Устройство оперативного мониторинга технического состояния высоковольтных линий электропередач

Использование: в области электротехники. Технический результат - повышение точности и надежности устройства, повышение его информативности и оперативности принятия решений. Устройство оперативного мониторинга технического состояния высоковольтных линий электропередач (ЛЭП) содержит установленные на каждой фазе линии электропередачи между двумя опорами по меньшей мере один датчик ускорений, которому присваивается свой адрес, определяющий его координаты и место положения пролета ЛЭП, датчик температуры и датчик влажности, связанные со входами микропроцессора, в котором на основе сигналов от упомянутых датчиков формируется информация с указанием адреса пролета ЛЭП о начале налипания снега или образования льда на проводах ЛЭП, об амплитудах раскачивания проводов или обрыве провода. При этом выход микропроцессора соединен с приемопередатчиком, предназначенным для связи с диспетчерским пультом, а питание электронных схем устройства осуществляется блоком питания, выполненным в виде магнитопровода, установленного на высоковольтном проводе ЛЭП, служащем первичной обмоткой трансформатора, который снабжен вторичной обмоткой трансформатора, подающей питание на электронные схемы устройства. 6 ил.

 

Изобретение относится к техническому обслуживанию высоковольтных линий электропередач (ЛЭП) и может быть использовано для определения пролетов ЛЭП с местом обрыва или замыкания проводов ЛЭП на землю, а так же определения пролетов ЛЭП с обледенением и налипанием на них снега.

Известно устройство для контроля электроэнергетических систем (RU 2143165, МПК H02J 13/00, G01R 15/06, 1999), которое содержит подключенный к высоковольтной сети высоковольтный измерительный модуль, включающий в себя магнитно-связанный с высоковольтной сетью пассивный преобразователь сетевого тока с резисторной нагрузкой и/или электрически связанный с высоковольтной сетью пассивный преобразователь сетевого напряжения. Высоковольтный измерительный модуль дополнительно содержит блок вторичного электропитания с периодически заменяемым аккумулятором, включающий выпрямительный мост, стабилитрон и диод, к которому подключены магнитно-связанный с высоковольтной сетью низковольтный питающий трансформатор тока и/или электрически связанный с высоковольтной сетью и включенный в цепь пассивного преобразователя сетевого напряжения низковольтный питающий трансформатор напряжения, активный преобразователь сигналов измерительной информации на основе микропроцессора, соединенный с пассивным преобразователем сетевого тока и/или пассивным преобразователем сетевого напряжения и блоком вторичного электропитания и имеющий радиочастотный и/или оптический выходы для преобразованных сигналов измерительной информации.

Недостатками устройства являются использование низковольтного питающего трансформатора напряжения с заземленным выводом, что увеличивает стоимость устройства и понижает надежность его функционирования, необходимость создания и эксплуатации системы высокочастотной связи для передачи на пункт сбора измерительной информации, а также использование периодически заменяемых аккумуляторов в блоке питания.

Задачей изобретения является создание простого и надежного устройства, обеспечивающего оперативное и достаточно точное определение места обрыва высоковольтных линий электропередач, их состояния и характеристик.

Технический результат - повышение точности и надежности устройства, повышение его информативности.

Технический результат достигается за счет того, что устройство мониторинга технического состояния высоковольтной линии электропередачи содержит по меньшей мере один акселерометр, установленный на каждой фазе линии электропередачи между двумя опорами, снабженный блоком питания и связанный с микропроцессором, соединенным с приемопередатчиком, предназначенным для связи с диспетчерским пультом.

Частным существенным признаком является то, что устройство снабжено датчиком температуры и датчиком влажности, каждый из которых связан с соответствующим дополнительным входом микропроцессора, формирующего информацию о начале образованиия льда на проводах.

Сущность изобретения поясняется чертежами, на которых представлены:

на фиг.1 - общий вид размещения акселерометров и датчиков температуры и влажности,

на фиг.2 - общий вид размещения акселерометров (А) и случай обрыва провода,

на фиг.3 - блок-схема устройства,

на фиг.4 - примеры выполнения акселерометра с емкостным датчиком ускорения,

на фиг.5 - примеры выполнения акселерометра с пьезоэлектрическим датчиком ускорения,

на фиг.6 - пример выполнения блока питания для электронной схемы устройства.

Предлагаемое устройство оперативного мониторинга технического состояния высоковольтных линий электропередач предназначено для мониторинга состояния высоковольтных линий от 1000 В до 750 кВ.

Для оперативного определения места обрыва высоковольтных линий электропередач в каждом пролете ЛЭП между опорами 4 (Фиг.1 и 2) на проводах фаз А, В и С закрепляются датчики положения провода - акселерометры 3 (Фиг.2). Каждому акселерометру присваивается свой адрес, определяющий место положения пролета 1 (Фиг.1) ЛЭП и его координаты в условных единицах или в формате системы GPS или Глонасс.

Принцип работы электронной схемы устройства (Фиг.3) заключается в следующем.

Выходные сигналы от датчика ускорения (акселерометра, например, MMA3202D) 8 (Фиг.3) поступают на соответствующие входы управляющего процессора 5 (Фиг.3), например микропроцессора Atmega 2560-16AU, где информация обрабатывается и поступает в приемопередатчик 6 (Фиг.3) и далее по радиоканалу последовательно от блока к блоку передается на пульт диспетчера 2 (Фиг.1).

Для замера температуры и определения начала налипания снега или образования льда на проводах при температурах близких к 0°С служат термодатчик 11 (Фиг.3) (например, HEL776-A-T-1) 8, электронная схема замера температуры 10 (Фиг.3) и датчик влажности 9 (Фиг.3) (например, датчик дождя TSW01). Информация о начале образования льда на проводах также обрабатывается управляющим микропроцессором 5 (Фиг.3) и далее передается на пульт диспетчера 2 (Фиг.1)

Выходные сигналы от датчика ускорения (акселерометра) 8 (Фиг.3), пропорциональные амплитуде раскачивания проводов, поступают на соответствующие входы микропроцессора 5 (Фиг.3). В микропроцессоре сигналы сравниваются с заложенными заранее в программу величинами в соответствии с установленным алгоритмом. Например, если механическое воздействие на провод вызывает по оси X колебание проводов до какой-то величины N см, то микропроцессор выдает на пульт управления диспетчера команду о нормальных амплитудах. Если эти амплитуды больше заданного значения N+n см, то выдается команда о завышенных амплитудах с указанием адреса пролета ЛЭП и т.д. Если происходит обрыв проводов ((Фиг.2) или их провисание по оси Y, то по такому же принципу микропроцессор 5 (Фиг.3) передает на пульт диспетчера информацию о происшедшем событии. Например, если температура окружающей среды находится в пределах 0°C и датчик влажности 9 (Фиг.3) фиксирует наличие осадков (дождь, снег, туман), и при этом имеет место провисание проводов, то это говорит о возможном налипании снега на проводах или их обледенении, что и передается на пульт диспетчера 2 (Фиг.1).

При обрыве провода (Фиг.2) фиксируется резкое изменение угла наклона провода и также передается информация на пульт диспетчера 2 (Фиг.1), независимо от температуры окружающей среды и наличия осадков.

Питание электронных схем осуществляется от блока питания 7 (Фиг.3).

Датчики ускорений 8 (Фиг.3) преобразуют приложенное к датчику статическое или динамическое ускорение в какой-ибо электрический сигнал или электрический параметр (С, Uвых). Примером таких датчиков могут служить емкостные и пьезоэлектрические датчики ускорений (Фиг.4 и Фиг.5). При воздействии ускорения на емкостной датчик (Фиг.4) происходит смещение чувствительного элемента за счет инерции массы (m) 13 (Фиг.4), что приводит к соответствующему изменению емкости конденсаторов C1 и C2 12 (Фиг.4) емкостного датчика ускорения, а также за счет смещения массы (m) 15 (Фиг.5) происходит изгиб пьезоэлемента 14 и изменение выходного напряжения Uвых пьезоэлектрического датчика.

Далее выходные сигналы датчиков преобразуются микропроцессорными устройствами и могут применяться для определения наклона, движения, вибрации, удара и других параметров, необходимых для контроля состояния тех или иных объектов, в том числе и проводов ЛЭП.

При обрыве одного или даже двух проводов и прекращении работы устройств положения передача информации на пульт диспетчера 2 (Фиг.1) от других акселерометров продолжает поступать через приемопередатчики, работающие на оставшихся фазах.

Питание электронной схемы устройства осуществляется блоком питания (Фиг.6), который работает при протекании тока по проводам ЛЭП. Пример выполнения блока питания представлен на Фиг.6. На высоковольтный провод ЛЭП 16 (Фиг.6) устанавливается магнитопровод 17 (Фиг.6) с катушкой трансформатора 18 (Фиг.6), первичной обмоткой которого является высоковольтный провод 16 (Фиг.6), а вторичной катушка трансформатора 14 (Фиг.6). При протекании тока по высоковольтному проводу на вторичной обмотке трансформатора наводится ЭДС, достаточная для питания электронных схем. При больших значениях тока, протекающего по высоковольтному проводу 16 (Фиг.6), магнитопровод 17 (Фиг.6) трансформатора насыщается, а напряжение на вторичной обмотке увеличивается незначительно.

В случае обрыва линий электропередач блок питания 7 (Фиг.3) способен обеспечить передачу информации в течение некоторого времени, используя накопленный конденсаторами большой емкости заряд энергии, при этом батареек или аккумуляторов для питания устройства в процессе эксплуатации не требуется (применение батареек возможно только в процессе наладки).

Таким образом, предлагаемое устройство мониторинга технического состояния высоковольтной линии электропередачи может контролировать и передавать информацию на пульт диспетчера по следующим параметрам и возможным событиям:

оперативное определение места обрыва высоковольтных линий электропередач в каждом пролете и на каждой фазе проводов А, В и С;

- определение величины раскачивания проводов при воздействии на них ветра;

- определение пролетов ЛЭП с обледенением и налипанием на них снега;

- определение места механического воздействия на провода, вызванного падением на них деревьев и других предметов;

- контроль температуры проводов ЛЭП, вызванной изменением токовых нагрузок в системе, а также разогрева проводов, вызванного токами при борьбе с обледенением и налипанием на них снега:

- оределение места короткого замыкания (КЗ) проводов и его характеристика (КЗ фазы на землю, междуфазное КЗ и.т.д.);

- определение других величин механических воздействий на провода ЛЭП, вызванных природными явлениями.

Устройство оперативного мониторинга технического состояния высоковольтных линий электропередач (ЛЭП), содержащее установленные на каждой фазе линии электропередачи между двумя опорами по меньшей мере один датчик ускорений, которому присваивается свой адрес, определяющий его координаты и место положения пролета ЛЭП, датчик температуры и датчик влажности, связанные со входами микропроцессора, в котором на основе сигналов от упомянутых датчиков формируется информация с указанием адреса пролета ЛЭП о начале налипания снега или образования льда на проводах ЛЭП, об амплитудах раскачивания проводов или обрыве провода, при этом выход микропроцессора соединен с приемопередатчиком, предназначенным для связи с диспетчерским пультом, а питание электронных схем устройства осуществляется блоком питания, выполненным в виде магнитопровода, установленного на высоковольтном проводе ЛЭП, служащем первичной обмоткой трансформатора, который снабжен вторичной обмоткой трансформатора, подающей питание на электронные схемы устройства.



 

Похожие патенты:

Использование: в области электроэнергетики. Технический результат - повышение точности измерения фазовых углов между векторами тока и напряжения в контролируемой точке высоковольтной сети и расширенные функциональные возможности.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа путем получения информации об аварийном отключении, успешном автоматическом повторном включении и последующем ложном отключении головного выключателя линии электропередачи.

Изобретение относится к области электротехники и может быть использовано для оценки корректности функционирования автоматических регуляторов возбуждения в составе бесщеточных систем возбуждения генераторов электроэнергетических систем.

Изобретение относится к контролю провеса объектов, в частности к контролю провеса географически протяженных объектов, в частности проводов линий электропередач. Устройство может быть прикреплено к контролируемому объекту (22A, 22B), при этом оно содержит физический датчик (12), блок обработки данных (14), функционально соединенный с датчиком, и средство связи для беспроводной передачи данных из блока обработки данных на внешнее устройство.

Изобретение относится к области электротехники. Технический результат - повышение надёжности и точности контроля.

Ипользование: в области электроэнергетики. Технический результат - повышение надежности функционирования сети.

Изобретение относится к системе и способу для администрирования электрораспределительной сетью и, более конкретно, к системе для фильтрации команд устройств местной электрораспределительной сети на основе заданных критериев.

Изобретение относится к области электроэнергетики и может быть использовано для регистрации параметров переходных режимов в электроэнергетических системах (ЭЭС).

Изобретение относится к электроэнергетике и может быть применено при создании новых и модернизации существующих электрических подстанций в соответствии с концепцией цифровой подстанции.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа путем контроля ложного отключения и успешного автоматического повторного включения головных выключателей линий электропередач подстанции.

Изобретение относится к счетчикам, измеряющим ресурсы и, в частности, относится к системам измерения ресурса энергопотребления, снабженным устройством записи данных и выполненным с возможностью переноса собранных данных в базу данных и к способу использования счетчика энергии для интеллектуального энергопотребления. Техническим результатом является создание автоматической энергоизмерительной системы сбора данных от измерительных приборов, расположенных вблизи точки использования или потребления, которая эффективно мотивирует потребителя улучшать свое поведение при использовании энергии, не пренебрегая при этом приоритетами пользователя. Предложена система измерения ресурса, содержащая: конечное устройство (25), потребляющее ресурс энергопотребления для использования в здании (2) или в уличной осветительной системе, причем устройство содержит блок обнаружения, который генерирует информацию состояния и индикатор полезности (эффективности использования); интеллектуальный счетчик (20), содержащий схему связи c интерфейсом, выполненным с возможностью приема от упомянутого устройства информации состояния и упомянутого индикатора полезности; измерительное устройство, подключенное к среде (17), которая доставляет ресурс на упомянутое устройство; и управляющую схему, подключенную к измерительному устройству, для сбора данных потребления ресурса, причем управляющая схема подключена к схеме связи и выполнена с возможностью генерации данных мониторинга, подлежащих передаче в защищенном режиме на сервер (10), после обработки информации состояния и упомянутого индикатора. Данные мониторинга используются при определении тарифов на потребление, для стимулирования использования энергосберегающих устройств. 3 н. и 12 з.п. ф-лы, 3 ил.

Изобретение относится к объединяющему блоку для автоматизации подстанции. Техническим результатом является повышение оперативной гибкости и снижение сложности высокоуровневых архитектур системы автоматизации подстанции, а также улучшение мониторинга качества энергии и устойчивости электрораспределительной сети. Предложен объединяющий блок (100) для автоматизации подстанции, содержащий по меньшей мере один входной интерфейс (110a, 110b) для приема входных данных (ID), характеризующих по меньшей мере одно напряжение и/или ток, связанные с компонентом энергетической системы (200), при этом объединяющий блок (100) содержит средство (156) синхронизации времени, которое содержит интерфейс с внешней сетью синхронизации, работающей согласно одному из стандарта B Межотраслевой группы по измерительным средствам (IRIG), стандарта 1PPS или стандарта 1588 Института инженеров по электротехнике и электронике (IEEE). Объединяющий блок (100) выполнен с возможностью реализации логических узлов (TCTR, TVTR) согласно стандарту 61850-7 Международной электротехнической комиссии (IEC), а также привязки информации, поступающей по меньшей мере на один из логических узлов (TCTR, TVTR) и/или из него, к протоколу связи IEC 61850-9-2 - «Выборочные измеренные значения» (SMV). 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к подаче электроэнергии к электрическим сетям, контактирующим с токоприемниками транспортных средств. Предложен способ управления системой электроснабжения железных дорог, которая включает в себя датчики электрических и неэлектрических величин, локальные контроллеры исполнительных устройств и управляющие контроллеры, содержащие вычислительные средства. Управляющие контроллеры содержат средства прогнозирования изменений параметров режима и средства обучения на основе оперативной оценки результатов управления и разделены по функциональному назначению. При этом управляющие контроллеры, локальные контроллеры исполнительных устройств, центр управления и блок данных оценивания состояния электрической сети подключены по своим протоколам к среде обмена данными, которая содержит обновляемую виртуальную модель электрической сети с изменяемой зоной ответственности на основе заданной чувствительности действий исполнительных устройств к параметрам режима. Через среду обмена данными осуществляется координация управляющих и локальных контроллеров между собой. Технический результат заключается в повышении эффективности и расширении функциональных возможностей управления системой электроснабжения железных дорог. 3 ил.

Изобретение относится к системам, управляемым вычислительными устройствами. Интеллектуальный щит переменного тока для контроля и управления потреблением питания в цепи для домашней автоматизации содержит: множество встроенных контроллеров для измерения, контроля или управления одним или более из электрического напряжения, тока, потребления мощности, генерации мощности и мощности нагрузки по меньшей мере одного электрического устройства. При этом множество встроенных контроллеров имеют отладочный порт для отладки программного обеспечения. Управляющий встроенный контроллер соединен с одним или более из упомянутого множества встроенных контроллеров посредством интерфейсов CAN-High и CAN-Low для связи. При этом управляющий встроенный контроллер имеет Интернет-соединение, которое используется для программного включения и выключения присоединенных нагрузок. Технический результат заключается в управлении и контроле электроэнергии в каждой цепи в доме. 4 з.п. ф-лы, 2 ил.

Использование: в области электротехники для дистанционного управления удаленными друг от друга электропотребителями путем передачи команд управления по силовой сети напряжением до 1000 В. Технический результат заключается в обеспечении как поочередного, так и совместного управления несколькими потребителями. Согласно способу включают на входе четырехпроводной линии электропередачи в рассечку нулевого провода источник изменяемой по величине и (или) по фазе ЭДС, а на выходе линии по изменению фазных напряжений подаются команды для управления электропотребителями. 4 ил.

Изобретение относится к области транспорта и может быть использовано для разогрева потребителей в транспортном средстве. Техническим результатом является уменьшение потерь мощности потребления. В способе и устройстве для управления мощностью электрических потребителей (34, 36) потребители (34, 36) последовательно расположены в электрической цепи (30), и по меньшей мере к одному соединению (50) между любыми двумя потребителями (34, 36) примыкает линия (52) ответвления, которую посредством связанного с ней ключевого устройства, содержащего по меньшей мере один ключ (38, 40, 42, 44) для управления мощностью, подключают к напряжению (46) сети и/или к массе (48). 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к информационно-измерительной и вычислительной технике и может быть использовано для оценки предельных режимов электрических систем на основе их расчета в заданном направлении изменения мощностей. Технический результат заключается в повышении быстродействия устройства при определении предельных режимов электрических систем. Такой результат достигается за счет того, что устройство содержит группу блоков оперативной памяти, блок сбора данных и блок памяти, блок оценки предельных режимов, который выполнен в виде последовательно соединенных вычислителя вектора множителей Лагранжа, вычислителя предельного приращения коэффициента загрузки, вычислителя знака определителя матрицы потокораспределения, вычислителя приращений и коррекции, вычислителя проверки сходимости и вычислителя бифуркации. 2 ил.

Изобретение относится к электрооборудованию. Конфигурируемый базовый электрический элемент для формирования выходных сигналов электрического оборудования содержит процессорные средства для выполнения конфигурируемой функции, чтобы сформировать выходные сигналы объекта электрического оборудования. Процессорные средства содержат быстрый процессорный сегмент и медленный процессорный сегмент, в которых реализованы функциональные блоки. Блоки выполняют относительно быстрые операции и относительно медленные операции. Указанные блоки являются независимыми и параметризованными. Процессорные сегменты выполнены с возможностью параметризации и выборочного соединения указанных функциональных блоков так, чтобы выполнялась указанная конфигурируемая функция. Повышается надежность. 9 з.п. ф-лы, 5 ил.

Изобретение относится к устройствам для измерения электрической мощности. Автоматизированное устройство мониторинга оборудования электрической подстанции содержит ЭВМ, соединенную с датчиками параметров оборудования подстанции. ЭВМ выполнена в виде микропроцессорного блока сбора и обработки данных. Чувствительные элементы вынесены из самих датчиков и соединены с ними одним или двумя волоконно-оптическими кабелями. Кабели соединены соответственно с совмещенными или с разделенными формирователем и приемником оптических сигналов. Микропроцессор и датчики размещены в одном корпусе, который снабжен блоком питания, индикацией и интерфейсным модулем. Датчики соединены с ЭВМ при помощи электрической или волоконно-оптической связи. Датчики могут быть выполнены в виде датчиков тока, напряжения и температуры. Микропроцессор содержит микроконтроллер, соединенный с модулем связи Profinet и/или Ethernet, памятью ПЗУ и ОЗУ-1, а также с контроллером данных, к которому подсоединены ОЗУ-2 с кольцевым буфером и коммутационная плата с входами сигналов датчиков. Выход микропроцессорного блока подсоединен по сети Profinet и/или Ethernet с рабочим местом оператора. Технический результат изобретения заключается в повышении надежности и универсальности устройства мониторинга. 1 з.п. ф-лы. 7 ил., 1 табл.

Использование: в области электротехники. Технический результат – повышение эффективности работы системы и уменьшение нагрузки на сеть связи. Система текущего контроля для зарядки суперконденсатора содержит линию питания, подсистемы для текущего контроля мономерных суперконденсаторов и ведущую систему текущего контроля. Ведущая система текущего контроля содержит зарядную схему (2), блок (7) подачи питания, ведущий однокристальный микрокомпьютер (4), модуль (3) связи на основе несущей, модуль (5) человеко-машинного интерфейса, блок (6) хранения и модуль RS-232 (8). Каждая из подсистем для текущего контроля мономерных суперконденсаторов содержит мономерный суперконденсатор (1), блок (7) подачи питания, ведомый однокристальный микрокомпьютер (11), модуль (3) связи на основе несущей, блок (9) регистрации напряжения, тока и температуры и блок (6) хранения. Ведущая система текущего контроля заряжает группу суперконденсаторов через линию питания и зарядную схему. Система текущего контроля может управлять состояниями заряда различных мономерных суперконденсаторов, благодаря чему удается избежать чрезмерного заряда. 1 ил.
Наверх