Способ получения люминесцирующих растворимых комплексов двухвалентных лантанидов lncl2∙(тгф)2 (ln=eu, yb, sm)

Изобретение относится к люминесцирующим растворимым соединениям двухвалентных лантанидов, находящих широкое применение в различных отраслях промышленности и науки. Описывается способ получения люминесцирующих растворимых комплексов двухвалентных лантанидов LnCl2·(ТГФ)2, где Ln = Eu, Yb, Sm. Способ состоит во взаимодействии кристаллогидрата трихлорида лантанида LnCl3·6Н2О, где Ln = Eu, Yb, Sm, с алюмоорганическим соединением (АОС) формулы R2ALR′, где R = R′ = Me, Et, изо-Bu; R = изо-Bu, R′ = H. Реакцию проводят при мольном отношении LnCl3·6Н2О/АОС = 1/40 в атмосфере аргона при 20-25°C и атмосферном давлении в среде апротонного растворителя - тетрагидрофурана. Выделение LnCl2·(ТГФ)2 ведут удалением растворителя вакуумной отгонкой и осаждением твердого комплекса добавлением гексана или толуола. Предложенный способ позволяет упростить технологический процесс за счет проведения его одностадийным методом в мягких условиях с использованием доступных кристаллогидратов трихлорида лантанидов по сравнению с труднодоступным металлическим Ln или безводным LnCl3. 1 табл., 3 пр.

 

Предлагаемое изобретение относится к области химии, в частности к способам получения новых люминесцирующих растворимых соединений двухвалентных лантанидов LnCl2·(TГФ)2 (Ln=Eu, Yb, Sm). Эти три лантанида являются наиболее легко восстанавливаемыми представителями 4f-элементов: окислительно-восстановительный потенциал Eu3+/Eu2+=0.35 В, Yb3+/Yb2+=1.15 В и Sm3+/Sm2+=1.55 В относительно стандартного водородного электрода [1. L.J. Nugent, R.D. Baybarz, J.L. Burnett, J. L. Ryan, Electron-transfer and f-d absorption bands of some lanthanide and actinide complexes and the standard (II-III) oxidation potential for each member of the lanthanide and actinide series, J. Phys. Chem., 1973, 77 (12), pp. 1528-1539].

Широкое применение соединений двухвалентных лантанидов обусловлено главным образом их способностью к яркой люминесценции при возбуждении УФ-светом. На основе соединений Ln2+ разработаны новые источники света, люминесцирующие краски, оптические отбеливатели бумаги и т.д. [2. Патент РФ №2192444 от 10.11.2002; патент РФ №2329287 от 20.07.2008; патент РФ №2251761 от 19.11.2001; патент РФ №2276702 от 20.05.2006; В.W. Grouse, G.H. Snow, Fluorescent whitening agents in the paper industry, Tappi, 1981, v.64 (7), p.87]. Кроме того, соединения двухвалентных лантанидов находят практическое применение в качестве одноэлектронных восстановителей и катализаторов, в том числе реакций полимеризации диенов [3. H.В. Kagan, J.L. Namy, Lanthanides in organic synthesis, Tetrahedron, 1986, 42, pp.6583-6614; G.A. Molander, J. A.C. Romero, Lanthanocene catalysts in selective organic synthesis, Chem. Rev., 2002, 102, pp.2161-2185; W.J. Evans, D.G. Giarikos, N.Т. Allen, Polymerization of Isoprene by a Single Component Lanthanide Catalyst Precursor, Macromolecules, 2003, 36, pp.4256-4257].

Среди известных способов получения растворимых комплексов двухвалентных лантанидов можно выделить следующие. Известен способ [4. K. Rossmanith, E. Muckenhuber, Über die umsetzung von chloriden der seltenen erden mit lithiumborhydrid, 2. Mitt, Mh. Chem., Br., 1961, 92, H.3, pp.600-604) синтеза хлорида двухвалентного европия ЕuСl2 в среде тетрагидрофурана (ТГФ) в реакции безводного хлорида европия ЕuСl3 с боргидридом лития LiBH4.

EuCl3+LiBH4→EuCl2+LiCl+1/2В2Н6+1/2Н2

Важно отметить, что полученное таким образом соединение европия в ТГФ не растворяется и выпадает в виде осадка, состав которого был установлен только с помощью элементного анализа. В тоже время при добавлении двукратного избытка LiBH4 авторы [4] получили растворимые комплексы европия и иттербия, которым на основании элементного анализа приписали следующий состав: LnCl2·(BH4)2(Ln=Eu, Yb).

LnCl3+2LiBH4→LnCl2·(BH4)2+LiCl

Стоит отметить, что состав полученных комплексов был определен только с помощью элементного анализа, и других доказательств в пользу такого состава комплексов и валентного состояния лантанидов в этих комплексах авторы не приводят.

Главным недостатком данного способа является необходимость применения безводных трихлоридов европия (получение которых является энергозатратным и длительным процессом), а также протекание побочных реакций с образованием боргидридных комплексов состава LnCl2·(BH4)2. Кроме того, как отмечается в публикации Каменской [5. А.Н. Каменская. Низшее состояние окисления лантанидов в растворах, Ж. неорг. химии, 1984, т.29, с.439-449] в данной работе степень окисления 2+лантанидам была приписана на основании только элементного анализа, т.е. без спектральных доказательств.

Известен также способ [6. K. Rossmanith, Herstellung der klassischen Seltenerd(II)-chloride in Lösung, Monatshefte fur Chemie, 1979, v.110, pp.109-114] получения комплексов LnCl2·(THF)n (Ln=Eu, Yb, Sm; n=1, 3) в реакции безводных трихлоридов лантанидов LnСl3 с металлическим литием в присутствии нафталина в среде ТГФ. Реакцию проводили при комнатной температуре в течение 3.5 (Еu), 20 (Yb) и 6 (Sm) часов. Выход комплексов LnCl2·(THF)n составил 89.6%, 73.3% и 92% для Еu (n=1), Yb (n=1) и Sm (n=3) соответственно. Состав полученных соединений был установлен методом элементного анализа.

К недостаткам данного способа относится необходимость предварительного синтеза безводных трихлоридов лантанидов LnCl3, (трудоемкий, энергозатратный процесс) и длительность процесса, а также необходимость использования дополнительного реагента (нафталина).

Известен также способ [7. Р. Girard, J.L. Namy, H.В. Kagan, Divalent lanthanide derivatives in organic synthesis - I. Mild preparation of SmI2 and YbI2 and their use as reducing or coupling agents, J. Am. Chem. Soc., 1980, v.102, p.2693] получения Lnl2·(THF)n (Ln=Yb, Sm) при взаимодействии металлических лантанидов с 1,2-дииодэтаном C2H2I2 в среде ТГФ. В инертной атмосфере (азот) реакция протекает при комнатной температуре (20°С) за 24 ч. Образование комплексов LnI2·(THF)n подтверждалось методом спектрофотометрии. Так, спектр поглощения полученного в работе SmI2 к растворе ТГФ содержит характерные для Sm2+ максимумы при 250, 300, 557 и 618 им, а спектр поглощения YbI2 в ТГФ - максимумы Yb2+ при 250, 300, 343 и 383 им. Кроме того, полученные данным способом комплексы LnI2·(THF)n (Ln=Eu, Yb, Sm) обладают регистрируемой люминесценцией в растворе ТГФ с максимумами излучения при: 442 нм (λвозб=313,431 нм) для Eu, 500, 515 нм (λвозб=324, 435 нм) для Yb и 769 нм (λвозб=458, 495, 736 нм) в случае Sm [8. Y. Okaue, T. Isobe, Characterizations of Divalent Lanthanoid Iodides in Tetrahydrofuran by UV-Vis, Fluorescence and ESR Spectroscopy, Inorg. Chim. Acta, 1988, v.144, p.143]. Спектры поглощения растворов LnI2·(THF)n в ТГФ, приведенные в работе [8], содержат характерные для двухвалентных лантанидов максимумы при 341 нм для Eu, 342, 390 нм для Yb, 284, 349, 417, 553, 616 нм для Sm.

Отметим, что полученные таким образом растворимые комплексы LnI2·(THF)n (Ln=Eu, Yb, Sm) в ТГФ устойчивы только в присутствии металлического лантанида Ln. Другим недостатком данного способа является большая длительность процесса восстановления лантанидов до двухвалентного состояния (24 часа).

Известен способ получения комплексов трудно восстанавливаемых лантанидов LnI2·(L)n (где n=3,5; Ln=Nd, Dy; L=THF, DME) [9. M.N. Bochkarev, A.A. Fagin, A New Route to Neodymium(II) and Dysprosium(II) Iodides, Chem. Eur. J., 1999, v.5, p.2990]. Данные комплексы были получены при взаимодействии металлического лантанида Ln с кристаллическим йодом I2 при нагревании (около 200°С) в вакууме. В результате реакции были полученные твердые LnI2, которые затем растворяли в ТГФ или диметоксиэтане (ДМЭ) с образованием комплексов состава LnI2·(L)n (n==3, 5; Ln=Nd, Dy; L=THF, DME). Состав полученных комплексов был установлен методом элементного анализа и ИК-спектроскопии. Образование LnI2·(L)n(Ln=Nd, Dy) подтверждалось появлением характерных максимумов поглощения и магнитных моментов Ln2+: 2.7 µB и 2.8 µВ для комплексов Nd2+ с ТГФ и ДМЭ соответственно, 10.6 µВ, 10.7 µВ для комплексов Dy2+ с ТГФ, ДМЭ. Выход комплексов LnI2·(L)n (Ln=Nd, Dy; L=THF, DME) составил от 49 до 100%.

К недостаткам описанного способа можно отнести огне- и взрывоопасность реакции металлического лантанида с кристаллическим йодом и ее высокий температурный режим (200°С).

Вышеуказанным способом также были получены дииодиды других лантанидов LnI2 (Ln=Eu, Yb, Sm, Tm) [10. Патент РФ №2245302 от 27.01.2005]. Эти комплексы были получены в реакции металлического лантанида с кристаллическим йодом при нагревании до 600-800°С в вакууме.

Недостатками данного способа являются высокий температурный режим (600-800°С) и взрывоопасность химической реакции.

В то же время в литературе известны способы получения растворимых комплексов лантанидов в степени окисления 3+, основанные на взаимодействии соединений трехвалентных лантанидов с АОС. В частности, известен способ получения растворимых ацетилацетанатов лантанидов Ln(асас)3 (Ln=Tb, Nd, Но, Lu) в толуоле под действием Et3Al на кристаллогидраты En(асас)3·H2O [11. Р.Г. Булгаков, С.П. Кулешов, Р.Р. Вафин, А.Г. Ибрагимов, У.М. Джемилев. Взаимодействие ацетилацетанатов лантанидов с триэтилалюминием. Кинетика и катализ, 2008, т.49, №2, с.315-320]. Растворимые комплексы состава LnCl3·(ТВР)3 были получены при взаимодействии АОС (Bui3Al, Et3Al, Et2AlCl, EtAlCl2) с LnCl3·6Н2О (Ln=Tb. Dy, Nd) в среде трибутилфосфата (ТВР) [12. R.G. Bulgakov, S.P. Kuleshov, A.N. Zuzlov, I.R. Mullagaleev, L.М. Khalilov, U.М. Dzhemilev, Dehydration of LnCl3·6Н2О (Ln=Tb, Nd, Dy) in the reaction with Bui3Al, Еt3Аl, Et3AlCl, EtAlCl2 and formation of the complexes LnCl3·3(BuO)3РО, J. of Organometallic Chemistry, 2001, 636, p.56-62]. Отметим, что ион лантанида в полученных данным способом растворимых комплексах находится в трехвалентном состоянии. Это подтверждено наличием характерных максимумов Ln3+ в спектрах ФЛ.

В литературе также известны данные о восстановлении Eu(III) до Eu(II) под действием алюмоорганических соединений (АОС) - Bui3Al, Et3Al [13. Р.Г. Булгаков, С.П. Кулешов, А.Р. Махмутов, 3. С. Кинзябаева, Яркая голубая фотолюминесценция Eu11 комплекса EuCl2·0.5H2O·0.05(Bui2Al)2O, Изв. АН. Сер.хим., 2007, 3, с.549-550; Р.Г. Булгаков, С.П. Кулешов, А.Р. Махмутов. Влияние кристаллизационной воды и природа алюминийалкила на восстановление Eu3+ до Eu2+ при взаимодействии EuCl3·6Н2О с Bui3A1 и Et3Al, Ж. прикл. химии, 2009, т.82, с.1248-1250]. Например, при взаимодействии кристаллогидрата EuCl3·6H2O с Bui3Al в среде толуола при комнатной температуре и атмосферном давлении был получен ярко люминесцирующий комплекс двухвалентного европия EuCl2·0.5Н2О·0.05Bui4Al2O. Состав полученного комплекса был установлен с применением методов элементного анализа, комплексонометрического титрования и метода Фольгарда. Двухвалентное состояние европия было доказано по спектрам поглощения и ФЛ, которые содержат максимумы Eu2+, существенно отличающиеся по положению от максимумов Eu3+ в исходном EuCl3·6Н2О.

Существенным недостатком данного способа является нерастворимость полученного комплекса EuCl2·0.5Н2О·0.05Bui4Al2O в большинстве органических растворителей, что затрудняет их дальнейшее изучение и применение.

Получение растворимых соединений двухвалентных лантанидов LnCl2·(ТГФ)2 восстановлением кристаллогидратов трихлоридов лантанидов LnCl3·6Н2О алюминийорганическими соединениями (АОС) не известно.

Предлагается новый способ получения растворимых соединений двухвалентных лантанидов LnCl2(ТГФ)2.

Сущность способа заключается в реакции кристаллогидратов (КГ) трихлоридов лантанидов LnCl3·6Н2О (Ln=Eu, Yb, Sm) с АОС общей формулы R2AlR′ (где R=R′=Me, Et, Bui; R=Bui, R′=H) при мольном отношении LnCl3·6Н2О/AOC=1/40. Реакцию проводят в атмосфере аргона при атмосферном давлении и комнатной температуре (20-25°C), в среде апротонного координирующего растворителя - тетрагидрофурана (ТГФ). Реакция восстановления Ln3+ до Ln2+ протекает согласно схеме 1.

Схема 1

Отметим, что исходные КГ в ТГФ не растворяются, но при добавлении АОС происходит быстрое (<1 мин) исчезновение твердой фазы КГ с образованием гомогенного раствора. Химическое взаимодействие КГ с АОС начинается с удаления молекул кристаллизационной воды из координационной сферы Ln3+ в результате атаки АОС с образованием алюмоксана, газообразного углеводорода RH (и водорода, в случае применения в качестве АОС Bui2AlH). Полное удаление кристаллизационной воды контролировали волюмометрическим методом. Далее избыток АОС восстанавливает лантанид с образованием комплекса LnCl2·(ТГФ)2. Время реакции восстановления зависит от природы лантанида и молярного отношении Ln/AOC. Выделение LnCl2·(ТГФ)2 осуществляют путем удаления растворителя вакуумной отгонкой и осаждением твердых комплексов добавками гексана или толуола.

Существенные отличия предлагаемого способа

В предлагаемом способе в качестве исходных соединений лантанидов используются доступные и относительно дешевые кристаллогидраты солей лантанидов LnCl3·6Н2О(Ln=Eu, Yb, Sm), а продуктами реакции являются растворимые соединения двухвалентных лантанидов LnCl2·(ТГФ)2, обладающие хорошо регистрируемой люминесценцией при комнатной температуре. Взаимодействие кристаллогидратов LnCl3·6Н2О с R3Al (Bui2AlH) происходит при мольном отношении LnCl3·6Н2О/R3Al(Bui2AlH)=1/40 в среде ТГФ. В известных способах в качестве исходных соединений лантанидов применяют безводные LnCl3, восстановление которых дает LnCl2·(ТГФ)n (n=1,3).

Предлагаемый способ обладает следующими преимуществами:

1. Способ позволяет получать с количественным выходом растворимые люминесцирующие соединения двухвалентных лантанидов LnCl2·(ТГФ)2 (Ln = Eu, Yb, Sm), синтез которых в литературе не описан.

2. Способ позволяет в качестве исходных соединений лантанидов использовать кристаллогидраты LnCl3·6Н2О, доступные и дешевые по сравнению с металлическими Ln и безводными LnCl3. Кроме того, исключается необходимость предварительного обезвоживания КГ и протекания высокотермической, взрывоопасной реакции между лантанидом и молекулярным иодом.

3. Способ позволяет проводить синтез в мягких условиях (20-25°C, атмосферное давление).

4. Способ позволяет легко отделять целевой продукт LnCl2·(ТГФ)2 от реакционного раствора, содержащего другие растворимые продукты реакции: R4Al2O, R2AlCl, RH и R-R, осаждением твердого комплекса LnCl2·(ТГФ)2 и последующей его отмывкой неполярными растворителями (гексан, толуол).

Способ поясняется следующими примерами:

ПРИМЕР 1. В сосуд Шленка объемом 10 мл, установленный на магнитную мешалку, в атмосфере аргона помещают кристаллогидрат EuCl3·6Н2О (0.02 ммоль, 7.30 мг), 2 мл свежеперегнанного ТГФ кетильной очистки, включают перемешивание и шприцем добавляют 0.8 ммоль Bui2AlH. Наблюдается бурное газовыделение (BuiH и Н2) и быстрое, практически мгновенное растворение и окрашивание гомогенного раствора в соломенно-желтый цвет. Восстановление Eu(III) до Eu(II) на 95% протекает примерно за 7 минут. Для выделения комплекса Eu(II) в твердом виде из реакционного раствора сначала удаляли растворитель (ТГФ) вакуумной отгонкой (20-25°C, 5-6 Торр). Затем к жидкому остатку добавляли ~3 мл гексана, образующийся при этом осадок серовато-белого цвета промывали толуолом или гексаном (5×2 мл) до полного удаления избыточного Bui2AlH и продуктов его превращения. Присутствие ионов Al3+ в маточном растворе контролировали по следующей методике. Суммарное содержание ионов лантанида и алюминия определяли обратным комплексонометрическим титрованием; затем содержание лантанида устанавливали прямым комплексонометрическим титрованием. После этого по разнице вычисляли содержание Al3+. Полученный после отмывки твердый остаток сушили в вакууме (не более 40°C, 1 Торр). В результате получен порошок вещества светло-желтого цвета, состав которого согласно данным элементного анализа соответствует брутто-формуле EuCl·C8H16O. Выход EuCl2·(ТГФ)2 составляет ~45% (3.85 мг). Элементный состав (С, Н, О) комплекса EuCl2·(ТГФ)2 определяли на элементном анализаторе фирмы «Carlo Erba». Содержание европия определяли прямым комплексонометрическим титрованием, а ионов Cl- - методом Шенингера согласно стандартным методикам. Спектры ФЛ растворов, полученных после реакции LnCl3·6Н2О с Bui2AlH, а также твердых комплексов LnCl2·(THF)2 регистрировали в кварцевых герметичных кюветах (1=1 см) на спектрофлуориметре FluoroLog-3 Horiba Jobin Yvon (model FL-3-22). УФ-видимые спектры поглощения реакционных растворов регистрировали в герметичных кварцевых кюветах (1=1 см) на спектрофотометре Perkin Elmer Lambda 750, а ИК-спектры твердых (в таблетках KBr) и жидких (в кюветах из стекла KBr) образцов измеряли на приборе Bruker Vertex 70V. Спектры ЯМР 1Н и 13С измеряли на спектрометре Bruker Avance-400 (рабочая частота 400.13 и 100.62 мГц). В качестве растворителя использовали смесь C7D8 и С7Н8 (1:5 по объему), а внутреннего стандарта - Me4Si.

ПРИМЕР 2. В сосуд Шленка объемом 10 мл, установленный на магнитную мешалку, в атмосфере аргона помещают кристаллогидрат EuCl3·6Н2О (0.02 ммоль, 7.30 мг), 2 мл свежеперегнанного ТГФ кетильной очистки, включают перемешивание и шприцем добавляют 0.8 ммоль Bui3Al. Наблюдается бурное газовыделение (BuiH) и быстрое растворение. Полное восстановление Eu3+ до Eu2+ происходит по истечении 1 часа от начала реакции, хотя раствор приобретает характерную желтую окраску уже через 10-15 минут. Для выделения комплекса Eu(II) в твердом виде из реакционного раствора проводят операции, описанные в примере 1. Состав полученного светло-желтого порошкообразного вещества был также установлен с применением методов элементного анализа (содержание С, Н, О), прямого (содержание иона Eu2+) и обратного комплексонометрического титрования (содержание иона Al3+), метода Шенингера (содержание Cl-). Согласно данным элементного анализа осадок соответствует брутто-формуле EuCl2·С8Н16О. Выход EuCl2·(ТГФ)2 составляет 43% (3.68 мг). Координирование молекул ТГФ к иону Eu2+ в комплексе EuCl2·(THF)2 было установлено методами ИК- и ЯМР-спектроскопии.

Другие примеры, подтверждающие способ получения растворимых соединений двухвалентных лантанидов, приведены в таблице.

Полученные комплексы LnCl2·(ТГФ)2 (Ln = Eu, Yb, Sm) имеют следующие физико-химические характеристики:

EuCl2·(ТГФ)2. Твердое вещество, светло-желтого цвета. Найдено (%): Eu - 41.42; Н - 3.6; О - 15.18; С - 21.3; Cl - 19.05. C8H16O2EuCl2. Вычислено (%): Eu - 40.19; Н - 4.36; О - 13.94; С - 22.16; Cl - 19.35. Спектр ФЛ: λmax=465 нм (λexc=280 нм). УФ-спектр (0.65 М HCl) λmax /нм: 251, 333. ИК-спектр (KBr), ν/см-1: 860 сл. (С-О, ТГФ); 1033 сл. (С-О, ТГФ); 603 ср. (Eu-Cl). Спектр ЯМР ′Н (толуол-d8, δ, м.д., J/Гц): 2.05 (м. 4Н, СН2); 3.51(м. 4Н, O-СН2). Спектр ЯМР 13С (толуол-d8, δ, м.д., J/Гц): 25.75 (β-СН2, ТГФ); 67.86 (α-СН2, ТГФ).

YbCl2·(ТГФ)2. Твердое вещество, белого цвета. Найдено, %: Yb - 44.28; Н - 4.77; О - 13.01; С - 23,36; Cl - 14,65. для C8H16O2YbCl2. Вычислено, %: Yb - 44.6; Н - 4.12; О - 8,25; С - 24,7; Cl - 18,33. Спектр ФЛ: λmax=437 нм (λехс = 280 нм). УФ-спектр (0.65 М HCl) λmax /нм: 379 нм. ИК-спектр (KBr), ν/см-1: 860 сл. (С-О, ТГФ); 1033 сл. (С-О, ТГФ); 606 ср. (Yb-Cl). Спектр ЯМР 1Н (толуол-d8, δ, м.д., J/Гц): 1.34 (м. 4Н, СН2); 3.20 (м. 4Н, O-СН2). Спектр ЯМР 13С (толуол-d8, δ, м.д., J/Гц): 25.07 (β-CH2, ТГФ); 67.11 (α-СН2, ТГФ).

SmCl2·(ТГФ)2. Твердое вещество, зеленого цвета. Найдено, %: Sm - 40.32; Н - 4.66; О - 9.50; С - 26,46; Cl - 19,06 для C8H16O2SmCl2. Вычислено, %: Sm - 41.98; Н - 4.98; О - 8,77; С - 26,3; Cl - 19,45. Спектр ФЛ: λmax=759 нм (λехс=488 нм). УФ-спектр (0.65 М HCl) λmax /нм: 350, 382, 414. ИК-спектр (KBr), ν/см-1: 872 сл. (С-О, ТГФ); 1030 сл. (С-О, ТГФ); 684 ср. (Sm-Cl). Спектр ЯМР 1Н (толуол-d8, δ, м.д., J/Гц): 1.34 (м. 4Н, СН2); 3.19 (м. 4Н, O-СН2). Спектр ЯМР 13С (толуол-d8, δ, м.д., J/Гц): 25.00 (β-CH2, ТГФ); 66.97 (α-СН2, ТГФ).

Способ получения люминесцирующих растворимых комплексов двухвалентных лантанидов LnCl2·(ТГФ)2, где Ln = Eu, Yb, Sm, взаимодействием кристаллогидратов трихлоридов лантанидов LnCl3·6Н2О с алюмоорганическими соединениями АОС, характеризующийся тем, что в качестве трихлоридов лантанидов используют кристаллогидраты LnCl3·6Н2О, где Ln = Eu, Yb, Sm, а в качестве АОС - соединения общей формулы R2ALR′, где R = R′ = Me, Et, изо-Bu; R = изо-Bu, R′ = H, реакцию проводят при мольном отношении компонентов LnCl3·6Н2О/АОС = 1/40 в атмосфере аргона при комнатной температуре 20-25°C и атмосферном давлении, в среде апротонного растворителя - тетрагидрофурана, с последующим выделением LnCl2·(ТГФ)2 путем удаления растворителя вакуумной отгонкой и осаждением твердых комплексов добавками гексана или толуола.



 

Похожие патенты:

Изобретение относится к органическим люминесцентным веществам, а именно к электролюминесцентным материалам для органических светоизлучающих диодов. В качестве люминесцентного вещества предложены производные 1,8-диаминопирена с арильными заместителями при атомах азота, выбираемых из ряда: фенил, нафталин-1-ил, нафталин-2-ил, 4-трет.бутилфенил.

Изобретение относится к органическому соединению, представленному формулой (1), в которой каждый R1-R20 независимо выбирают из атомов водорода, замещенных или незамещенных алкильных групп, замещенных аминогрупп, замещенных или незамещенных арильных групп.

Изобретение относится к флуоресцентному желтому изделию и флуоресцентному желтому световозвращающему изделию. Флуоресцентное изделие включает нижележащую окрашенную флуоресцентную пленку и вышележащую окрашенную флуоресцентную пленку, которую формируют поверх нижележащей окрашенной флуоресцентной пленки.

Изобретение относится к новым сопряженным полимерам, которые могут быть использованы в качестве электролюминесцентного материала в органических светоизлучающих диодах.

Изобретение относится к новым соединениям в ряду металлохелатов тетрадентатных азометиновых лигандов 2-тозиламинобензальдегида и алифатических диаминов, а именно [N,N′-бис(2-тозиламинобензилиден)диаминодипропилиминатам]цинка и кадмия формулы I где M=Zn, Cd.

Изобретение относится к области органической электроники, а именно к сопряженному полимеру на основе карбазола, бензотиадиазола, бензола и тиофена формулы (Poly-1), где n=5-200.

Изобретение относится к электролюминесцентному устройству. Устройство включает дырочный инжектирующий слой, дырочный транспортный слой, электронный блокирующий слой, активный люминесцентный слой на основе люминесцентного вещества, дырочно-блокирующий слой, электронный транспортный слой, электронный инжектирующий слой.

Изобретение относится к химическим полимерным композициям для маркирования различных объектов, к полимерным композициям для нанесения непосредственно на маркируемый предмет маркировок прямого нанесения (МПН), в частности к методам нанесения МПН с применением композиций, содержащих флуоресцирующие вещества и/или частицы (ФМПН).

Группа изобретений относится к разветвленным олигоарилсиланам с реакционноспособными концевыми группами и способу их получения. Предложены разветвленные олигоарилсиланы с реакционно-способными концевыми группами общей формулы (I), где R выбран из линейных или разветвленных C1-C20 алкильных групп; С2-С20 алкенильных групп; R1 означает винил, 3-пропен-1-ил, 4-бутен-1-ил, 5-пентен-1-ил, 6-гексен-1-ил, 8-октен-1-ил или 11-ундецен-1-ил; Ar означает одинаковые или различные ариленовые или гетероариленовые радикалы, выбранные из ряда: замещенный или незамещенный тиенил-2,5-диил, замещенный или незамещенный фенил-1,4-диил, замещенный или незамещенный 1,3-оксазол-2,5-диил, Q означает радикал из вышеуказанного ряда для Ar, Х означает по крайней мере один радикал, выбранный из вышеуказанного ряда для Ar и/или радикал из ряда: 2,1,3-бензотиодиазол-4,7-диил, антрацен-9,10-диил, 1,3,4-оксадиазол-2,5-диил, 1-фенил-2-пиразолин-3,5-диил, перилен-3,10-диил; n означает целое число от 2 до 4; m означает целое число от 1 до 3; k означает целое число от 1 до 3.

Изобретение относится к цинковым комплексам 5-[2-гидрокси(тозиламино)бензилиденамино]-2-(2-тозиламинофенил)-1-алкилбензимидазолов общей формулы где R = алкил С1-С6; Х=O, ; Соединения I проявляют люминесцентные свойства и могут быть использованы в качестве люминофоров для получения светоизлучающих органических диодов белого и видимого света.

Изобретение может быть использовано при изготовлении сырья для горячего прессования фторидной лазерной керамики. Способ получения порошка фторида стронция, активированного фторидом неодима, включает взаимодействие раствора фторида аммония с раствором, содержащим нитрат стронция и нитрат неодима.

Изобретение может быть использовано для переработки и дезактивации редкоземельного концентрата (РЗК), выделенного из апатитового концентрата и продуктов его переработки - фосфогипса и экстракционной фосфорной кислоты.

Изобретение относится к способу получения высокочистых соединений 177Lu, свободных от носителя, для медицинских целей и/или диагностических целей. Способ получения соединений 177Lu из соединений l76Yb, облучаемых тепловыми нейтронами, включает введение в первую колонку, заполненную катионообменным материалом, исходных веществ, растворенных в минеральной кислоте и содержащих l77Lu и 176Yb в примерном массовом соотношении от 1:102 до 1:1010, замену протонов катионообменного материала на ионы аммония с использованием раствора NH4Cl, промывку катионообменного материала водой, соединение выходного отверстия первой колонки и входного отверстия второй колонки, введение воды и хелатообразующего агента во входное отверстие первой колонки, чтобы элюировать соединения 177Lu из первой и второй колонок, определение уровня радиоактивного излучения на выходе второй колонки для подтверждения элюирования соединений 177Lu, сбор первого элюата 177Lu из выходного отверстия второй колонки в сосуд, протонирование хелатообразующего агента, загрузка конечной колонки путем непрерывной подачи полученного элюата l77Lu во входное отверстие конечной колонки, промывку от хелатообразующего агента разбавленной минеральной кислотой, удаление следов ионов других металлов из раствора l77Lu путем промывки катионообменного материала конечной колонки минеральной кислотой в разных концентрациях и элюирование ионов 177Lu из конечной колонки с помощью высококонцентрированной минеральной кислоты.

Изобретение относится к способам получения соединений карбоната лантана и их применению, а именно к способам получения гидроксида карбоната лантана и диоксикарбоната лантана и фармацевтической композиции, содержащей диоксикарбонат лантана.

Изобретение относится к технологии синтеза полупроводниковых материалов и может быть использовано при массовом производстве тензочувствительных материалов на основе сульфида самария (SmS).
Изобретение относится к сложным оксидам и способам их получения. Предложен сложный оксид, содержащий церий и, по меньшей мере, один из редкоземельных элементов-металлов, исключая церий и включая иттрий, в массовом соотношении от 85:15 до 99:1 в пересчете на оксиды, и который дополнительно содержит кремний в количестве от более чем 0 мас.ч.

Изобретение может быть использовано при получении редкоземельных металлов (РЗМ) из бедного или техногенного сырья с помощью ионной флотации. Способ извлечения солей празеодима (III) из нитратных растворов включает введение в раствор собирателя - додецилсульфата натрия.
Изобретение может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов. Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия включает изготовление смешанного гидроксида диспрозия и гафния путем растворения в воде солей HfOCl2·8H2O и Dy(NO3)3·5H2O и добавления полученного раствора к раствору аммиака.

Изобретение относится к области электротехники и предназначено для использования в разрядных источниках излучения. Защитное покрытие на внутренней поверхности разрядных оболочек источников излучения содержит оксид алюминия, оксид иттрия, оксид магния, оксид циркония и оксид тория.

Изобретение может быть использовано при переработке концентратов редкоземельных металлов. Для выделения церия из нитратного раствора, содержащего сумму редкоземельных элементов, церий окисляют до четырехвалентного состояния пероксидом водорода и осаждают аммиаком путем одновременного введения их отдельными порциями при постоянном перемешивании пульпы.

Изобретение относится к получению нанокристаллического магнитного порошка допированного ортоферрита иттрия. Исходный раствор, содержащий нитрат железа Fe(NO3)3, нитрат иттрия Y(NO3)3 и в качестве допанта нитрат бария Ва(NO3)2, кипятят в течение 5 мин. В полученный охлажденный до комнатной температуры раствор добавляют осадитель в виде водного раствора карбоната натрия в количестве, необходимом для полного осаждения катионов. Полученный осадок высушивают при комнатной температуре до постоянной массы и прокаливают в муфельной печи при температуре 750°C в течение 60 мин с образованием нанокристаллического порошка ортоферрита иттрия состава Y1-xBaxFeO3. Обеспечивается получение магнитного порошка со структурой перовскита, имеющего заданные значения коэрцитивной силы и удельной намагниченности от магнитомягкого до магнитожесткого материала. 2 ил.
Наверх