Стекло

Изобретение относится к стеклу для изготовления аморфных мелкодисперсных наполнителей, в частности стеклянных микросфер, как полых, так и монолитных. Такие наполнители могут быть использованы в различных отраслях промышленности: строительной, химической, авиационной, лакокрасочной. Техническим результатом изобретения является увеличение светопрозрачности стекла в видимой области спектра и снижение плотности полых микросфер, изготовленных из данного стекла. Стекло имеет следующий состав, мас.%: SiO2 - 62,0÷71,0; B2O3 - 3,28÷10,0; Al2O3 - 1,0÷4,0; Na2O - 5,0÷14,8; CaO - 2,0÷6,0; MgO - 1,0÷8,0; ZnO - 0,5÷8,0; S - 0,1÷1,2; CeO2 - 0,1÷3,0; Se - 0,02÷0,8. Стекло для микросфер синтезируют по общепринятой технологии. Селен вводится через селенат натрия Na2SeO3. Церий вводится в структуру стекла через оксид. SO3 вводится в стекломассу с помощью сульфатов натрия. 2 табл.

 

Изобретение относится к аморфным мелкодисперсным наполнителям, в частности к стеклянным микросферам, как полым, так и монолитным, которые могут быть использованы в различных отраслях промышленности: строительной, химической, авиационной, лакокрасочной, а также в научных исследованиях в области ядерной физики, медицины, материаловедения и т.д.

Известен химический состав стекла, используемый в изготовлении стеклянных микросфер для лазерно-физических экспериментов (патент РФ 2235693, кл. С03С 8/02; С03В 19/10), содержащий в масс. %:

SiO2 - 54,56÷60,53
B2O3 - 3,24÷7,01
Na2O - 12,31÷20,10
K2O - 0,09÷1,07
СаО - 5,59÷6,56
MgO - 1,35÷2,79
Al2O3 - 0,02÷1,13
РbО - 11,28÷12,53

Технический результат заключается в получении микросфер с регулируемыми свойствами, а конкретно - в обеспечении возможности регулирования коэффициентов водородной проницаемости и химической стойкости готовых изделий в заданном диапазоне концентраций компонентов:

Показатель светопреломления равен 1,50÷1,54 и кажущаяся плотность равна 0,52÷0,60 г/см3.

Наиболее близким является состав стекла для полых микросфер, содержащий в масс. % (патент US 4391646, кл. С03В 19/10):

SiO2 60÷90
Оксиды щелочных металлов 2÷20
B2O3 1÷30
S (либо самостоятельно, либо его различные комбинированные формы с кислородом) 0,005÷0,5
RO 0÷25
RO2 (кроме SiO2) 0÷10
R2O3 (кроме B2O3) 0÷20
P2O5 0÷10
F (как фтор) 0÷5
Другие ингредиенты 0÷2

Средняя плотность полых стеклянных микросфер составляет минимум 0,4 г/см3 и показатель светопреломления 1,48÷1,50.

Техническим результатом изобретения является снижение плотности полых микросфер и увеличение светопрозрачности стекла в видимой области спектра, в частности коэффициентов светопреломления и светопропускания стекла.

Указанная цель достигается тем, что стекло, включающее SiO2, B2O3, Al2O3, Na2O, CaO, MgO, ZnO и S, дополнительно содержит CeO2 и Se, а также повышенное количество серы (S) при следующем соотношении компонентов в масс. %:

SiO2 62,0÷71,0
B2O3 3,28÷10,0
Al2O3 1,0÷4,0
Na2O 5,0÷14,8
CaO 2,0÷6,0
MgO 1,0÷8,0
ZnO 0,5÷8,0
S 0,1÷1,2
CeO2 0,1÷3,0
Se 0,02÷0,8

Известно, что селен образует с кислородом ряд разновалентных оксидов: SeO; Se2O3; SeO2 и SeO3. Элементарный селен Se0 имеет розовый цвет, а четырех- и шестивалентный селен (Se4+ и Se6+) бесцветен. Селен вводим в состав стекла для его обесцвечивания, увеличения светопрозрачности в видимой области спектра и показателей светопреломления и светопропускания.

Двуокись церия, являясь одним из сильнейших окислителей, способствует переводу селенида в бесцветные селенаты.

Введение селена менее 0,02% не влияет на величину светопропускания стекол. Содержание в стекле селена более 0,15 масс. % придает ему светло-желтую или бледно-розовую окраску, тем самым уменьшая светопрозрачность стекла в видимой области спектра.

Содержание CeO2 менее 0,1 масс. % не влияет на светопропускание стекол в видимой области спектра.

Оксид железа в небольших количествах поступает в состав стекла вместе с используемыми сырьевыми материалами, такими как песок, мел, доломит, и снижает светопропускание стекла. Введение 0,1 масс. % CeO2 способствует практически полному окислению FeO в Fe2O3 при концентрации последнего в количестве 0,05 масс. %.

Введение оксида церия более 3 масс. % способствует окрашиванию стекломассы и образованию устойчивых комплексов от светло-желтого до коричневого цветов.

Кислородные соединения серы играют роль газообразующего компонента при формовании полых микросфер. Варьирование концентрации растворенного в стекле серного ангидрида в широких пределах (до 1,2 масс. %) позволяет изменять свойства стеклянных микросфер. Немаловажным аспектом является близость температурных интервалов разложения SO3 и формования микросфер.

Положительным техническим результатом является также изменение плотности микросфер в сторону уменьшения, практически до показателя 0,19 г/см3. Присутствие селена и оксида церия снижает силы поверхностного натяжения расплавленного стекла в диапазоне температур процесса сферолизации микросфер, что приводит к уменьшению толщины стенки в нижнем диапазоне размеров, особенно в диапазоне 5÷70 мкм.

Так как в результате снижения сил поверхностного натяжения толщина стенки микросфер становится равномерной в диапазоне размеров 5÷200 мкм, значительно снижается количество разрушенных микросфер от гидростатической нагрузки (объемного сжатия) в процессе их применения. Полученная таким образом равнопрочность микросфер позволяет сохранять первоначальное расчетное соотношение компонентов при введении микросфер в связующие составы с заданной вязкостью при производстве композитных материалов.

Стекло для изготовления микросфер синтезируют по общепринятой в стеклоделии технологии.

Шихтовую смесь составляют, используя песок, борную кислоту, оксид алюминия, соду, оксид цинка. СаО и MgO желательно вводить через оксиды или углекислые соли, т.к. при использовании доломита в стекло переходит небольшое количество примесей, в частности оксидов переходных элементов, снижающих светопропускание стекол.

Селен вводится через селенат натрия Na2SeO3, выделяющий дополнительный кислород при разложении.

Церий вводится в структуру стекла через оксид.

SO3 вводится в стекломассу с помощью сульфатов натрия.

Варку стекломассы возможно проводить как в газовых, так и в электрических стекловаренных печах. Вырабатывают расплавленное стекло в виде эрклеза с дальнейшей его сушкой и измельчением до тонкодисперсного состояния.

Далее проводят сферолизацию микропорошка, затем флотацию микросфер, сушку и нанесение функционального покрытия. Составы стекол приведены в таблице 1.

Свойства синтезированных стекол приведены в таблице 2.

Изобретение предполагает получение стеклянных сфер как монолитных, так и пустотелых, которые с успехом могут быть использованы в качестве легковесных исполнителей для получения композиционных материалов, используемых в различных областях, в частности:

- в качестве наполнителей оболочек кабелей для снижения трения при протягивании кабеля;

- в качестве наполнителей эпоксидных композиций, полиуретанов, пенопластов, полиолефинов, эластомеров, цемента и многих других материалов для повышения долговечности, прочности, стойкости к коррозии и эрозионному износу;

- в качестве наполнителей порошковых покрытий электрических проводов, что значительно улучшает их механические, диэлектрические и тепловые свойства;

- в качестве присадок к смазочным материалам, что позволяет уменьшить износ деталей в 2÷3 раза;

- в качестве модифицирующих добавок к клеям при ламинировании изделий с целью обеспечения заданной толщины клеевого слоя;

- в медицинских целях в качестве наполнителя ванн в противоожоговых и противопролежневых кроватях;

- в качестве компонента красок и термопластов, используемых для светоотражающих дорожных разметок.

Световозвращающие стеклянные микрошарики применяются для поверхностной посыпки элементов горизонтальной дорожной разметки, выполненной термопластиками, холодными пластиками и для введения в состав пластичных материалов с целью обеспечения видимости дорожной разметки в темное время суток в отраженном свете фар транспортных средств. В этом случае главенствующую роль играют оптические свойства используемых стекол. Т.е. светопропускание и высокая прозрачность.

Повышается светопрозрачность стекол в оптическом диапазоне при малых углах освещения (7°-11°), что позволяет улучшить качество прозрачных и полупрозрачных композитных материалов, наполненных стеклянными сфероидизированными микротелами дисперсностью 5÷200 мкм. При сближенных показателях светопрозрачности минеральных (светопрозрачность 92%-93%) и органических (не менее 98%) компонентов в прозрачном и полупрозрачном композитном материале при уменьшении угла освещения светопропускание происходит более плавно, без резкого затемнения. Кроме того, при малых углах освещения оптическая граница «микротело-полимер» становится сильно размытой, нечеткой, что значительно улучшает декоративность композитного материала.

Сферическая форма стеклянных наполнителей обуславливает снижение количества используемых полимеров, в результате чего композиция легко смешивается при уменьшенной вязкости смеси, снижается усадка из-за низкого содержания полимера конечных изделий.

Использование стеклянных микросфер в композиционных материалах обеспечивает минимальное отношение площади поверхности к занимаемому объему и наиболее компактную укладку. Коэффициент укладки - 60-80% от теоретической. Форма частиц микросфер как наполнителя позволяет изменять вязкость полимерных материалов и резин.

Микросферы являются превосходным наполнителем при производстве изделий из пластмасс, гипса, керамики, облегченных цементов и др. строительных материалов. Изделия с добавлением микросферы обладают повышенной износостойкостью, легкостью и высокими изоляционными свойствами. Кроме всего, использование микросферы в качестве наполнителей значительно снижает себестоимость продукции.

Предлагаемый нами состав обеспечивает одностадийность термической обработки сферолизированных микросфер в температурном диапазоне 580÷700°C в течение 0,1 час для повышения диэлектрических свойств стекла. В результате химически связанная вода полностью удаляется без разрушения сферолизированных микросфер и загрязнения объема целых микросфер обломками и пылевидными частицами разрушенных микросфер. Кроме того, отпадает необходимость дополнительной классификации продукции с целью удаления разрушенных остатков микросфер. Такая продукция сразу становится пригодной для введения в композитные материалы без дополнительной обработки.

Стекло, включающее SiO2, B2O2, Al2O3, Na2O, CaO, MgO, ZnO и S, с целью увеличения светопрозрачности и уменьшения насыпной плотности дополнительно содержит CeO2 и Se и повышенное количество серы при следующем соотношении компонентов, мас.%:

SiO2 62,0-71,0
B2O3 3,28-10,0
Al2O3 1,0-4,0
Na2O 5,0-14,8
CaO 2,0-6,0
MgO 1,0-8,0
ZnO 0,5-8,0
S 0,1-1,2
CeO2 0,1-3,0
Se 0,02-0,8



 

Похожие патенты:

Изобретение относится к области иммобилизации и хранения ядерных отходов. Предложена композиция содопированного оксидами самария и гадолиния алюмоборосиликатного стекла с повышенной радиационной стойкостью для иммобилизации и хранения радиоактивных отходов, состоящая из (молярные проценты): SiO2 62-65, В2О3 16-17, Al2O3 4-5, Na2O 12-13, ZrO2 1,7-1,9 и оксидов самария и гадолиния в концентрациях (молярные проценты): Sm2O3 0,15 и Gd2O3 0,15.

Изобретение относится к технологии получения люминесцентных стекол на основе силикатных, боросиликатных, боратных стекол и стеклокомпозитов, активированных редкоземельными ионами, в частности ионами Ce, Pr и Eu, для их использования в преобразователях энергии возбуждения в световое излучение видимого или УФ-диапазона.
(57) Изобретение относится к составам оптических стекол и может быть использовано в лазерных системах в качестве активных сред ап-конверсионных лазеров с диодной накачкой, преобразующих инфракрасное лазерное излучение в видимую область, а именно в зеленую область спектра.

Изобретение относится к легированным стеклам, которые могут использоваться в качестве антистоксовых визуализаторов ИК-излучения с 0,89-0,99 мкм, активной среды усилителей и лазерных преобразователей, функционирующих в полосе антистоксовой люминесценции, а также для визуального контроля мощности лазерного ИК-излучения.
Изобретение относится к серым стеклам, используемым в автомобилестроении, архитектуре, космической промышленности. .

Изобретение относится к стекловолокну, которое используется при изготовлении тепло- или звукоизоляционного материала. .
Стекло // 2383502
Изобретение относится к области технологии силикатов, а именно к составам стекол, которые могут быть использованы в производстве тарных стеклоизделий. .
Изобретение относится к области технологии силикатов и касается составов стекла, используемого в производстве электровакуумных приборов. .

Изобретение относится к составам хрустального стекла хрустального стекла. Технический результат – увеличение показателя светопреломления. Хрустальное стекло содержит, мас. %: SiO2 43,0-48,0; СаO 10,0-15,0; Na2O 3,0-5,0; K2O 15,0-17,0; СеO2 6,0-8,0; TiO2 8,0-12,0; ZnO 3,8-5,5; Sb2O3 0,2-0,5. 1 табл.

Изобретение относится к оптическим материалам, в частности к материалам, прозрачным в видимой области спектра, с высоким поглощением в ИК области спектра. Технический результат – повышение поглощения в ближней ИК-области. Плавят шихту состава, мас.%: K2O 9-20, ZnO 20-35, Al2O3 11-22, SiO2 32-44, Eu2O3 - 0,01-3 мол.% при температуре 1520-1580°С. Отливают расплав в холодную форму и отжигают при температуре 500-550°С. Проводят дополнительную термообработку при температуре в интервале от 650 до 900°С в течение 1-200 ч и охлаждают стеклокристаллический материал до комнатной температуры. Полученная прозрачная стеклокерамика на основе кристаллов ZnO выполнена на основе калиевоцинковоалюмосиликатного стекла с кристаллической фазой оксида цинка и примесью трехвалентных ионов европия в количестве от 0,01 до 3 мол.%. 2 н. и 2 з.п. ф-лы, 2 табл., 2 ил.

Изобретение относится к люминесцирующим стеклокерамикам. Технический результат – получение стеклокерамики, обладающей люминесценцией в видимой и ближней ИК области, стабильностью свойств, повышенной механической прочностью. Способ получения стеклокристаллического материала, мол.%: Li2O - 10-30, Al2O3 - 12-35, SiO2 - 40-78, Nb2O5 - 2-6, Y2O3 - 0,01-6, Er2O3 - 0,01-4, Yb2O3 - 0,01-4, Eu2O3 - 0,1-4; Но2О3 - 0,1-4; Tm2O3 - 0,1-4, Tb2O3 - 0,1-4, Pr2O3 - 0,1-4, Nd2O3 - 0,1-4, Dy2O3 - 0,1-4, Sm2O3 - 0,1-4, где Nb2O5, Y2O3, Er2O3, Yb2O3, Eu2O3, Ho2O3, Tm2O3, Tb2О3, Pr2O3, Nd2O3, Dy2O3, Sm2O3 введены сверх 100% основного состава. Оксиды смешивают, перемалывают до получения однородной смеси, засыпают в тигель из кварцевой керамики и помещают в силитовую печь. Плавление смеси осуществляют при температуре 1560-1600°С в течение 3-8 часов. Затем расплавленную стекломассу охлаждают до температуры 1400-1500°С, отливают с приданием ей необходимой формы и отжигают при температуре 600-700°С в течение часа. Далее заготовку охлаждают и подвергают дополнительной изотермической термообработке в интервале температур 700-1350°С в течение 1-48 часов с последующим инерционным охлаждением до комнатной температуры. 1 з.п. ф-лы, 2 табл., 1 ил.

Изобретение относится к технологии цветного стекла, которое может быть использовано, например, для изготовления посуды, художественных изделий. Зеленое стекло содержит, мас.%: SiO2 64,6-66,3; СаО 4,3-7,0; MgO 0,5-1,5; Na2O 11,0-15,0; K2O 0,5-1,0; Pr2O3 3,5-4,2; Cr2O3 0,2-0,4; В2O3 9,0-11,0. Технический результат - снижение температуры варки стекла. 1 табл.

Стекло // 2631714
Изобретение относится к технологии силикатов и касается составов стекол, которые могут быть использованы для изготовления изделий декоративно-художественного назначения. Стекло содержит, мас.%: SiO2 57,0-59,0; MgO 5,0-7,2; TiO2 2,0-4,0; F' 0,5-1,0; B2O3 17,0-19,3; Sm2O3 12,0-16,0. Технический результат - снижение температуры варки стекла. 1 табл.

Стекло // 2631716
Изобретение относится к технологии силикатов и касается составов стекол, которые могут быть использованы для изготовления труб для прокладки кабеля и других изделий. Стекло содержит, мас.%: SiO2 52,0-55,0; Al2O3 10,0-19,0; CaO 1,2-3,0; Na2O 3,2-4,2; SrO 5,0-9,0; CdO 16,0-20,0; CeO2 0,6-1,0. Технический результат - повышение биостойкости стекла.

Группа изобретений относится к области производства литиево-силикатной стеклокерамики, способам получения и применения такой стеклокерамики. Способ изготовления литиево-силикатной стеклокерамики, включающей: оксид четырехвалентного металла, выбранный из ZrO2, TiO2, СеО2, GeO2, SnO2 и смесей таковых, по меньшей мере, 12,1 массовых % Li2O, от 0 до менее 0,1 массового % La2O3, от 0 до менее 1,0 массового % K2О и от 0 до менее 2,0 массовых % Na2O, содержит этапы, на которых: (a) исходное стекло, включающее компоненты стеклокерамики, подвергают термической обработке при температуре в 480-520°С в течение 10-30 мин для формирования стекла с зародышами, которые являются пригодными для формирования кристаллов дисиликата лития, и (b) стекло с зародышами подвергают термической обработке при температуре в 640-740°С для формирования стеклокерамики с дисиликатом лития в качестве основной кристаллической фазы, причем продолжительность второй термической обработки на стадии (b) составляет 10-60 мин. Предлагается также литиево-силикатная стеклокерамика, полученная вышеуказанным способом, и применение ее в качестве материала для реставрации зубов, в частности, для покрытия материалов для реставрации зубов или для изготовления материалов для реставрации зубов. Использование группы изобретений обеспечивает получение стеклокерамики, содержащей в качестве основной кристаллической фазы дисиликат лития, при непродолжительных термических обработках и при достаточно низких температурах процесса кристаллизации. При этом формование полученной стеклокерамики в желаемый материал для реставрации зубов может быть осуществлено при помощи прессования или машинной обработки. 3 н. и 18 з.п. ф-лы, 1 табл., 16 пр.
Стекло // 2634595
Изобретение относится к составу стекла. Техническим результатом является повышение коэффициента преломления стекла. Стекло включает, мас. %: SiO2 47,0-49,0; K2O 14,0-16,0; ZnO 0,3-0,5; BaO 16,5-19,0; Sb2O3 0,4-0,6; Er2O3 6,0-8,0. Дополнительно содержит, мас. %: GeO2 8,8-13,1. 1 табл.

Изобретение относится к оптически прозрачным стеклокристаллическим наноматериалам. Ап-конверсионно люминесцирующая наностеклокерамика содержит, мол. %: Eu2O3 1.0-1.5; SiO2 30.0-34.5; PbO 27.5-30.0; PbF2 21.5-25.5; CdF2 9.0-15.0; YbF3 1.5-2.5. Техническая задача изобретения - создание прозрачной оксифторидной наностеклокерамики, обладающей свойством преобразования инфракрасного излучения в видимое оранжевое и характеризующейся высокой интенсивностью оранжевой ап-конверсионной люминесценцией. 2 табл., 1 ил.

Изобретение относится к ап-конверсионно люминесцирующей оксифторидной наностеклокерамике. Люминесцирующая наностеклокерамика включает следующие компоненты, мол. %: SiO2 41.5-43.5; YbF3 1.0-2.5; PbO 12.0-14.5; PbF2 32.5-35.0; CdF2 7.0-7.5; Tb2O3 1.0-1.5 и Tm2O3 0.1-0.4. Техническая задача изобретения - создание прозрачной люминесцирующей нанофазной стеклокерамики, осуществляющей ап-конверсионное преобразование инфракрасного излучения в видимое сине-зеленое при снижении температур синтеза и термической обработки стекла. Область применения - оптоэлектроника, фотоника, лазерное приборостроение. 2 табл., 1 ил.

Изобретение относится к стеклу для изготовления аморфных мелкодисперсных наполнителей, в частности стеклянных микросфер, как полых, так и монолитных. Такие наполнители могут быть использованы в различных отраслях промышленности: строительной, химической, авиационной, лакокрасочной. Техническим результатом изобретения является увеличение светопрозрачности стекла в видимой области спектра и снижение плотности полых микросфер, изготовленных из данного стекла. Стекло имеет следующий состав, мас.: SiO2 - 62,0÷71,0; B2O3 - 3,28÷10,0; Al2O3 - 1,0÷4,0; Na2O - 5,0÷14,8; CaO - 2,0÷6,0; MgO - 1,0÷8,0; ZnO - 0,5÷8,0; S - 0,1÷1,2; CeO2 - 0,1÷3,0; Se - 0,02÷0,8. Стекло для микросфер синтезируют по общепринятой технологии. Селен вводится через селенат натрия Na2SeO3. Церий вводится в структуру стекла через оксид. SO3 вводится в стекломассу с помощью сульфатов натрия. 2 табл.

Наверх