Способ увеличения подъемной силы самолета и устройство для его реализации

Способ и устройство увеличения аэродинамической подъемной силы самолета с силовой установкой, имеющей сопло, расположенное у задней кромки крыла. Для увеличения подъемной силы самолета с силовой установкой, имеющей сопло в области задней кромки крыла, используют нижнюю внешнюю поверхность сопла, где устанавливают по меньшей мере один аэродинамический щиток, который отклоняют в воздушный поток вокруг самолета. Группа изобретений направлена на снижение аэродинамического сопротивления от вихреобразования. 2 н. и 3 з.п. ф-лы, 5 ил.

 

Настоящее изобретение относится к области авиации, в частности к способу и устройству увеличения аэродинамической подъемной силы самолетов с силовой установкой (СУ), имеющей сопло, расположенное у задней кромки крыла.

Известна активная система регулирования подъемной силы (Патент РФ № RU 2086469 C1, МПК B64C 9/20, F02K 3/02, B64C 23/06, 1994 г.). Увеличение подъемной силы достигается воздействием на аэродинамическое обтекание крыла путем изменения направления реактивной струи с использованием щитка, размещаемого вблизи выходного сечения сопла. Непосредственное воздействие на аэродинамику самолета щиток, находящийся в реактивной струе, не оказывает.

Известен способ управления летательным аппаратом (Патент РФ № RU 2299834 C2, МПК B64C 9/02, B64C 9/04, B64C 9/12, 2005 г.), который заключается в том, что для управления распределением воздушного давления по крылу и положением летательного аппарата (ЛА) отклоняют заднюю кромку и щитки на крыле. Использование внешней поверхности снизу сопла СУ для увеличения подъемной силы самолета посредством отклоняемого аэродинамического щитка не рассматривается.

Известны экспериментальные исследования аэродинамики целиком отклоняемого сопла (Г.Н. Лаврухин, Е.Б. Скворцов, В.А. Талызин, С.В. Шелехова «Экспериментальное исследование аэродинамики сопла с отклоняемым вектором тяги», «Ученые записки ЦАГИ», 2014 г., т. XLV, №4, 1-112). Исследования показали, что отклонение сопла приводит не только к изменению угла наклона реактивной струи, но и к возникновению на сопле внешних аэродинамических сил, заметно увеличивающих отклонение вектора тяги.

Известны сопла с поворотными створками, которые используются для изменения направления истечения реактивной струи (Патент GB 2185718, F64C 15/02, F02K 1/12, 1986 г.), но они изменяют и внешние аэродинамические силы. Отсюда можно заключить, что отклонение сопла или створок для управления вектором тяги вызывает непреднамеренное изменение аэродинамических сил в результате перераспределения воздушного давления в области сопла. Этот сопутствующий эффект зависит от состава и положения управляющих элементов сопла.

Известно, что для увеличения подъемной силы самолета устанавливают органы аэродинамической механизации крыла, в том числе в области задней кромки, и отклоняют их в воздушный поток вокруг самолета (Торенбик Э. Т59 Проектирование дозвуковых самолетов: Пер. с англ. / Пер. Е.П. Голубков. - М.: Машиностроение, 1983 - 648 с., ил.). В ряде случаев размещение упомянутых органов аэродинамической механизации по размаху крыла может быть ограничено.

Наиболее близким из известных аналогов является самолет Northrop Grumman В-2 (http://www.northropgrumman.com/capabilities/b2spiritbomber/pages/default), содержащий фюзеляж, шасси, крылья, органы управления с системой управления. Сопла силовой установки расположены у задней кромки крыла, а для увеличения подъемной силы самолета используют органы аэродинамической механизации, расположенные вдоль задней кромки по размаху крыла, которые отклоняют в воздушный поток вокруг самолета. На части размаха крыла, занятой соплами, органы аэродинамической механизации отсутствуют. Следствием чего является меньшая площадь отклоняемых поверхностей крыла и увеличение аэродинамического сопротивления от вихреобразования на боковых кромках органов аэродинамической механизации, смежных с соплом при их отклонении в воздушный поток вокруг самолета.

Технический результат заключается в создании дополнительной подъемной силы.

Технический результат достигается тем, что в способе увеличения подъемной силы самолета с силовой установкой, имеющей сопло в области задней кромки крыла, и заключающемся в отклонении органов аэродинамической механизации по меньшей мере один аэродинамический щиток устанавливают на нижней внешней поверхности сопла силовой установки и отклоняют его во внешний поток.

Технический результат достигается также тем, что упомянутый аэродинамический щиток отклоняют совместно со смежными органами аэродинамической механизации задней кромки крыла самолета.

Кроме того, технический результат достигается тем, что самолет, содержащий фюзеляж, шасси, крылья, органы управления с системой управления и силовую установку, имеющую хотя бы одно сопло в области задней кромки крыла, на нижней внешней поверхности упомянутого сопла имеет по меньшей мере один отклоняемый аэродинамический щиток.

Технический результат достигается также тем, что на нижней поверхности сопла установлено несколько аэродинамических щитков.

Технический результат достигается также тем, что на нижней поверхности сопел, расположенных рядом по размаху крыла, установлен единый аэродинамический щиток.

Предлагаемый способ решает задачу увеличения аэродинамической подъемной силы самолета с СУ, имеющей сопло, расположенное у задней кромки крыла, независимо от истечения реактивной струи.

Описываемый способ и устройство для его осуществления будут более очевидны из нижеследующего описания со ссылками на прилагаемые чертежи.

Фиг. 1 - Механизированное крыло самолета с интегрированной силовой установкой в области задней кромки крыла;

Фиг. 2 - Механизированное крыло самолета с интегрированной силовой установкой, сопло которой имеет отклоняемый аэродинамический щиток;

Фиг. 3 - Сопло с аэродинамическим отклоняемым щитком в убранном положении;

Фиг. 4 - Сопло с аэродинамическим отклоняемым щитком в отклоненном положении;

Фиг. 5 - Зависимость коэффициента аэродинамической подъемной силы Cya от угла атаки α для различных конфигураций исследуемой модели.

Предлагаемый способ осуществляют следующим образом. Для увеличения подъемной силы самолета с силовой установкой, имеющей сопло в области задней кромки крыла (фиг. 1), используют нижнюю внешнюю поверхность сопла, где устанавливают по меньшей мере один аэродинамический щиток, который отклоняют в воздушный поток вокруг самолета. Увеличение подъемной силы самолета происходит посредством перераспределения воздушного давления на поверхности крыла. При этом увеличение подъемной силы самолета происходит независимо от внутреннего устройства сопла и направления истечения реактивной струи. Наилучший результат достигается в случае, когда упомянутый щиток отклоняют совместно со смежными органами аэродинамической механизации на задней кромке крыла (фиг. 2), что позволяет снизить аэродинамическое сопротивление, возникающее от вихреобразования на боковых кромках упомянутых органов аэродинамической механизации при их отклонении в воздушный поток вокруг самолета.

На фигуре 1 представлена в обобщенном виде консоль крыла 1 самолета с интегрированной СУ, сопло 2 которой расположено в районе задней кромки крыла. Отклонение органов аэродинамической механизации 3 в поток вокруг самолета приводит к появлению вихреобразования на боковых кромках элементов механизации смежных с соплом.

На фигуре 2 представлена та же консоль крыла 1, что на фигуре 1, но с установленным на внешней поверхности снизу сопла 2 щитком 4, который отклонен в поток вокруг самолета совместно со смежными элементами аэродинамической механизации 3 крыла.

Существует предпочтительный вариант устройства для реализации описываемого способа, при котором самолет содержит фюзеляж, шасси, крылья, органы управления с системой управления, в том числе органы аэродинамической механизации задней кромки крыла с приводами для отклонения в воздушный поток вокруг самолета, и силовую установку с плоскими соплами, расположенными в области задней кромки крыла, при этом, по крайней мере, один отклоняемый аэродинамический щиток установлен на нижней внешней поверхности каждого сопла и имеет приводы для отклонения в воздушный поток.

На фигуре 3 показано плоское сопло 2, содержащее отклоняемый аэродинамический щиток 4, установленный на нижней внешней поверхности сопла. На фигуре 3 щиток показан в убранном положении. На фигуре 4 - в отклоненном положении, причем приводы для отклонения не показаны.

Если сопла разнесены по размаху крыла, то на нижней внешней поверхности каждого сопла установлен отдельный аэродинамический щиток, снабженный приводами для отклонения в воздушный поток.

Для упрощения конструкции сопло может иметь несколько аэродинамических щитков с общим приводом для отклонения в воздушный поток, при этом в отклоненном и убранном положении обтекаемая поверхность всех упомянутых щитков должна быть максимально непрерывной.

Существует также вариант устройства для реализации описываемого способа, при котором на каждой из консолей крыла самолета рядом по размаху расположено несколько сопел и на нижней внешней поверхности пакета сопел установлен единый аэродинамический щиток, снабженный приводами для отклонения в воздушный поток.

Для всех вариантов устройства конструкция щитка и приводов для его отклонения в общем случае определяются особенностями силовой установки и планера самолета.

В аэродинамической трубе ЦАГИ проведены сравнительные исследования модели самолета в двух конфигурациях задней кромки крыла: без органов аэродинамической механизации в области сопла СУ (конфигурация 1, кривые 5, 7 фиг. 5) и с отклоненными аэродинамическими щитками на нижней поверхности в области сопла (конфигурация 2, кривые 6, 8 фиг. 5). Максимальное значение коэффициента аэродинамической подъемной силы Cyamax≈1,15 для конфигурации 1 получено при отклонении органов аэродинамической механизации на угол 30°. Аналогичное значение Cyamax≈1,15 для конфигурации 2 получено при совместном отклонении органов аэродинамической механизации и щитков на нижней поверхности в районе сопла на угол 20°. Приращение максимального коэффициента аэродинамической подъемной силы от отклонения упомянутых щитков при одинаковых углах отклонения органов аэродинамической механизации составило ~5% (угол отклонения 10°, кривые 5, 6 фиг. 5) и ~8% (угол отклонения 20°, кривые 7, 8 фиг. 5). Зависимость коэффициента аэродинамической подъемной силы Cya от угла атаки α для различных конфигураций исследуемой модели представлена на фигуре 5.

1. Способ увеличения подъемной силы самолета с силовой установкой, имеющей сопло в области задней кромки крыла, заключающийся в отклонении органов аэродинамической механизации и отличающийся тем, что по меньшей мере один аэродинамический щиток устанавливают на нижней внешней поверхности сопла силовой установки и отклоняют его во внешний поток.

2. Способ по п.1, отличающийся тем, что упомянутый аэродинамический щиток отклоняют совместно со смежными органами аэродинамической механизации задней кромки крыла самолета.

3. Самолет, содержащий фюзеляж, шасси, крылья, органы управления с системой управления и силовую установку, имеющую хотя бы одно сопло в области задней кромки крыла, отличающийся тем, что на нижней внешней поверхности упомянутого сопла установлен по меньшей мере один отклоняемый аэродинамический щиток.

4. Самолет по п.3, отличающийся тем, что на нижней внешней поверхности сопла установлено несколько аэродинамических щитков, имеющих общий привод для отклонения в воздушный поток.

5. Самолет по п.3, отличающийся тем, что на нижней поверхности сопел, расположенных рядом по размаху крыла, установлен единый аэродинамический щиток.



 

Похожие патенты:

Изобретение относится к области авиации, в частности к гондолам турбореактивных двигателей. Корпус реактивного двигателя установлен над крылом летательного аппарата и содержит жесткую тонкостенную оболочку с всасывающим и реактивным соплами.

Изобретение относится к области летательных аппаратов. Крыло летательного аппарата содержит верхние и нижние аэродинамические поверхности, сходящиеся под острым углом со стороны набегающего воздушного потока, ограниченные стенками полости, расположенные между верхней и нижней аэродинамическими поверхностями, реактивные двигатели, эжекторы, элементы отклонения стекающих воздушных потоков.

Дозвуковой пассажирский самолет содержит низко расположенное механизированное стреловидное крыло с удлинением λ≥11,5. Стреловидность крыла по линии четверти хорд выполнена в диапазоне от χ=25° до χ=30°.

Изобретение относится к авиационной технике, а именно к конструкции узла соединения навесной силовой балки пилона двигателя с кессоном крыла. Узел соединения содержит передний и задний узлы крепления навесной силовой балки к переднему и заднему лонжеронам кессона крыла, между которыми установлена нервюра.

Изобретение относится к устройству крепления авиационного двигателя. .

Изобретение относится к области авиации, более конкретно, к опорной раме корпуса вентилятора, установленной на пилоне и воздухозаборнике гондолы. .

Изобретение относится к области авиастроения, более конкретно к гондоле для двухконтурного турбореактивного двигателя, силовой установке летательного аппарата и летательному аппарату, содержащему такую силовую остановку.

Изобретение относится к области авиации. .

Группа изобретений относится к области летательных аппаратов. Крыло широкофюзеляжного летательного аппарата содержит каркас, обшивку, верхние и нижние аэродинамические поверхности, элементы отклонения воздушных потоков и турбореактивный/реактивный двигатель.

Изобретение относится к области летательных аппаратов. Носовая часть летательного аппарата содержит кабину управления с вытянутой вперед головкой в форме конуса, снабженной поворотной на вертикальной оси деталью в виде клина, конец которой выполнен острым по направлению к набегающему потоку воздуха, имеет возможность отклонения влево и вправо на угол от 0о до 10о с помощью поворотного гидродвигателя/пневмодвигателя и совершения колебательных движений, приводящих к синусоидального вида траектории полета летательного аппарата.

Изобретение относится к механизму навески элемента механизации крыла на основной части крыла. Устройство уборки и выпуска элемента механизации крыла летательного аппарата включает в себя два механизма навески, расположенных сбоку друг от друга в направлении размаха крыла, и устройство привода для перемещения элемента механизации крыла относительно основной части крыла.

Изобретение относится к уплотнительному элементу несущей поверхности, расположенному между двумя компонентами рулевой поверхности воздушного судна для закрытия изменяемой по ширине щели между ними.

Изобретение относится к конструктивному сопряжению переднего фитинга стабилизатора летательного аппарата (ЛА). Передний узел крепления стабилизатора, сопрягаемый с работающим на растяжение соединением двух боковых кессонов стабилизатора, содержит передний фитинг, переднюю работающую на сдвиг панель, верхнюю работающую на сдвиг панель, нижнюю работающую на сдвиг панель и соединительную деталь в виде стойки для присоединения нервюры к лонжерону.

Изобретение относится к опорному узлу для направления закрылка во время развертывания на крыле самолета. Опорный узел содержит направляющую дорожку, задающую двухмерный путь, цилиндрический подшипниковый ведомый элемент, имеющий продольную ось, вал и сферическую опору.

Изобретение относится к опорной сборке предкрылка и к крылу летательного аппарата. Крыло летательного аппарата имеет предкрылок и опорную сборку предкрылка.

Аэродинамическое тело, которое посредством регулирующего устройства выполнено с возможностью регулировки относительно основного крыла летательного аппарата. В связи с его регулировкой на боковом конце (E1, E2) образуется изменяемая щель (G) между аэродинамическим телом и другим аэродинамическим телом или деталью фюзеляжа или основным крылом.

Изобретение относится к поверхностям управления для летательного аппарата. .

Изобретение относится к области авиации, а именно к истребителям авиации наземного базирования многофункционального назначения, как в одноместной, так и в двухместной конфигурациях, которые максимально унифицированы между собой, способным обеспечивать обнаружение, распознавание, сопровождение и поражение воздушных, наземных и надводных целей управляемым и неуправляемым оружием при одновременном проведении оборонительных мероприятий с применением средств радиоразведки активного и пассивного противодействия и средств снижения радиолокационной заметности.

Изобретение относится к летательным аппаратам. Летательный аппарат содержит корпус, двигательную установку, включающую закрепленные вокруг корпуса в продольном направлении реактивные сопла, и интерцепторы, каждый из которых установлен на периферии соответствующего реактивного сопла за его срезом на поворотной оси, сообщенной с реверсным приводом.
Наверх