммообразующего блока 2 используется L-входовый сумматор при L=5, 10, соответственно.

На графиках фиг. 5 и 6 пунктирной линией показаны положения источников излучения, когда один из них находился под углом θ1=50° относительно нормали к ΑΑΡ, а второй - последовательно перемещался относительно первого. Значения фазовых набегов в аргументах весовых коэффициентов νi, wi, пересчитаны в значения пеленгов источников излучения.

Из полученных результатов следует, что заявляемая многолучевая адаптивная антенная решетка обеспечивает меньшее значение величины ошибки в оценке пеленга на источник излучения по сравнению с прототипом, что обусловливает ее более высокую помехоустойчивость и достижение требуемого технического результата.

1. Многолучевая адаптивная антенная решетка, содержащая N приемных элементов и диаграммообразующий блок, группа входов которого соединена с выходами N приемных элементов через соответствующие им аналого-цифровые преобразователи, а также цифровой вычислитель вектора весовых коэффициентов пространственного дифференцирования, группа входов которого соединена с выходами аналого-цифровых преобразователей, причем выход цифрового вычислителя вектора весовых коэффициентов пространственного дифференцирования соединен со входом диаграммообразующего блока, выход которого соединен со входом цифрового вычислителя вектора весовых коэффициентов пространственного дифференцирования, отличающаяся тем, что введен цифровой вычислитель вектора весовых коэффициентов пространственного накопления, группа входов которого объединена с группой входов цифрового вычислителя вектора весовых коэффициентов пространственного дифференцирования, а выход соединен со вторым входом диаграммообразующего блока, выход которого соединен со входом цифрового вычислителя вектора весовых коэффициентов пространственного накопления.

2. Устройство по п. 1, отличающееся тем, что диаграммообразующий блок содержит M (M=N-1) последовательно соединенных линеек пространственной обработки сигналов, группа входов первой из которых является группой входов диаграммообразующего блока, а выход последней является группой выходов диаграммообразующего блока, причем первый и второй входы линеек пространственной обработки сигналов являются, соответственно, первым и вторым входом диаграммообразующего блока.

3. Устройство по п. 2, отличающееся тем, что линейка пространственной обработки сигналов содержит M последовательно соединенных каскадов пространственного дифференцирования с предварительным пространственным накоплением, каждый из которых выполнен в виде блоков пространственного накопления, входы которых являются первым входом линейки пространственной обработки сигналов, блоков комплексного взвешивания сигналов, первые входы которых являются вторым входом линейки пространственной обработки сигналов, а второй вход каждого из которых соединен с выходом соответствующего ему j-го блока пространственного накопления, а также блока комплексного вычитания сигналов, первый вход которого соединен с выходом соответствующего ему (j-1)-го блока пространственного накопления, второй вход соединен с выходом j-го блока комплексного взвешивания сигналов, а выход является выходом каскада пространственного дифференцирования с предварительным пространственным накоплением.

4. Устройство по п. 3, отличающееся тем, что блок пространственного накопления содержит L-входовой сумматор, (L-1) блоков комплексного взвешивания сигналов и (L-2) блоков комплексного умножения, причем первый вход L-входового сумматора и первые входы (L-1) блоков комплексного взвешивания сигналов являются первым входом блока пространственного накопления, выходы блоков комплексного взвешивания сигналов соединены со входами L-входового сумматора, первые входы блоков комплексного умножения являются вторым входом блока пространственного накопления, вторые входы i-х блоков комплексного умножения соединены со вторыми входами i-х блоков комплексного взвешивания сигналов, а выход L-входового сумматора является выходом блока пространственного накопления.



 

Похожие патенты:

Изобретение относится к радиотехнике, в частности к средствам приема и передачи радиоволн. Приемо-передающий модуль активной фазированной антенной решетки содержит передающий и приемный каналы, первое, второе и третье направленное устройство разделения падающей и отраженной мощностей, защитное устройство, выпрямитель, согласованную нагрузку, обратноходовой преобразователь.

Изобретение относится к радиотехнике. Технический результат выражается в простоте конструкции и высокой выходной мощности антенны, оптимальном выходном сопротивлении, согласуемом с сопротивлением нагрузки, а также высокой надежности работы антенны.

Изобретение относится к антенной технике. Технический результат - уменьшение помех сигналов или многолучевой интерференции Для этого принимают на датчике, расположенном возле приемной антенны, сигнал отражения, отраженный по меньшей мере от одной поверхности летательного аппарата, с которой соединена конформная отражательная фазированная антенная решетка, настроенная для управления прохождением сигнала отражения.

Изобретение относится к антенным системам направленного излучения и приема. Получаемым техническим результатом является создание АФАР со структурой построения, обеспечивающей, при размещении на самолете, одновременно круговой многолучевой прием запросных сигналов и излучение ответного сигнала в направлении запроса узким лучом с целью скрытости радиоизлучения.

Изобретение относится к антенной технике и может быть использовано в радиолокационных станциях, предназначенных для обнаружения целей, определения дальности до цели и определения координат цели.

Использование: изобретение относится к области радиолокационной техники и может быть использовано при проектировании и изготовлении активной фазированной антенной решетки (АФАР).

Использование: для радиосистем навигации, посадки, управления воздушным движением. Сущность изобретения заключается в том, что многоцелевая самолетная антенно-фидерная система содержит антенную часть, коммутационно-разделительное устройство, устройство управления, антенная часть содержит передние UHF антенну, правую и левую антенны горизонтальной поляризации диапазонов L, S, антенну вертикальной поляризации диапазонов L, S, заднюю антенну горизонтальной поляризации диапазонов UHF, L, S и антенну вертикальной поляризации диапазонов L, S, коммутационно-разделительное устройство, устройство управления, пять коммутаторов на два направления, пять частотно-разделительных устройств, управляемый фазовращатель, устройство управления входами соединено с UHF, L, S радиооборудованием, гировертикалью, определителем курсового угла радиомаяка, а выходами - с коммутационно-разделительным устройством, коммутаторами и фазовращателем, первый коммутатор соединен с одной стороны с коммутационно-разделительным устройством, а с другой стороны - с антеннами непосредственно или через частотно-распределительные устройства, а с задней антенной горизонтальной поляризации - через фазовращатель.

Свч-модуль // 2566328
Изобретение относится к области радиолокационной техники и может быть использовано при проектировании и изготовлении активной фазированной антенной решетки (АФАР).

Использование: изобретение относится к области радиотехники, а точнее к области волноводных антенн с эллиптической поляризацией, и может быть использовано в качестве приемопередающих антенн различных радиотехнических систем, например, на подвижных объектах.

Использование: для приема и передачи сигнала при измерении диаграмм вторичного излучения антенн. Сущность изобретения заключается в том, что приемопередающая антенная решетка вибраторов, жестко закрепленная на основании, состоящая из N-пар антенных излучателей, соединенных с помощью согласованных СВЧ-трактов одинаковой электрической длины, при этом все антенные излучатели выполнены в виде V-образных вибраторов, каждый антенный излучатель N-пары дополнительно содержит второй V-образный вибратор, соединенный противофазно с первым V-образным вибратором, когда первое левое плечо первого V-образного вибратора отрицательного потенциала первого излучателя N-пары соединено со вторым правым плечом второго V-образного вибратора отрицательного потенциала первого излучателя N-пары, а второе правое плечо первого V-образного вибратора положительного потенциала первого излучателя N-пары соединено с первым левым плечом второго вибратора положительного потенциала первого излучателя N-пары.

Изобретение относится к области радиолокационной техники и может быть использовано при проектировании и изготовлении активной фазированной антенной решетки (АФАР). Технический результат - повышение радиотехнических характеристик радиоэлектронного СВЧ-модуля за счет снижения КСВ. Радиоэлектронный СВЧ-модуль содержит корпус и расположенную в нем радиоэлектронную ячейку, содержащую печатную плату с радиоэлектронными элементами, полосковые линии которой соединены с выступающими вовнутрь корпуса центральными проводниками герметичных СВЧ-переходов, расположенных в противоположных стенках корпуса. Печатная плата в каждой из зон, предназначенных для соединения полосковых линий с центральными проводниками герметичных СВЧ-переходов, имеет выступающие части и вырезы, имеющие форму и размеры, позволяющие обеспечить расположение торцевых поверхностей печатной платы в каждой из зон, предназначенных для соединения полосковых линий с центральными проводниками герметичных СВЧ-переходов, с натягом относительно поверхностей противоположных стенок корпуса. 5 з.п. ф-лы, 12 ил.

Многолучевая самофокусирующаяся антенная решетка содержит N секций по L приемопередающих элементов и по L приемопередающих модулей, приемопередающие элементы, диаграммообразующий блок. Указанный блок состоит из N цепей, каждая из которых содержит последовательно соединенные управляемый фазовращатель, усилитель мощности и делитель мощности, приемопередающие модули, задающий генератор, делитель сигнала задающего генератора, блок управления положением диаграммы направленности, приемный блок. Также антенна содержит N цифровых вычислителей юстировочных коэффициентов, результатом работы которых является множество векторов юстировочных коэффициентов. При этом анализ указанных векторов производят при помощи цифрового блока сравнения, результатом работы которого является определение поканального фазового набега на каждой из секций полотна решетки. Технический результат заключается в расширении функциональных возможностей. 1 з.п. ф-лы, 7 ил.

Изобретение относится к антенной технике КВЧ диапазона. Заявленный планарный диэлектрический излучатель состоит из возбуждающего одномодового прямоугольного диэлектрического волновода, диэлектрического плоского клина и диэлектрической пластины с двумя щелями, торец которой является апертурой излучателя, клин соединен со стороны вершины с возбуждающим его одномодовым прямоугольным диэлектрическим волноводом с поляризацией электрического поля вдоль широкой стороны поперечного сечения, с другой стороны к клину присоединена пластина с двумя щелями, формат (отношение сторон) поперечного сечения Ф которой выбирается из условия Фкр15≤Ф≤Фкр17, где Фкр15 и Фкр17 - критические значения формата поперечного сечения прямоугольного диэлектрического волновода для волн HΕ15 и HЕ17 соответственно, угол при вершине клина должен быть не более пятнадцати градусов, толщины клина и пластины равны узкой стороне сечения возбуждающего волновода, щели в пластине расположены симметрично и параллельно ее оси и могут иметь произвольную форму. Техническим результатом является возможность получения излучения с амплитудным распределением, описываемым по одной из поперечных пространственных координат функцией Гаусса-Эрмита нулевого порядка. 1 з.п. ф-лы, 4 ил.

Изобретение относится к антенной технике и может быть использовано в радиотехнических системах связи, радиолокации и радионавигации при приеме сигналов в условиях воздействия помех. Техническим результатом изобретения является универсальность антенной решетки за счет возможности антенной решетки изменять форму главного максимума диаграммы направленности при обработке узкополосных сигналов по отношению к помеховым сигналам независимо от их мощности при любой сигнально-помеховой обстановке. Многофункциональная адаптивная антенная решетка содержит N антенных элементов, N блоков комплексного взвешивания сигналов, общий сумматор и адаптивный процессор, содержащий соответствующие блоки формирования и обращения ковариационной матрицы, блок формирования управляющего вектора, отвечающий за фазирование антенной решетки в направлении прихода полезного сигнала и форму главного максимума диаграммы направленности, и блок формирования вектора весовых коэффициентов, а также необходимые связи между упомянутыми элементами. 5 ил.

Изобретение относится к области радиотехники. Заявленная приемо-передающая активная фазированная антенная решетка содержит m излучателей, подрешетки, делители, устройство управления, суммарный и разностный входы приемо-передающей активной фазированной антенной решетки, а также m/4 модулей приемо-передающих усилительных, делитель тестового сигнала и диаграммообразующий сумматор, при этом излучатели объединены попарно в линейки излучателей, две линейки излучателей и модуль приемо-передающий усилительный образуют подрешетку, каждый модуль приемо-передающий усилительный включает четыре приемо-передающих канала, два делителя, устройство управления и контроля, делитель тестового сигнала выполнен с возможностью осуществления равномерного распределения на каждый канал сигнала СВЧ в режиме калибровки, причем диаграммообразующий сумматор включает направленный ответвитель, устройство управления, m/4 фазовращателей с дискретом установки фазы СВЧ-сигнала 180°. Техническим результатом является создание приемо-передающей активной фазированной антенной решетки повышенной надежности с упрощенной схемой построения, формирующей суммарную и разностную диаграммы направленности и осуществляющей автономное управление и калибровку приемо-передающих каналов. 2 ил.

Изобретение относится к электронной технике, к антенным системам и может быть использовано в аэрологических радиозондах для приема навигационных сигналов спутниковых навигационных систем типа GPS/ГЛОННАС и др. Заявленная антенная система навигационного приемника аэрологического радиозонда содержит дипольную систему, образованную из двух пар перевернутых V-образных дипольных элементов, лежащих в перпендикулярных плоскостях, причем каждый диполь выполнен в виде двух вибраторов, симметрирующее устройство в виде короткозамкнутого мостика, линия питания - микрополосковая, а все элементы выполнены на двух печатных платах, которые расположены на общем основании с фильтром, собственно навигационным приемником GPS/ГЛОНАСС и драйвером с USB-интерфейсом. Техническим результатом является повышение точности измерения навигационных параметров аэрологических зондов в жестких динамических условиях полета. 1 табл., 2 ил.

Изобретение относится к микрополосковым антеннам, в частности к антенным системам. Заявлена антенная система, содержащая: антенную решетку, которая содержит диэлектрическую подложку прямоугольной формы; множество излучающих панелей, расположенных с определенным интервалом по длине диэлектрической подложки на ее верхней поверхности; и множество соединительных панелей на верхней поверхности диэлектрической подложки, расположенных в соответствии с множеством излучающих панелей, каждая из которых отходит от края диэлектрической подложки и заканчивается на заданном расстоянии от соответствующей излучающей панели; и решетку волноводно-рупорных излучателей, которая содержит металлическую пластину прямоугольной формы, обработанную таким образом, что в поперечном сечении она содержит множество прямоугольных отверстий, расположенных по длине прямоугольной металлической пластины; при этом нижняя часть каждого отверстия выполнена в виде прямоугольного волновода, а верхняя часть - в виде рупора; и желобок заданной глубины с двух сторон отверстий на верхней поверхности прямоугольной металлической пластины, который тянется в направлении расположения множества отверстий, при этом каждый прямоугольный волновод решетки волноводно-рупорных излучателей характеризуется такими же размерами, что и соответствующая ему излучающая панель, и каждый прямоугольный волновод соединен с соответствующей ему излучающей панелью. Техническим результатом является расширение частотного диапазона антенны. 6 з.п. ф-лы, 14 ил.

Изобретение относится преимущественно к спутниковым информационным системам. Способ включает формирование межспутниковой линии радиосвязи (МЛР) между космическими аппаратами (КА), расположенными в одной орбитальной плоскости. По МЛР последовательно передают сигналы с одного выбранного КА, осуществляющего связь с наземным комплексом, на остальные КА. При этом одна из антенных решеток приемо-передающего модуля каждого КА направлена на смежный КА, расположенный спереди по ходу, а другая решетка - на КА, расположенный сзади по ходу его орбитального движения. Антенные решетки имеют сканирующие диаграммы направленности в плоскости орбиты системы. В каждом сеансе связи определяют и запоминают параметры ориентации приемо-передающих модулей по тангажу и рысканию, при которых обеспечивается приемо-передающая зона МЛР. Эти параметры передают с выбранного КА на остальные КА. Техническим результатом изобретения является повышение оперативности радиосвязи и технологичности процессов управления спутниковой системой. 2 ил.

Изобретение относится к области антенной техники, в частности к антенным решеткам и системам. Целью настоящего изобретения является улучшение параметров ДН двухдиапазонной антенной решетки с одновременным достижением большей простоты и компактности конструкции. Указанная цель достигается за счет того, что в двухдиапазонной волноводно-щелевой антенной решетке, содержащей прямоугольные излучающие волноводы, образующие периодическую структуру из чередующихся волноводов нижнего и верхнего диапазона частот и наклонные излучающие щели на узких стенках излучающих волноводов нижнего диапазона, излучающая поверхность волноводов верхнего диапазона расположена ниже излучающей поверхности волноводов нижнего диапазона, а тыльные поверхности волноводов нижнего и верхнего диапазонов расположены в одной плоскости, при этом наклонные излучающие щели нижнего диапазона на узких стенках волноводов нижнего диапазона заходят на широкие стенки этих волноводов, излучающие щели верхнего диапазона выполнены в виде продольных смещенных от оси щелей на широких стенках волноводов верхнего диапазона, а на тыльных поверхностях излучающих волноводов размещены запитывающие волноводы нижнего и верхнего диапазонов, в широких стенках которых выполнены щели связи с излучающими волноводами нижнего и верхнего диапазонов соответственно. 4 ил.

Изобретение относится к технике сверхвысокой частоты (СВЧ) и предназначено для использования в фазированной антенной решетке (ФАР) проходного типа с круговой поляризацией К-диапазона в качестве управляющего элемента. Технический результат изобретения заключается в обеспечении компактности и симметричности его конструкции без увеличения его поперечных размеров при уменьшении разброса фазовых характеристик и повышении их стабильности. Элемент ФАР содержит размещенный в корпусе 1 волноводный ферритовый фазовращатель с магнитной памятью, выполненный с излучателями 2 на ферритовом стержне 3 в виде тела вращения с круглым поперечным сечением и частичной металлизацией боковой поверхности, на металлизированном участке 4 которого расположена обмотка 5 управления и два магнитопровода 6 П-образной формы, и закрепленную на корпусе 1 печатную плату 7. Корпус 1 выполнен с частью полого цилиндра в форме сектора с углом 280-290 градусов для соединения с печатной платой 7 и снабжен торцевыми фиксирующими втулками 8 из металла с круглым отверстием под установку ферритового стержня 3. Излучатели 2 выполнены за одно целое с ферритовым стержнем 3 в виде симметричных не металлизированных ступенчатых переходов на его концах. Печатная плата выполнена с элементами управления обмоткой 2 управления (намагничивания) фазовращателя с габаритами, не выходящими за пределы корпуса в горизонтальном направлении. Элемент ФАР имеет всего четыре типа деталей, что обеспечивает максимальную простоту его изготовления и сборки. Малогабаритный элемент ФАР проходного типа имеет устойчивую симметричную конструкцию с малым весом. 5 з.п. ф-лы, 5 ил.
Наверх