Сцинтилляционный детектор

Изобретение относится к области регистрации ионизирующих излучений. Сцинтилляционный детектор содержит сборку сцинтиллирующих волокон для регистрации гамма-излучения, тепловых и быстрых нейтронов в форме кольца, а также два фотоприемника, расположенные на противоположных торцах сборки сцинтиллирующих волокон в оптическом контакте с ними, при этом сборка сцинтиллирующих волокон выполнена в виде одного или нескольких лежащих друг на друге кольцевых слоев с общей осью, сцинтиллирующие волокна снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, расположены по окружности, сцинтиллирующие волокна для регистрации разных видов излучений располагаются в разных кольцевых слоях, противоположные торцы сцинтиллирующих волокон соединены оптически с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих волокон. Технический результат - обеспечение пространственного разрешения детектора. 1 ил.

 

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов большой площади, обладающих пространственным разрешением, применяемых, например, при регистрации обратно рассеянного излучения, или в установках, предназначенных для обнаружения радиационных источников.

Известен «Сцинтилляционный детектор, содержащий плоский кольцевой сцинтилляционный кристалл», расположенный между материалом и источником излучения, обращенный к материалу и адаптированный для регистрации отраженного от материала излучения, фотоэлектрическое устройство, сопряженное с сцинтилляционным кристаллом, предназначенное для регистрации возникающего света и преобразования его в электрический импульс, а также светоотражающее покрытие, предназначенное для отражения света внутрь на фотоэлектрическое устройство. Патент США №3,319,065, МПК G01T 1/20, 1967. Аналог.

Недостатком аналога является невозможность определения места попадания излучения в детектор, т.е. отсутствие у него пространственного разрешения.

Известен «Многосекционный кольцевой детектор тепловых нейтронов для исследования дифракции на микрообразцах в аксиальной геометрии» (Письма в ЭЧАЯ. 2013. Т. 10, №5 (182). С. 713-721), в котором детекторное кольцо разделено на 16 секторов, разделенных на шесть независимых детекторных элементов, расположенных в общем газовом объеме, содержащем газ гелий-3 под давлением 4 атм. Внешний радиус кольца составляет 800 мм, а внутренний 637 мм. Аналог.

Недостатками аналога является низкое пространственное разрешение, обусловленное сравнительно большим размером (123×40×12 мм) детекторного элемента и малым их количеством (96), невозможность применения устройства для регистрации гамма-излучения и быстрых нейтронов, сложность конструкции и обслуживания.

Известен «Координатно-чувствительный детектор», содержащий блок сцинтиллирующих оптических элементов со светопереизлучающими волокнами, на торцах которых расположены фотодиоды, фотодиоды снабжены выводами для соединения со схемами регистрации сцинтилляционных вспышек, блок выполнен в виде, по крайней мере, одной сцинтиллирующей пластины, содержащей, по крайней мере, на одной стороне параллельный ряд светопереизлучающих волокон, фотодиоды светопереизлучающих волокон расположены на торцах пластины и подключены к схеме регистрации с выходным регистром. Патент Российской Федерации №2351954, G01T 3/06, 2009. Аналог.

Недостатком аналога является низкое пространственное разрешение детектора, определяемое расстоянием между светопереизлучающими волокнами.

Известны «Способ и устройство для радиационного измерения плотности твердых тел», в котором устройство включает в себя источник гамма-излучения в радиационной защите и детектор со счетчиком импульсов и сцинтиллятором, в двухканальном детекторе сцинтиллятор выполнен в виде диска из двух колец разных диаметров, причем в кольцо большего диаметра вставлено кольцо меньшего диаметра, внутрь которого вставлен кольцевой блок радиационной защиты, в центре которого размещен источник гамма-излучения и при этом каждый из двух кольцевых сцинтилляторов снабжен кольцевым счетчиком импульсов, причем источник в канале радиационной защиты имеет возможность менять положение с помощью устройства перемещения источника. Патент РФ №2345353, МПК: G01N 23/06, G01N 9/24. 2009 г. Аналог.

Недостатком аналога является низкое пространственное разрешение сцинтилляционного детектора, определяемое числом колец (всего два) сцинтиллятора и отсутствием углового разрешения у кольцевых сцинтилляторов.

Известен «Световолоконный сцинтилляционный детектор», содержащий сборку сцинтилляционных волокон для регистрации гамма-излучения, тепловых и быстрых нейтронов, которая помещена в единую оболочку с внутренним светоотражающим покрытием, сборка выполнена в виде сцинтилляционного кабеля и имеет форму кольца или арки, а фотоприемное устройство состоит из двух фотоприемников, расположенных в противоположных торцах сборки. Патент РФ №2323453, МПК: G01T 3/20, 2008 г. Прототип.

Недостатком прототипа является отсутствие у него пространственного разрешения.

Техническим результатом изобретения является обеспечение пространственного разрешения.

Технический результат достигается тем, что сцинтилляционный детектор, содержащий сборку сцинтиллирующих волокон для регистрации гамма-излучения, тепловых и быстрых нейтронов в форме кольца, а также два фотоприемника, расположенные на противоположных торцах сборки сцинтиллирующих волокон в оптическом контакте с ними, сборка сцинтиллирующих волокон выполнена в виде одного или нескольких лежащих друг на друге кольцевых слоев с общей осью, сцинтиллирующие волокна снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, расположены по окружности, сцинтиллирующие волокна для регистрации разных видов излучений располагаются в разных кольцевых слоях, противоположные торцы сцинтиллирующих волокон соединены оптически с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих волокон.

Сущность изобретения поясняется на Чертеже, где схематично показано устройство, состоящее из двух угловых секций, каждая из которых содержит три слоя сцинтиллирующих волокон:

1 - ось устройства;

2, 3, 4 - кольцевые слои;

5, 6, 7 - сцинтиллирующие волокна для регистрации различных видов излучений;

8 - матричные фотоприемники.

Устройство содержит сборку сцинтиллирующих волокон в виде одного или нескольких лежащих друг на друге кольцевых слоев 2-4 с осью 1, составленных из сцинтиллирующих волокон 5-7 со светоотражающими оболочками и светонепроницаемыми покрытиями и расположенных в каждом кольцевом слое по окружности. Матричные фотоприемники 8 расположены на противоположных торцах сцинтиллирующих волокон 5-7 в оптическом контакте с ними. Каждый из матричных фотоприемников 8 содержит набор фоточувствительных элементов, количество которых равно или больше числа сцинтиллирующих волокон в устройстве.

Кольцевая форма устройства позволяет располагать на его оси 1 источник излучения и использовать устройство для регистрации излучения, рассеянного от объектов, помещенных перед источником, как в случае, например, определения характеристик дорожных покрытий, обеспечивая при этом позиционную чувствительность (пространственное разрешение).

Кольцевые слои содержат сцинтиллирующие волокна, изготовленные из материалов, чувствительных к разным видам излучений: 1) гамма-излучению, 2) быстрым нейтронам, 3) тепловым нейтронам, которые на чертеже показаны различной штриховкой.

Для обеспечения равномерности свойств устройства вдоль его плоскости сцинтиллирующие волокна 5-7, чувствительные к гамма-излучению, быстрым или тепловым нейтронам, располагаются в различных кольцевых слоях.

Число кольцевых слоев N из сцинтиллирующих волокон, предназначенных для регистрации одного вида излучения, определяется требованиями к эффективности регистрации и обычно определяется из соотношения:

где d - поперечный размер сцинтиллирующих волокон, предназначенных для регистрации одного вида излучения, Σ - макроскопическое сечение взаимодействия излучения с веществом сцинтиллирующих волокон, предназначенных для регистрации одного вида излучения.

Количество кольцевых слоев и виды используемых сцинтиллирующих волокон определяются назначением устройства, условиями его эксплуатации и техническими требованиями к его характеристикам.

В настоящее время изготавливают сцинтиллирующие волокна из различных материалов (Н.В. Классен, В.Н. Курлов, С.Н. Россоленко, О.А. Кривко, А.Д. Орлов, С.З. Шмурак. Сцинтилляционные волокна и наносцинтилляторы для улучшения пространственного, спектрометрического и временного разрешения радиационных детекторов. Известия РАН. Серия Физическая, 2009, том 73, №10, с. 1451-1456; Патент РФ №2411543, МПК:G01T 1/20, 2008 г.) и с различной геометрией поперечного сечения: круглые, квадратные и прямоугольные.

Для улучшения светосбора от сцинтилляционных вспышек, возникающих в сцинтиллирующих волокнах под действием излучения, сцинтиллирующие волокна покрыты светоотражающим покрытием с меньшим, чем у волокна, коэффициентом преломления (одно- и двухслойные), либо применяют волокна с заданным радиальным градиентом состава и свойств. Для предотвращения перехода сцинтилляционных фотонов из одного волокна в соседние сцинтиллирующие волокна дополнительно покрыты светонепроницаемым покрытием.

В качестве матричных фотоприемников 8 могут применяться наборы из фотодиодов, кремниевых фотоумножителей или позиционно чувствительные фотоумножители и фотодиодные линейки.

Фоточувствительные элементы матричных фотоприемников 8 заранее пронумерованы. Также пронумерованы сцинтиллирующие волокна и заранее определено, к каким фоточувствительным элементам фотоприемников приходят фотоны от того или иного сцинтиллирующего волокна.

Устройство работает следующим образом.

На устройство падают регистрируемые излучения вдоль оси 1, перпендикулярной плоскости кольцевых слоев 2-4. Интенсивность этих излучений в общем случае имеет радиальное и азимутальное распределение.

Излучение определенного вида: быстрые или тепловые нейтроны, или гамма-излучение, падающее на сцинтиллирующие волокна 5-7, преимущественно поглощается в сцинтиллирующих волокнах, предназначенных для регистрации данного вида излучения, вызывая при этом сцинтилляционную вспышку. Фотоны от сцинтилляционной вспышки, возникшие в одном из сцинтиллирующих волокон, с помощью светоотражающей оболочки транспортируются к торцам этого волокна. При этом фотоны от сцинтилляционной вспышки, выходящие из сцинтиллирующего волокна в соседние волокна, поглощаются светопоглощающим покрытием.

Фотоны, дошедшие до торцов сцинтиллирующего волокна, попадают на фоточувствительные элементы двух матричных фотоприемников 8, где регистрируются, вызывая появление в каждом из них электрического сигнала. По соотношению амплитуд сигналов, полученных с противоположных торцов, определяется расстояние от одного из торцов сцинтиллирующего волокна до места взаимодействия излучения.

Порядковый номер кольцевого слоя, порядковый номер сцинтиллирующего волокна в кольцевом слое, а также расстояние от места взаимодействия излучения до одного из торцов сцинтиллирующего волокна определяют полностью координату взаимодействия в плоскости устройства и вид зарегистрированного излучения.

Сцинтилляционный детектор, содержащий сборку сцинтиллирующих волокон для регистрации гамма-излучения, тепловых и быстрых нейтронов в форме кольца, а также два фотоприемника, расположенные на противоположных торцах сборки сцинтиллирующих волокон в оптическом контакте с ними, отличающийся тем, что сборка сцинтиллирующих волокон выполнена в виде одного или нескольких лежащих друг на друге кольцевых слоев с общей осью, сцинтиллирующие волокна снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, расположены по окружности, сцинтиллирующие волокна для регистрации разных видов излучений располагаются в разных кольцевых слоях, противоположные торцы сцинтиллирующих волокон соединены оптически с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих волокон.



 

Похожие патенты:

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов. Цилиндрический позиционно-чувствительный детектор содержит множество сцинтилляторов, разделенных отражающим материалом, помещенным между сцинтилляторами, каждый сцинтиллятор находится в оптическом контакте с фотоприемником, при этом сцинтиллятор состоит из одного или нескольких цилиндрических наборов, составленных из сцинтиллирующих волокон, обеспечивающих регистрацию нейтронного или гамма-излучения, сцинтиллирующие волокна снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы сцинтиллирующих волокон соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих волокон.

Изобретение относится к устройствам для измерения нейтронного излучения с помощью сцинтилляционных детекторов. Детектор нейтронов содержит фотоприемник и пластины из прозрачного водородосодержащего пластика, которые чередуются со слоями материала, содержащего сцинтиллятор и конвертор тепловых нейтронов, при этом дополнительно содержит спектросмещающее волокно, намотанное в один слой на торцевую поверхность пластин, концы которого оптически соединены с фотоприемником.

Изобретение относится к устройствам для измерения нейтронного излучения с помощью сцинтилляционных детекторов. Детектор нейтронов содержит корпус, в котором размещены композиционный сцинтиллятор, спектросмещающие волокна, спектр поглощения которых находится в области спектра высвечивания композиционного сцинтиллятора и, по крайней мере, один фотоприемник, с которым оптически соединены торцы спектросмещающих волокон, при этом композиционный сцинтиллятор выполнен в виде отдельных гранул, которые расположены, по крайней мере, в один слой вокруг спектросмещающих волокон.

Изобретение может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений, в частности нейтронов. Сцинтилляционное стекло получают из композиции SiO2, Li2CO3, MgO, Al2O3, AlF3, CeO2, а для подавления окисления ионов церия в стекло вводят добавку металлического кремния (Si) в количестве 0,001-10 мас.%.

Изобретение может быть использовано при изготовлении систем визуализации в компьютерных томографах. Сцинтилляционный материал содержит модифицированный оксисульфид гадолиния (GOS), в котором приблизительно от 25% до 75% гадолиния (Gd) замещено лантаном (La) или приблизительно не более 50% гадолиния (Gd) замещено лютецием (Lu).

Изобретение относится к метрологии излучений, а именно к способу измерения интенсивности радиационного излучения, и может быть использовано в мониторных и радиографических сцинтилляционных детекторах рентгеновского и гамма-излучений, а также быстрых нейтронов.

Изобретение относится к устройству для детектирования нейтронного излучения, предпочтительно, тепловых нейтронов, содержащему по меньшей мере одну первую секцию (102) с высокой способностью к поглощению нейтронов и по меньшей мере одну вторую секцию (101) с низкой способностью к поглощению нейтронов, причем вторая секция содержит гамма-лучевой сцинтиллятор, материал гамма-лучевого сцинтиллятора содержит неорганический материал с длиной ослабления менее 10 см, предпочтительно, менее 5 см для гамма-лучей с энергией 5 МэВ для обеспечения высокой способностью торможения гамма-лучей для энергичных гамма-лучей во второй секции, где материал первой секции выбран из группы материалов, высвобождающих энергию, сообщаемую первой секции за счет захвата нейтрона, в основном, посредством гамма-излучения, и где вторая секция окружает первую секцию таким образом, что существенный участок первой секции покрыт второй секцией, устройство дополнительно содержит детектор света (103) 1, оптически соединенный со второй секцией для детектирования количества света во второй секции, устройство дополнительно содержит оценивающее приспособление, соединенное с детектором света, причем это приспособление способно определять количество света, детектируемого детектором света для одного события сцинтилляции, причем это количество находится в известном соотношении с энергией, сообщаемой гамма-излучением второй секции, где оценивающее приспособление выполнено с возможностью классифицировать детектируемое излучение как нейтроны, когда измеренная полная энергия гамма-кванта E (sum) выше 2,614 МэВ.

Изобретение относится к устройству для детектирования нейтронного излучения, предпочтительно тепловых нейтронов, содержащему гамма-лучевой сцинтиллятор, упомянутый сцинтиллятор содержит неорганический материал с длиной ослабления Lg менее 10 см, предпочтительно, менее 5 см для гамма-лучей с энергией 5 МэВ для обеспечения высокой способностью торможения гамма-излучения для энергичных гамма-лучей в гамма-лучевом сцинтилляторе, причем гамма-лучевой сцинтиллятор дополнительно содержит компоненты, для которых умножение сечения захвата нейтрона на концентрацию дает длину поглощения Ln для тепловых нейтронов, которая больше 0,5 см, но меньше пятикратной длины ослабления Lg, предпочтительно, меньше двукратной длины ослабления Lg для гамма-лучей с энергией 5 МэВ в сцинтилляторе, причем нейтронпоглощающие компоненты гамма-лучевого сцинтиллятора высвобождают энергию, сообщенную возбужденным ядрам после захвата нейтрона, в основном посредством гамма-излучения, причем гамма-лучевой сцинтиллятор имеет диаметр или длину края по меньшей мере 50% Lg, предпочтительно, по меньшей мере Lg, для поглощения существенной части энергии гамма-лучей, выделяемой после захвата нейтрона в сцинтилляторе, устройство дополнительно содержит детектор света, оптически соединенный с гамма-лучевым сцинтиллятором для детектирования количества света в гамма-лучевом сцинтилляторе, устройство дополнительно содержит оценивающее приспособление, соединенное с детектором света, причем приспособление способно определять количество света, детектируемого детектором света для одного события сцинтилляции, причем это количество находится в известном соотношении с энергией, сообщаемой гамма-излучением в гамма-лучевом сцинтилляторе, причем оценивающее приспособление выполнено с возможностью классифицировать детектируемое излучение как нейтроны, когда измеренная полная гамма-энергия Esum выше 2,614 МэВ.

Изобретение может быть использовано в медицинских томографах, при неразрушающем контроле в промышленности, для обеспечения безопасности при осмотре личного имущества, в физике высоких энергий.

Изобретение относится к области детекторов радиоактивного излучения сцинтилляционного типа для использования в скважинном каротажном инструменте. .

Изобретение относится к области радиационных измерений и может быть использовано для регистрации плотности потока мононаправленного нейтронного излучения при работе на ядерно-физических установках различного типа и назначения. Детектор мононаправленного нейтронного излучения содержит изготовленные из материалов с близкими эффективными атомными номерами корпус, металлический коллектор, водородосодержащую и не содержащую водород диэлектрические пластины, при этом коллектор выполнен в виде двух пластин, которые разделены электростатическим экраном толщиной, равной пробегу образуемых гамма-излучением вторичных электронов, и подключены через схему вычитания к электроизмерительному прибору, причем между каждой из пластин коллектора и корпусом расположены диэлектрические пластины из водородосодержащего материала, а между пластинами коллектора и электростатическим экраном расположены диэлектрические пластины из материала, не содержащего водород. Технический результат - снижение чувствительности детектора мононаправленного нейтронного излучения к сопутствующему гамма-излучению при работе в полях смешанного гамма-нейтронного излучения. 2 ил.

Изобретение относится к области радиационных измерений и может быть использовано для регистрации плотности потока мононаправленного нейтронного излучения при работе на ядерно-физических установках различного типа и назначения. Устройство для регистрации мононаправленного нейтронного излучения, при наличии сопутствующего гамма-фона, содержит два сцинтилляционных кристалла, выполненные из водородосодержащего материала толщиной, равной длине пробега наиболее высокоэнергетических протонов отдачи, расположенные в корпусе последовательно по направлению облучения, разделенные между собой слоем металла толщиной, значительно меньшей величины пробега протонов отдачи, и два фотоэлектронных умножителя, связанные оптически со сцинтилляционными кристаллами и подключенные через схему вычитания к электроизмерительному прибору, а кристаллы, разделяющие их слои металла, фотокатоды фотоэлектронных умножителей и корпус устройства изготовлены из материалов с близкими эффективными атомными номерами, при этом содержит третий сцинтилляционный кристалл, который выполнен из материала, не содержащего водород, расположен за вторым кристаллом, имеет равную с ним толщину и отделен от него слоем металла толщиной, равной длине пробега наиболее высокоэнергетических протонов отдачи, а фотоэлектронные умножители имеют оптическую связь со вторым и третьим сцинтилляционными кристаллами. Технический результат - повышение чувствительности устройства для регистрации мононаправленного нейтронного излучения при наличии сопутствующего гамма-фона. 2 ил.

Изобретение относится к сцинтиллятору для использования в радиационном детекторе. Сцинтиллятор для высокотемпературных условий содержит кристалл типа кольквириита формулы LiM1M2X6, где M1 выбирают из щелочноземельных элементов Mg, Ca, Sr и Ba; M2 выбирают из Al, Ga и Sc; X - галоген. Примером кристалла является кольквириит типа LiCaAlF6. Кристалл может содержать элемент из группы лантаноидов, такой как Ce или Eu. Описываются также радиационный детектор, содержащий указанный сцинтиллятор и фотодетектор, и способ обнаружения излучения с его использованием. Изобретение обеспечивает сцинтиллятор с хорошими фотоэмиссионными характеристиками в высокотемпературных условиях, позволяющими его использовать для обнаружения нейтронов и измерения излучения в высокотемпературных условиях. 3 н. и 5 з.п. ф-лы, 11 ил., 2 пр.
Изобретение относится к области радиационных измерений и может быть использовано для определения направления на точечный источник высокоинтенсивного импульсного нейтронного излучения в ядерно-физических экспериментах. Устройство для определения направления на точечный источник высокоинтенсивного импульсного нейтронного излучения содержит детекторы из металлического корпуса и коллектора, отделенного от корпуса водородосодержащей и не содержащей водород диэлектрическими пластинами, причем детекторы расположены на поверхности сферической оболочки и закреплены на ней со стороны пластины, не содержащей водород, поверхность детекторов ориентирована ортогонально радиус-вектору из центра сферической оболочки к точке закрепления детектора, а коллекторы детекторов подключены к электроизмерительным приборам. Технический результат – определение направления на источник импульсного нейтронного излучения.

Изобретение относится к композиционному материалу нейтронного сцинтиллятора. Материал включает нейтронный сцинтиллятор формулы Li6Mg1-xCexBr8, где 0<х<1, и связующее, имеющее показатель преломления, который по существу идентичен показателю преломления нейтронного сцинтиллятора. При этом композиционный материал нейтронного сцинтиллятора получен горячим прессованием смеси сцинтиллятора и связующего. Также предложены способ изготовления композиционного материала и изделие. Изобретение позволяет минимизировать рассеяние на поверхности(ях) раздела между сцинтиллятором и связующим, получая эффективность пропускания, которая приближается к одиночным кристаллам. 3 н. и 14 з.п. ф-лы, 6 ил., 1 табл., 2 пр.
Наверх