Способ ингибирования микроорганизмов в целлюлозно-бумажной промышленности

Изобретение может быть использовано в целлюлозно-бумажной промышленности для ингибирования и контроля роста микроорганизмов в технических и оборотных водах. Для осуществления способа в обрабатываемую воду вводят предварительно приготовленную смесь бромхлордиметилгидантоина и гипохлорита натрия с концентрацией бромхлордиметилгидантоина от 0,1 до 7,5 г/л и их соотношением в пересчете на активный хлор от 1:15 до 15:1. Способ обеспечивает повышение эффективности ингибирования роста микроорганизмов при одновременном снижении расхода реагентов. 10 пр.

 

Изобретение относится к ингибированию роста микроорганизмов в свежей воде и оборотных водах бумажного производства и применяется для контроля роста микроорганизмов в промышленных водах.

Неконтролируемый рост микроорганизмов, таких как бактерии, грибки и водоросли, в технологической воде приводит к быстрому накоплению микробиологических отложений и образованию так называемой биопленки. Среди других видов отложений, возникающих в процессе производства бумаги, микробиологические занимают одно из первых мест по скорости роста, поэтому контроль роста микроорганизмов особенно важен. Накопление отложений на внутренней поверхности трубопроводов, бассейнов для воды, оборудования машины отрицательно влияют на качество произведенной продукции, появляются обрывы полотна, дыры и пятна на продукции. При значительном накоплении отложений на оборудовании машину необходимо периодически останавливать и чистить. Частые остановы на очистку приводят к снижению производительности и снижению рентабельности производства.

Традиционно, на бумажных фабриках, свежая вода, используемая при производстве бумаги и картона, дезинфицируется при помощи гипохлорита натрия (NaOCl). При циркуляции оборотной воды бумажных фабрик определенное содержание органических веществ, взаимодействие NaOCl с этими органическими компонентами может приводить к образованию вредных для окружающей среды органических галогенпроизводных. Кроме того, бактерицидная эффективность NaOCl в таких системах резко снижается из-за расходования гипохлорита натрия на окисление этих органических компонентов.

По этой причине были изучены различные способы снижения образования галогенпроизводных путем замены гипохлорита на галогенпроизводные гидантоина например бром-хлор-диметил-гидантоином (BCDMH). BCDMH был испытан на задержку роста микроорганизмов в процессе производства бумажной продукции и в циркуляции оборотной воды, но существенных результатов достигнуто не было, так как он оказался эффективен только при дезинфекции чистой воды и мало эффективен для оборотной.

Известен способ использования гидантоина и гипохлорида натрия в целлюлозно-бумажной промышленности (патент EP 785909, 2007), где предлагается комбинированное использование диметилгидантоина (DMH) и гипохлорита натрия (NaOCl). В этом случая при смешивании этих веществ образуется дихлордиметилгидантоин, который ингибирует рост микроорганизмов, однако, эффективность такой системы недостаточна и мало отличается от случая, когда используется чистый дихлордиметилгидантоин.

Известны галогенные композиции для очистки воды (патент США No.5641520, 1995 г.), в котором описывается метод создания дезинфицирующего раствора из HBr, NaOCl и диалкид-гидантоина. Согласно описанию, диалкид-гидантоин можно добавлять в форме бром-хлор-диметил-гидантоина (BCDMH). Предварительно подготовленный таким методом раствор используется, в частности, для обработки целлюлозно-бумажной оборотной воды и технической воды. Недостаток такого подхода состоит в необходимости приготовления рабочего раствора путем смешивания трех компонентов, для чего используются дополнительная специальная емкость-накопитель и дополнительный раствор HBr, что приводит к усложнению и удорожанию процесса.

Ближайшим аналогом является способ ингибирования роста микроорганизмов (патент США №20080203034, 2008 г.), где описано раздельное добавление BCDMH и окислителя NaOCl в свежую и/или циркулирующую воду, используемую в процессе производства бумаги и картона. Непрерывное раздельное добавление окислителя и источника брома позволяет достичь равномерного распределения и концентрации, замедляющих рост химических элементов в технической воде. В описанном техническом решении бром-хлор-диметил-гидантоин добавлялся до или непосредственно после добавления окислителя NaOCl.

Задачей изобретение является повышение эффективности ингибирования роста микроорганизмов в промышленной воде при одновременном снижении расхода реагентов.

Поставленная задача решается способом ингибирования роста микроорганизмов в целлюлозно-бумажной промышленности, включающем добавление гипохлорита натрия и раствора бром-хлор-диметил-гидантоина в техническую воду производства деятельности целлюлозно-бумажного комбината, отличающимся тем, что в техническую воду подается предварительно приготовленная смесь бром-хлор-диметил-гидантоина и гипохлорита натрия с концентрацией бром-хлор-диметил-гидантоина от 0,1 до 7,5 г/л и их соотношением в пересчете на активный хлор от 1:15 до 15:1.

Процесс смешивания бром-хлор-диметил-гидантоина и гипохлорита натрия может производиться в промежуточной емкости-накопителе или в смесителе непосредственно перед подачей как в статическом, так и динамическом смесителе, а также иными способами.

Предварительное смешивание гипохлорита натрия и раствора бром-хлор-диметил-гидантоина позволяет стабилизировать эти оба компонента и снизить их расход.

В качестве образца сравнения использовалась дистиллированная вода. Дозировку компонентов выбирали таким образом, чтобы содержание активного хлора в образце сравнения после выдержки составляло заданную величину. В опытах, где в один сосуд добавляли два различных продукта, после добавления первого продукта сосуд закрывали, образец перемешивали 3 минуты, после чего добавляли второй агент. Образцы выдерживали в течение 40 минут при слабом перемешивании, что примерно соответствует короткому циклу водооборота бумагоделательной машины. После этого в каждом из образцов по ГОСТ 18190-72 определяли количество остаточного активного хлора. Концентрации приведены в мг/л.

Пример 1. Соотношение BCDMH и NaOCl в пересчете на активный хлор (1:15). Содержание остаточного активного хлора в образце сравнения - 5.0-5.1. Содержание остаточного активного хлора при раздельном добавлении BCDMH и NaOCl - 1.8-2.0. Содержание остаточного активного хлора при добавлении предварительно приготовленной смеси BCDMH и NaOCl - 2.0-2.3.

Пример 2. Соотношение BCDMH и NaOCl в пересчете на активный хлор (1:1). Содержание остаточного активного хлора в образце сравнения - 4.9-5.0. Содержание остаточного активного хлора при раздельном добавлении BCDMH и NaOCl - 2.3-2.5. Содержание остаточного активного хлора при добавлении предварительно приготовленной смеси BCDMH и NaOCl - 2.6-2.7.

Пример 3. Соотношение BCDMH и NaOCl в пересчете на активный хлор (15:1). Содержание остаточного активного хлора в образце сравнения - 4.9-5.1. Содержание остаточного активного хлора при раздельном добавлении BCDMH и NaOCl - 2.1-2.2. Содержание остаточного активного хлора при добавлении предварительно приготовленной смеси BCDMH и NaOCl - 2.2-2.4.

Пример 4. Соотношение BCDMH и NaOCl в пересчете на активный хлор (1:15). Содержание остаточного активного хлора в образце сравнения - 0.6-1. Содержание остаточного активного хлора при раздельном добавлении BCDMH и NaOCl - менее 0.3. Содержание остаточного активного хлора при добавлении предварительно приготовленной смеси BCDMH и NaOCl - 0.3-0.8.

Пример 5. Соотношение BCDMH и NaOCl в пересчете на активный хлор (1:1). Содержание остаточного активного хлора в образце сравнения - 1.0-1.2. Содержание остаточного активного хлора при раздельном добавлении BCDMH и NaOCl - 0.3-0.5. Содержание остаточного активного хлора при добавлении предварительно приготовленной смеси BCDMH и NaOCl - 0.4-0.9.

Пример 6. Соотношение BCDMH и NaOCl в пересчете на активный хлор (15:1). Содержание остаточного активного хлора в образце сравнения - 0.5-1.0. Содержание остаточного активного хлора при раздельном добавлении BCDMH и NaOCl - менее 0.3. Содержание остаточного активного хлора при добавлении предварительно приготовленной смеси BCDMH и NaOCl - 0.4-0.8.

Пример 7. Соотношение BCDMH и NaOCl в пересчете на активный хлор (1:15). Содержание остаточного активного хлора в образце сравнения - 25-27. Содержание остаточного активного хлора при раздельном добавлении BCDMH и NaOCl - менее 20-21. Содержание остаточного активного хлора при добавлении предварительно приготовленной смеси BCDMH и NaOCl - 21-23.

Пример 8. Соотношение BCDMH и NaOCl в пересчете на активный хлор (1:1). Содержание остаточного активного хлора в образце сравнения - 26-27. Содержание остаточного активного хлора при раздельном добавлении BCDMH и NaOCl - 20-21. Содержание остаточного активного хлора при добавлении предварительно приготовленной смеси BCDMH и NaOCl - 23-24.

Пример 9. Соотношение BCDMH и NaOCl в пересчете на активный хлор (15:1). Содержание остаточного активного хлора в образце сравнения - 27-28. Содержание остаточного активного хлора при раздельном добавлении BCDMH и NaOCl - менее 22-23. Содержание остаточного активного хлора при добавлении предварительно приготовленной смеси BCDMH и NaOCl - 23-25.

Пример 10. Испытания проводились на опытной бумагоделательной машине, имитирующей цикл производства бумаги. Ввод биоцидов осуществлялся непрерывно в свежую воду. Контроль эффективности осуществлялся по количеству остаточного хлора после сетки бумагоделательной машины. Производительность машины и состав массы не менялся при испытании всех образцов. Скорость БДМ 5 м/мин при ширине 3 м. Раздельный ввод гипохлорита натрия и дихлордиметилгидантоина осуществлялся в трубопровод свежей воды на расстоянии 10 см. При подаче смеси использовали или предварительно приготовленную смесь гипохлорита натрия и бромхлордиметилгидантоина, или проводили смешение непосредственно перед подачей в статическом или динамическом смесителе. Определение содержания остаточного активного хлора определяли 1 раз в 30 минут. Соотношение BCDMH и NaOCl в пересчете на активный хлор (1:1). Дозировка 3.5 кг биоцидов на 1000 м3. Содержание остаточного активного хлора при раздельном добавлении BCDMH и NaOCl - 1.9-2.3. Содержание остаточного активного хлора при добавлении предварительно приготовленной смеси BCDMH и NaOCl - 2.2-2.7.

Общая эффективность при подаче предварительно приготовленной смеси гипохлорита натрия и бром-хлор-диметил-гидантоина выражается в увеличении остаточного хлора в оборотной воде при сохранении расхода смеси по сравнению с количеством остаточного хлора при раздельном добавлении компонентов. Кроме того, подача предварительно приготовленной смеси позволяет полностью избежать скачков концентраций биоцидов в технической воде.

Таким образом, предварительно приготовленная смесь BCDMH и NaOCl приводит к увеличению количества остаточного хлора. При этом достигается снижение расхода реагентов при сохранении содержания остаточного хлора или увеличение остаточного хлора, а также более эффективное ингибирование роста микроорганизмов при сохранении дозировок.

Способ ингибирования роста микроорганизмов в целлюлозно-бумажной промышленности, включающий добавление гипохлорита натрия и раствора бромхлордиметилгидантоина в техническую воду производства деятельности целлюлозно-бумажного комбината, отличающийся тем, что в техническую воду подается предварительно приготовленная смесь бромхлордиметилгидантоина и гипохлорита натрия с концентрацией бромхлордиметилгидантоина от 0,1 до 7,5 г/л и их соотношением в пересчете на активный хлор от 1:15 до 15:1.



 

Похожие патенты:
Изобретения могут быть использованы в машиностроительной отрасли и гальванотехнике при утилизации хромсодержащих и травильных стоков. Для осуществления способов смешивают хромсодержащие и травильные стоки для простой стали и по первому варианту: в реакционную емкость с хромсодержащими и травильными стоками дополнительно вносят стружку из простой стали в количестве не менее 1/3 объема и выдерживают при периодическом перемешивании до достижения pH порядка 5,5 и образования осадка, содержащего соединения железа и хрома.

Изобретение относится к обработке сточных вод с использованием установки, использующей тепловую энергию, получаемую при прямом сжигании углеводородного топлива и/или путем использования тепловой энергии отработавших газов, образующихся при сжигании углеводородов в двигателях.

Изобретение относится к устройствам для обработки воды и, более конкретно, к бытовым картриджам для обработки воды. Предложен картридж (1) для обработки воды, имеющий основание (8), в котором выполнена полость (10).

Изобретение относится к области физической химии и электрохимии, а именно к техническим средствам для электрохимической активации воды с целью придания ей окислительно-восстановительных свойств.

Изобретение относится к способу и устройству для изменения структуры ила, в частности органического ила, образуемого в результате очистки сточных вод. Способ изменения структуры органического ила, подвергаемого сушке, включает этап, согласно которому органический ил в форме влажного твердого тела с процентным содержанием сухого вещества не менее 20% по весу от общего веса ила подвергают воздействию электрического поля, образуемого постоянным током, величиной между 30 В/0,01 м и 100 В/0,01 м.

Изобретение относится к фильтрам для очистки воды, содержащим активированный уголь с полимерным покрытием, и способам их изготовления. Способ получения активированного угля с покрытием включает получение частиц активированного угля со средним размером примерно до 100 мкм и нанесение покрытия на частицы активированного угля путем распыления капель раствора катионного полимера на поверхность частиц активированного угля, причем раствор катионного полимера включает от примерно 2 до примерно 4 мас.% катионного полимера, размер капель составляет от примерно 15 до примерно 55 мкм, при этом катионный полимер содержит полидиаллилдиметиламмоний хлорид (pDADMAC), имеющий среднемассовую молекулярную массу (Mw) до примерно 200000 г/моль и среднечисленную молекулярную массу (Мn) до примерно 100000 г/моль.

Изобретение относится к обработке питьевой воды озонированием и может быть использовано в качестве устройств, диспергирующих пузырьки озоно-воздушной смеси в обрабатываемую воду.
Изобретение может быть использовано в медицине и сельском хозяйстве. Способ включает обработку исходного раствора постоянным электрическим током на установке с непроточным диафрагменным электролизером с загрузкой его в катодную и анодную камеры.

Изобретения могут быть использованы на нефтехимических предприятиях для обезвреживания сточных вод производства акриловой кислоты, содержащих медь. Способ включает смешение очищаемых сточных вод и сернисто-щелочного стока, с последующим отделением образующегося осадка, при этом отношение количества молей сульфид-ионов к количеству молей меди составляет не менее 4,30 и отношение массы очищаемого стока к массе смешиваемого сернисто-щелочного стока находится в пределах (3-1):1.

Изобретение относится к устройствам для доочистки водопроводной, артезианской, колодезной и другой условно питьевой воды. Водоочиститель для получения талой питьевой воды включает расположенные последовательно в одном продольном сосуде 1 зоны: замораживания воды с кольцевой морозильной камерой 2, вытеснения примесей из фронта льда и концентрации примесей в виде рассола, перехода воды из твердого состояния в жидкое с кольцевым нагревательным элементом 7.

Группа изобретений относится к медицине, а именно к дезинфицирующим системам для медицинских устройств. Для этого используют раствор пероксида водорода для дезинфекции контактных линз.
Изобретение относится к синергетической противомикробной композиции, включающей флуметсулам или диклозулам и пиритион цинка, где массовое соотношение флуметсулама и пиритиона цинка составляет от 8:1 до 1:7, а массовое соотношение диклозулама и пиритиона цинка составляет от 15:1 до 1:2.
Изобретение относится к области сельского хозяйства, в частности к растениеводству. В способе выращивают рассаду томата с поливом водой.
Изобретение относится к способам стимулирования роста растений. Осуществляют обработку посадочного материала путем замачивания семян перед посевом в течение 24 часов.
Изобретение относится к способу бактериальной стабилизации водного состава. Указанный состав включает по меньшей мере один минерал и по меньшей мере один штамм бактерий, которые являются устойчивыми и/или толерантными к альдегид-образующим и/или альдегид-содержащим биоцидам и/или разлагают эти биоциды.
Изобретение относится к способам сохранения углеводного сырья от микроорганизмов. Осуществляют контакт углеводного сырья при единичной операции.
Изобретение относится к средствам защиты сельскохозяйственных культур, а именно к фунгицидным композициям. Композитный препарат фунгицидного действия содержит действующее вещество, в качестве которого используют комплекс, включающий фунгицид стробилурины или триазолы в концентрации 0,01-3000 ppm и хемосенсибилизатор в концентрации 1-1000 ppm, в качестве которого используют 2,3-диоксибензальдегид (2,3-ДОБА), 4-оксибензальдегид (4-ОБА), тимол или фильтрат культуральной жидкости (ФКЖ) штамма гриба Fusarium sambucinum FS-94.
Изобретение относится к способу физической обработки растений электрическим зарядом, в котором перенос электростатического заряда осуществляют с использованием воды, обработанной способом электростатической индукции.

Изобретение относится к биоцидам. Биоцидная композиция содержит 2,2-диброммалонамид и окисляющий биоцид, выбранный из группы, состоящей из монохлорамина, бромхлордиметилгидантоина, бромноватистой кислоты, пероксида водорода, дихлоризоцианурата, трихлоризоцианурата и диоксида хлора.

Изобретение относится к технологии электроформования нановолокон с диаметром, не превышающим 500 нм, и процессам, протекающим при формовании нановолокон в камере формовочного устройства.

Изобретение относится к сельскому хозяйству. Агрохимический препарат содержит агрохимически активное вещество и полимерный дисперсант.
Наверх