Многоэлементный дифференциальный фазовращатель свч

Использование: изобретение относится к устройствам, обеспечивающим постоянный фазовый сдвиг между компенсирующей линией и фазосдвигающим каналом (ФК) в широкой полосе частот. Сущность: многоэлементный дифференциальный фазовращатель СВЧ включает компенсирующую линию и фазосдвигающий канал в виде, по крайней мере, двух четырехполюсников, соединенных каскадно, каждый из которых выполнен в виде отрезка связанных однородных линий, токонесущие проводники которых соединены один с другим на одном конце, согласно решению каждый четырехполюсник нагружен короткозамкнутым шлейфом. Компенсирующая линия выполнена в виде отрезка однородной линии передачи. Длина связанных однородных линий передачи различных четырехполюсников выполнена одинаковой или различной. Длина шлейфа различных четырехполюсников выполнена одинаковой или различной. Технический результат: уменьшение коэффициента стоячей волны по напряжению (КСВН) и уменьшение максимального отклонения Δφ функции фазового сдвига от номинального значения φ0. 5 з.п. ф-лы, 1 ил., 2 табл.

 

Изобретение относится к устройствам, обеспечивающим постоянный фазовый сдвиг между компенсирующей линией (опорным каналом) и фазосдвигающим каналом (ФК) в широкой полосе частот.

Известен диференциальный фазовращатель(ДФ) СВЧ, предложенный и исследованный Шиффманом (Schiffman B. M. A new class of broadband microwave 90-degree phase shifters //IRE Trans., 1958. V. MTT-6, no 4. P. 232). В нем опорный канал выполнен в виде отрезка одиночной однородной линии передачи (ЛП), а фазосдигающий канал представляет собой отрезок связанных однородных ЛП с направленностью второго типа, выходные плечи которого непосредственно соединены между собой. Фазосдвигающий канал такого типа получил название С-звена. Теоретически С-звено является всепропускающим четырехполюсником (ЧП): предполагается, что отрезок связанных ЛП в нем характеризуется идеальной направленностью, а длина отрезка, соединяющего выходные плечи связанных однородных ЛП, равна нулю.

Однако на практике потенциальные возможности ДФ на основе С-звеньев не могут быть полностью реализованы, так как длина отрезка, соединяющего выходные плечи связанных однородных ЛП, отлична от нуля. Кроме того, в связанных микрополосковых ЛП конструктивно-технологические ограничения при реализации средних и высоких значений коэффициентов связи и разница фазовых скоростей нормальных волн, распространяющихся в них, нарушают условия идеальной направленности и согласования.

Известен ДФ СВЧ, включающий опорный и фазосдвигающий каналы (Аристархов Г. М., Алексеев А. А. Широкополосные фазовращатели на связанных микрополосковых линиях с кратными электрическими длинами //Радиотехника, 1987, №12. С. 58). В нем опорный канал выполнен в виде отрезка одиночной однородной ЛП, а фазосдигающий канал представляет собой С-звено, нагруженное короткозамкнутым шлейфом.

Однако известный ДФ СВЧ со шлейфом является отражающим. Кроме того, потенциальные возможности такого ДФ до сих пор реализованы на практике не в полной мере.

Наиболее близким к заявляемому устройству является ДФ, содержащий компенсирующую линию (опорный канал) и фазосдвигающий канал в виде, по крайней мере, двух ЧП, соединенных каскадно (авторское свидетельство SU 1580459, МПК H01P1/18). Каждый ЧП выполнен в виде отрезка связанных однородных ЛП, токонесущие проводники которых соединены один с другим на одном конце. Длина проводников в ЧП монотонно изменяется от входа ДФ к его выходу и монотонному возрастанию длины проводников соответствует монотонное убывание их коэффициента связи.

Недостатком прототипа являются плохие характеристики, такие как коэффициент стоячей волны по напряжению (КСВН) и максимальное отклонение Δφ функции фазового сдвига от номинального значения φ0.

Технический результат заявляемого изобретения заключается в уменьшении КСВН и в уменьшении максимального отклонения Δφ функции фазового сдвига от номинального значения φ0.

Указанный технический результат достигается тем, что многоэлементный ДФ СВЧ включает компенсирующую линию и фазосдвигающий канал в виде, по крайней мере, двух четырех полюсников,соединенных каскадно, каждый из которых выполнен в виде отрезка связанных однородных линий передачи, токонесущие проводники которых соединены один с другим на одном конце, согласно решению каждый четырехполюсник нагружен короткозамкнутым шлейфом. Компенсирующая линия выполнена в виде отрезка однородной ЛП. Длина связанных однородных ЛП различных четырехполюсников выполнена одинаковой или различной. Длина шлейфа различных четырехполюсников выполнена одинаковой или различной.

Заявляемое изобретение поясняется чертежом, на котором представлена схема многоэлементного ДФ СВЧ. Позициями на чертеже обозначены: компенсирующая линия; четырехполюсник; короткозамкнутый шлейф.

Заявляемый многоэлементный ДФ СВЧ включает компенсирующую линию 1 и фазосдвигающий канал. Компенсирующая линия выполнена в виде отрезка однородной одиночной ЛП. Фазосдвигающий канал выполнен в виде, по крайней мере, двух четырехполюсников 2, соединенных каскадно. Каждый из ЧП выполнен из отрезка связанных однородных ЛП, имеющего направленность второго типа, причем длина связанных однородных ЛП различных ЧП может быть выполнена одинаковой или различной. Выходные плечи отрезка связанных однородных ЛП каждого ЧП непосредственно соединены между собой, а к месту соединения связанных однородных ЛП подключен короткозамкнутый шлейф 3, причем длина шлейфа различных ЧП может быть выполнена одинаковой или различной. Таким образом, фазосдвигающий канал заявляемого изобретения образован каскадным включением нескольких одинаковых или различных элементов. Двухэлементная структура ФК приведена на чертеже.

Для двух- и трехэлементных структур была решена задача параметрической оптимизации одновременно фазочастотной характеристики (ФЧХ) фазовращателя и КСВН его фазосдвигающего канала с использованием среды проектирования AWR DE.

В таблицах 1 и 2 приведены рассчитанные оптимальные параметры ДФ двух- и трехэлементной структур ФК для рабочей полосы частот [f1, f2] с коэффициентом перекрытия κ=1.5; 2; 2.5 и 3. В таблицах 1 и 2 использованы следующие обозначения: Δφ - максимальное отклонение функции фазового сдвига от номинального значения φ0; - электрическая длина ОК; - длина ОК, нормированная на среднюю длину волны рабочего диапазона частот; - максимальное значение коэффициента стоячей волны напряжения на входе фазосдвигающего канала; Z0e, Z0o - волновые сопротивления четного и нечетного типа возбуждения отрезка связанных ЛП соответственно; Zшл - волновое сопротивление шлейфа. Волновые сопротивления подводящих линий полагались равными 50 Ом.

Таблица 1. Оптимальные параметры двухэлементной структуры ФК

Таблица 2. Оптимальные параметры трехэлементной структуры ФК

Из таблиц 1 и 2 следует:

1. Увеличение числа элементов приводит к уменьшению отклонения фазочастотной характеристики ДФ от заданного номинального значения φ0 и уменьшению КСВН на входе ФК.

2. Фазовращатели на основе связанных ЛП со шлейфом характеризуются существенно меньшими отклонениями ФЧХ от номинального значения сдвига фазы φ0. Их практическая реализация упрощается, поскольку значения коэффициентов связи в этих структурах значительно меньше, чем у прототипа.

1. Многоэлементный дифференциальный фазовращатель СВЧ, включающий компенсирующую линию и фазосдвигающий канал в виде, по крайней мере, двух четырехполюсников, соединенных каскадно, каждый из которых выполнен в виде отрезка связанных однородных линий передачи, токонесущие проводники которых соединены один с другим на одном конце, отличающийся тем, что каждый четырехполюсник снабжен короткозамкнутым шлейфом, подключенным к месту соединения связанных однородных линий.

2. Многоэлементный дифференциальный фазовращатель СВЧ по п.1, отличающийся тем, что компенсирующая линия выполнена в виде отрезка однородной линии.

3. Многоэлементный дифференциальный фазовращатель СВЧ по п.1, отличающийся тем, что длина связанных однородных линий передачи различных четырехполюсников выполнена различной.

4. Многоэлементный дифференциальный фазовращатель СВЧ по п.1, отличающийся тем, что длина связанных однородных линий передачи различных четырехполюсников выполнена одинаковой.

5. Многоэлементный дифференциальный фазовращатель СВЧ по п.1, отличающийся тем, что длина шлейфа различных четырехполюсников выполнена различной.

6. Многоэлементный дифференциальный фазовращатель СВЧ по п.1, отличающийся тем, что длина шлейфа различных четырехполюсников выполнена одинаковой.



 

Похожие патенты:

Изобретение относится к электронной и ускорительной технике, а именно к вакуумноплотным волноводным окнам ввода-вывода энергии длинноволновой части СВЧ диапазона.

Изобретение относится к области радиотехники, в частности к развязывающим устройствам дециметрового и сантиметрового диапазонов длин волн, и может быть использовано в качестве функционального узла в приемопередающих трактах радиотехнических систем как коммутирующее устройство, а также для развязки источника сигнала от нагрузки.

Устройство формирования нано- и субнаносекундных СВЧ-импульсов относится к радиотехнике и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности с частотой следования входного микросекундного СВЧ-импульса, а также серии СВЧ-импульсов субнаносекундной длительности в пределах входного импульса, генерируемого в частотно-периодическом режиме.

Изобретение относится к области радиотехники и может быть использовано в приемо-передающих трактах радиотехнических систем для обеспечения развязки и коммутации сигналов.

Изобретение относится к радиотехнике и технике СВЧ и может быть использовано в радиоэлектронной аппаратуре. Достигаемый технический результат - расширение полосы пропускания при повышении добротности и геометрических размерах, меньших рабочей длины волны.

Изобретение относится к технике СВЧ и может быть использовано в антенно-фидерных устройствах для регулировки уровня проходящей мощности СВЧ. Заявленный переменный аттенюатор содержит полосковый проводник, соединенный с входным и выходным коаксиальными разъемами и установленный между двумя металлическими основаниями, и подвижные поглотители.

Изобретение относится к области радиотехники, в частности к развязывающим устройствам метрового, дециметрового и сантиметрового диапазонов длин волн, и может быть использовано в качестве функционального узла в приемо-передающих трактах радиотехнических систем для построения невзаимных синфазных делителей (сумматоров) мощности, а также как согласующе-развязывающее устройство.

Изобретение относится к области радиотехники и может быть использовано для изготовления Y-сочленения в виде системы переплетенных плоских проводников при производстве циркуляторов на сосредоточенных элементах метрового и дециметрового диапазонов длин волн с высоким уровнем рабочей мощности.

Изобретение относится к области измерительной техники, в частности микроволновой интерферометрии. Приемо-передающее устройство для фазометрических систем миллиметрового диапазона длин волн содержит генератор непрерывного зондирующего излучения, гетеродин, два смесителя, передающую и приемную антенны и волноводный тракт.

Изобретение относится к аттенюатору СВЧ. Технический результат состоит в снижении прямых потерь СВЧ и расширение функциональных возможностей аттенюатора СВЧ.

Изобретение относится к области полупроводниковых изделий. Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку, на которой последовательно размещены: буферный слой AlN, буферный слой из GaN, буферный слой из нелегированного GaN i-типа проводимости. Кроме того, переключатель СВЧ содержит двумерный электронный газ высокой плотности, который служит нижней обкладкой конденсатора, сглаживающий слой из нитрида галлия, слой диэлектрика из двуокиси гафния, металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора, и два конденсатора, образующих двойные ВЧ-ключи. Подложка выполнена из изолирующего теплопроводящего CVD поликристаллического алмаза, а на буферном слое из нелегированного GaN i-типа проводимости последовательно размещены сверхрешетка из AlXGa1-XN/GaN, буферный слой из GaN, сильнолегированный слой n-типа проводимости из AlXGa1-XN, спейсер из AlXGa1-XN, сглаживающий слой, канал из InXGa1-XN, сглаживающий дополнительный слой, спейсер из AlXGa1-XN, сильнолегированный слой AlXGa1-XN, слой из GaN, слой диэлектрика из двуокиси гафния и дополнительный слой диэлектрика. При этом переключатель выполнен с минимальным количеством глубоких электронных ловушек DX, а канал выполнен упруго-напряженным псевдоморфным с концентрацией InGa 15-25% и легирован с двух сторон, а двумерный электронный газ образован между каналом и слоем из AlXGa1-XN. 3 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к области полупроводниковых изделий, Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку из сапфира, на которой последовательно размещены буферный слой AlN, буферный слой из GaN, буферный слой из нелегированного GaN i-типа проводимости, двумерный электронный газ высокой плотности, который служит нижней обкладкой конденсатора, сглаживающий слой из нитрида галлия, поверх которого нанесен слой диэлектрика из двуокиси гафния, металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора, и два конденсатора, образующих двойные ВЧ-ключи. На буферном слое из нелегированного GaN i-типа проводимости последовательно размещены сверхрешетка из AlXGa1-XN/GaN, буферный слой из GaN, сильнолегированный слой n-типа проводимости из AlXGa1-XN, спейсер из AlXGa1-XN, сглаживающий слой, канал из InXGa1-XN, сглаживающий дополнительный слой из GaN, слой диэлектрика из двуокиси гафния и дополнительный слой диэлектрика. При этом переключатель выполнен с минимальным количеством глубоких электронных ловушек DX, а канал выполнен упругонапряженным псевдоморфным с концентрацией InGa 15-25%, а двумерный электронный газ образован между каналом и слоем из AlXGa1-XN. 3 з.п. ф-лы. 1 табл., 2 ил.

Изобретение относится к области полупроводниковых изделий. Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку, на которой последовательно размещены: буферный слой AlN, буферный слой из GaN, буферный слой из нелегированного GaN i-типа проводимости, двумерный электронный газ высокой плотности, который служит нижней обкладкой конденсатора, сглаживающий слой из нитрида галлия, слой диэлектрика из двуокиси гафния, металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора, и два конденсатора, образующих двойные ВЧ-ключи. На буферном слое из нелегированного GaN i-типа проводимости последовательно размещены сверхрешетка из AlXGa1-XN/GaN, буферный слой из GaN, сильнолегированный слой n-типа проводимости из AlXGa1-XN, спейсер из AlXGa1-XN, сглаживающий слой, канал из GaN, сглаживающий дополнительный слой, спейсер из AlXGa1-XN, сильнолегированный слой AlXGa1-XN, слой из GaN, слой диэлектрика из двуокиси гафния и дополнительный слой диэлектрика. При этом переключатель выполнен с минимальным количеством глубоких электронных ловушек DX, а канал легирован с двух сторон, а двумерный электронный газ образован между каналом и слоем из AlXGa1-XN. 2 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к технике СВЧ. Технический результат - повышение надежности и скорости переключения, увеличение уровня выходной мощности и уровня радиационной стойкости. Для этого коммутирующее устройство СВЧ содержит электроды и емкостной элемент, представляющий собой конденсатор, при этом коммутирующее устройство СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN и в интерфейсе GaN/AlGaN гетероструктуры образован двумерный электронный газ высокой плотности, который служит нижней обкладкой конденсатора. Поверх твердого раствора AlGaN размещен сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния и слой из оксида алюминия. Поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора. 3 ил.

Изобретение относится к микроволновой технике и предназначено для применения в бортовой аппаратуре радиолокационных, коммуникационных и измерительных систем, подверженных воздействию внешних факторов. Высокопрочная коаксиальная нагрузка содержит коаксиальную линию передачи, включающую внутренний и внешний проводники, и резистивный элемент, расположенный между внутренним и внешним проводниками и включающий цилиндрический участок и конический участок ступенчатой формы. При этом резистивный элемент выполнен из фторопласта, в каждой из ступеней резистивного элемента вдоль коаксиальной линии выполнены отверстия с наноразмерным металлическим слоем, нанесенным на внутреннюю поверхность. Технический результат заключается в повышении механической прочности, термо- и влагостойкости. 3 ил., 1 табл.

Изобретение относится к устройствам обработки и коммутации СВЧ-сигналов на полупроводниковых приборах и предназначено для использования в телекоммуникационных системах, электрически управляемых устройствах СВЧ-электроники, таких как полосовые или селективные фильтры, антенны, перестраиваемые генераторы. Техническим результатом является создание волноводной СВЧ-структуры с электрически управляемыми характеристиками разрешенных и запрещенных зон при уменьшенных прямых потерях. Для этого в волноводную структуру с разрешенными и запрещенными зонами, содержащую диафрагму с рамочными элементами связи, расположенными по обе стороны диафрагмы, и полупроводниковый элемент с электрически управляемой проводимостью, введена по крайней мере в один рамочный элемент по крайней мере одна неоднородность типа «штырь с зазором», в зазор одной из которых помещен полупроводниковый элемент с электрически управляемой проводимостью. 5 ил.

Изобретение относится к волноводам мультиплексоров, встроенных в космическое оборудование для спутников. Технический результат состоит в создании малогабаритного и простого во внедрении термоэластичного воздействующего устройства, позволяющего обеспечить фазовую стабильность волновода. Для этого компактное термоэластичное воздействующее устройство (15) содержит, по меньшей мере, две идентичные усилительные детали (10a, 10b, 10c, 10d) и удерживающую деталь (11), при этом удерживающая деталь имеет коэффициент теплового расширения, меньший коэффициента теплового расширения усилительных деталей. Усилительные детали (10a, 10b, 10c, 10d) установлены обращенными в противоположные стороны одна возле другой параллельно продольной оси Y и линейно смещены одна относительно другой вдоль продольной оси Y. Удерживающая деталь (11) содержит два конца, соответственно соединенных с внешними концами каждой усилительной детали, а внутренние концы каждой усилительной детали расположены под средней зоной (14) удерживающей детали (11). 3 н. и 10 з.п. ф-лы, 12 ил.

Изобретение предназначено для формирования задающих цепей генераторов, устройств частотной селекции и др. Техническим результатом изобретения является увеличение отношения первых двух резонансных частот полоскового резонатора при сохранении высокой добротности и миниатюрности и позволяет расширить протяженность полосы заграждения полосно-пропускающих фильтров на его основе. Резонатор содержит подвешенную между экранами диэлектрическую подложку, на одну поверхность которой нанесены полосковые металлические проводники, идентичные по форме и разделенные тонкими диэлектрическими слоями, причем проводники с нечетными номерами одним концом короткозамкнуты с одной стороны подложки, а с четными номерами - с противоположной стороны подложки, причем разомкнутые концы проводников с четными номерами гальванически соединены друг с другом через диэлектрические слои посредством металлических перемычек с одного края подложки, а с нечетными номерами - с противоположного края подложки. 3 ил.

Изобретения относятся к областям радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и могут быть использованы для создания устройств усиления и частотной демодуляции. Техническим результатом изобретения является увеличение динамического диапазона и квазилинейного участка частотной демодуляционной характеристики благодаря наличию резистивного четырехполюсника и согласования с помощью сложного комплексного двухполюсника, используемого в качестве высокочастотной нагрузки, по критерию формирования квазилинейного участка левого склона АЧХ, совпадающего с диапазоном изменения частоты входного ЧМС. Для достижения технического результата предложены способ усиления и демодуляции частотно-модулированных сигналов и устройство для реализации способа. Устройство усиления и демодуляции частотно-модулированных сигналов выполнено из источника постоянного напряжения, цепи прямой передачи в виде трехполюсного нелинейного элемента, четырехполюсника, цепи внешней обратной связи, фильтра нижних частот, разделительной емкости и низкочастотной нагрузки, при этом четырехполюсник выполнен резистивным, в качестве цепи внешней обратной связи использован произвольный комплексный четырехполюсник, подключенный к трехполюсному нелинейному элементу по параллельно-последовательной схеме, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включены между источником частотно-модулированного сигнала с комплексным сопротивлением и входом резистивного четырехполюсника, между выходом резистивного четырехполюсника и фильтром нижних частот включена высокочастотная нагрузка в виде сложного двухполюсника с комплексным сопротивлением zн, который сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, конденсатора с емкостью С, произвольного комплексного двухполюсника с сопротивлением Z0=R0+jX0 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и катушки с индуктивностью L, параметры R1, R2, L, С выбраны из условия согласования по критерию одновременного обеспечения усиления и частотной демодуляции в соответствии с приведенными математическими выражениями. 2 н.п. ф-лы, 3 ил.

Изобретение относится к технике СВЧ и представляет собой волноводный переключатель. Переключатель содержит концентрично расположенные статор и ротор с выполненными в них волноводными каналами, узел управления, устройство фиксации ротора относительно статора и исполнительное устройство. Исполнительное устройство представляет собой концентрично расположенные магнитопровод в виде кольца и ротор. Магнитопровод имеет на внутренней поверхности четное количество зубьев не менее четырех, располагающихся симметрично относительно оси симметрии магнитопровода в каждой паре зубьев. На каждый зубец намотана катушка индуктивности. Катушки, находящиеся на зубцах каждой пары, электрически соединены между собой так, что начало намотки первой катушки соединено с концом намотки второй катушки, а незадействованные выводы катушек подключаются к узлу управления. Ротор исполнительного устройства представляет собой магнит в форме цилиндра и механически закреплен на оси ротора волноводного переключателя, магнитные полюса расположены параллельно оси, один из полюсов (S или N) перекрывает торцы зубцов одной половины катушек, а другой полюс (N или S) перекрывает один или более торцов зубцов другой половины катушек. Техническим результатом является обеспечение непосредственного переключения между любыми позициями. 2 ил.
Наверх