Способ получения биоцидной композиции

Изобретение относится к способам получения биоцидных композиций, которые могут найти применение при создании покрытий с биоцидными свойствами, например, на полимерах, стеклах, металлах, бумаге, строительных материалах и т.д. В способе получения биоцидной композиции осуществляют смешение растворителя, водорастворимого полиэлектролита (ПЭ) и соли, в качестве растворителя используют воду, в качестве ПЭ используют смесь водного раствора катионного ПЭ и водного раствора анионного ПЭ, взятых в соотношении, при котором содержание заряженных звеньев анионного ПЭ составляет от 3 до 30% от содержания заряженных звеньев катионного ПЭ при общей исходной концентрации ПЭ от 0,1 до 20 мас.%, а в качестве соли используют по крайней мере одну водорастворимую соль, выбранную из группы, включающей соль щелочного металла или аммония, или смесь такой соли с солью кальция или магния при концентрации соли от 0,01 до 6,0 мас.%, причем соль или водный раствор соли смешивают с водным раствором по крайней мере одного из ПЭ. Технический результат - повышение биоцидной активности композиции. 1 табл., 7 пр.

 

Изобретение относится к способам получения биоцидных композиций, которые могут найти применение при создании покрытий с биоцидными свойствами, например, на полимерах, стеклах, металлах, бумаге, строительных материалах и т.д.

Известен способ получения биоцидной композиции путем смешения полимера с металлическим серебром или его солью (A.J. Taylor, G.A.F. Roberts, F.A. Wood, Powders having contact biocidal properties comprising a polymer and silver. Патент Великобритании № GB 2381749 A).

Известен способ получения биоцидной композиции путем смешения воды, водорастворимого полимера, низкомолекулярного биоцидного препарата (хлоргексидина и его соли) и поверхностно-активного вещества (K.P. Ananthapadmanabhan, K.K. Chan, D.A. Grinstead, C.K. Vincent, A.U. Gengler, Ultramild antibacterial cleaning composition for frequent use, Патент США №6045817).

Наиболее близким к заявляемому является известный способ получения биоцидной композиции путем смешения растворителя (нитрометана), водорастворимого полиэлектролита (N-алкилированного поли-4-винилпиридина) и соли (пара-толуолсульфоната серебра) (V. Sambhy, M.M. MacBride, B.R. Peterson and A. Sen, Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials, J. Am. Chem. Soc., 128 (2006) 9798-9808) - прототип.

Недостатком известного способа является относительно низкая биоцидная активность полученной с его помощью композиции.

Задачей изобретения является разработка способа получения биоцидной композиции, лишенной вышеуказанного недостатка, и расширение арсенала технических средств, которые могут быть использованы в качестве способа получения биоцидной композиции.

Техническим результатом изобретения является повышение биоцидной активности композиции.

Предварительно были проведены эксперименты с различными полиэлектролитами (ПЭ), растворителями и солями, в результате которых было выявлено, что указанный технический результат достигается тем, что в известном способе получения биоцидной композиции путем смешения растворителя, водорастворимого ПЭ и соли, в качестве растворителя используют воду, в качестве ПЭ используют смесь водного раствора катионного ПЭ и водного раствора анионного ПЭ, взятых в соотношении, при котором содержание заряженных звеньев анионного ПЭ составляет от 3 до 30% от содержания заряженных звеньев катионного ПЭ при общей исходной концентрации ПЭ от 0,1 до 20 мас. %, а в качестве соли используют по крайней мере одну водорастворимую соль, выбранную из группы, включающей соль щелочного металла или аммония, или смесь такой соли с солью кальция или магния, при концентрации соли от 0,01 до 6,0 мас. %, причем соль или водный раствор соли смешивают с водным раствором по крайней мере одного из ПЭ.

В предлагаемом техническом решении целесообразно использовать дистиллированную воду. При использовании другой воды, например, водопроводной, колодезной и т.д., необходимо учитывать концентрации растворенных в воде солей. Смешение сухих катионного ПЭ и анионного ПЭ или смешение суспензии этих компонентов в органических средах не может быть использовано в предлагаемом техническим решении.

В качестве катионного ПЭ может быть использован любой катионный водорастворимый полимер, например, такой как полигексаметиленгуанидиний хлорид (ПГМГХ), полидеметилдиаллиламмоний хлорид (ПДМДААХ), N-алкилированный поли-4-винилпиридин и т.д. Противоион у используемого катионного ПЭ может быть любым.

В качестве анионного ПЭ можно использовать любой водорастворимый анионный ПЭ, содержащий противоионы щелочного металла или аммония, например, натриевую соль карбоксиметилцеллюлозы (натрий-КМЦ), соль полиакриловой кислоты, соль полиметакриловой кислоты и т.д.

При этом молекулярная масса катионного ПЭ и анионного ПЭ может варьироваться в широких пределах, например, от одного до нескольких тысяч килодальтон (кДа). Нерастворимые в воде полимеры не могут быть использованы в данном техническом решении.

Оптимальное соотношение между заряженными звеньями катионного ПЭ и анионного ПЭ, оптимальная концентрация водорастворимой соли и оптимальная общая концентрация ПЭ были установлены экспериментально. Также экспериментально был установлен перечень используемых водорастворимых солей. Нерастворимые в воде соли не могут быть использованы в данном техническом решении.

При меньшем, чем заявлено, содержании водорастворимой соли композиция становится негомогенной, что приводит к формированию неоднородного по свойствам покрытия на обрабатываемой поверхности. При большем, чем заявлено, содержании соли композиция также становится негомогенной.

При меньшем, чем заявлено, содержании звеньев анионного ПЭ ухудшается стабильность наносимого покрытия. При большем, чем заявлено, содержании звеньев анионного ПЭ ухудшаются биоцидные свойства композиции.

При меньшей, чем заявлено, общей исходной концентрации катионного ПЭ и анионного ПЭ уменьшается биоцидная активность композиции. При большей, чем заявлено, общей исходной концентрации ПЭ не наблюдается увеличение биоцидной активности композиции. Одновременно возрастает вязкость получаемой композиции, что осложняет работу в ней.

Соль или водный раствор соли необходимо смешивать с водным раствором по крайней мере одного из ПЭ. Например, соль можно смешивать с водными раствором катионного ПЭ, или с водным раствором анионного ПЭ, или с водными растворами каждого из ПЭ. Смешивание водных растворов катионного ПЭ и анионного ПЭ в отсутствии соли приводит к получению негомогенного продукта, который не может быть использован в данном техническом решении.

Массовую пропорцию между исходными анионным и катионным ПЭ можно определить расчетным путем, исходя из общей исходной их концентрации, требуемого соотношения противоположно заряженных звеньев ПЭ и молекулярной массы заряженных звеньев катионного ПЭ и анионного ПЭ. Приводим пример расчета массовой пропорции для смеси катионного полиэлектролита ПДМДААХ с молекулярной массой заряженного звена 162 дальтона (Да) и анионного ПЭ, натриевой соли полиакриловой кислоты (натрий-ПАК) с молекулярной массой заряженного звена 94 Да, в соотношении, при котором содержание звеньев анионного ПЭ составляет 25% от содержания звеньев катионного ПЭ. Для получения указанной смеси необходимо брать натрий-ПАК и ПДМДААХ в соотношении (0,25×94)/162 соответственно, то есть 23,5/162. Таким образом, массовое содержание натрий-ПАК составит 23,5/(23,5+162)=23,5/185,5=0,127, или 12,7% от общей исходной массы ПЭ, а содержание ПДМДААХ будет составлять 87,3% от общей исходной массы ПЭ. Отсюда следует, что для получения, например, 10.000 г композиции с 5%-ной общей исходной концентрацией ПЭ необходимо взять натрий-ПАК в количестве 500×0,127=63,5 г и ПДМДААХ в количестве 500-63,5=436,5 г.

При реализации предлагаемого способа в системе самопроизвольно образуется продукт - интерполиэлектролитный комплекс, строение и состав которого точно определить не представляется возможным.

Примеры получения заявленной композиции приведены ниже. Во всех примерах проверку биоцидных свойств композиции проводят в соответствии с нормативными документами: «Методы испытаний дезинфекционных средств для оценки их эффективности и безопасности», Москва, 1998 г. и «Нормативные показатели безопасности и эффективной дезинфекции средств, подлежащих контролю при проведении обязательной сертификации №01-12/75-97». В качестве тест-объектов используют стекло и керамику, обсемененные тест-микроорганизмами.

В качестве тест-микроорганизмов используют бактерии Staphylococcus aureus, Escherichia coli, Candida albicans и Trichophyton gypseum и грибы Mycobacterium B5. Биоцидную композицию равномерно распределяют на поверхности стеклянных или керамических пластинок с помощью шпателя. После высушивания пластинок на воздухе в течение 60 мин на их поверхности наносят культуры микроорганизмов с плотностью обсеменения (2,1±0,3)×105 колоний образующих единиц (КОЕ)/см2. После выдерживания образцов в течение 60 мин подсчитывают количество микроорганизмов N(КОЕ)/см2.

Преимущества заявленного способа получения биоцидной композиции иллюстрируют следующие примеры.

Пример 1.

В трех химических стаканах готовят различные растворы в дистиллированной воде. В первом стакане растворяют 127,06 г катионного полиэлектролита ПДМДААХ в 500 г воды. Во втором стакане готовят раствор 72,94 г анионного ПЭ натрий-КМЦ в 270 г воды. В третьем стакане растворяют смесь 0,05 г CaCl2 и 0,05 г NaCl в 29,9 г воды. Содержимое третьего стакана переливают при перемешивании во второй стакан, после чего полученную смесь переносят в первый стакан и перемешивают. При получении композиции общая исходная концентрация ПЭ составляет 20,0 мас. %, ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 25% от содержания звеньев катионного ПЭ, и концентрация соли составляет 0,01 мас. %.

Получают 1.000 г гомогенной композиции, биоцидные свойства которой приведены в таблице.

Пример 2.

Смешивают 1740 г K2SO4 с 7.000 г раствора анионного ПЭ калиевой соли полиакриловой кислоты в дистиллированной воде, содержащего 0,19 г полимера. Затем полученный раствор смешивают с 1260 г водного раствора катионного ПЭ поли-N-этил-4-винилпиридиний хлорида (ПВП-хлор), содержащего 9,81 г полимера. При этом общая исходная концентрация ПЭ составляет 0,1 мас. %, ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 3% от содержания звеньев катионного ПЭ и концентрация соли составляет 17,4 мас. %.

Получают 10.000 г гомогенной композиции, биоцидные свойства которой приведены в таблице.

Пример 3.

Смешивают 0,05 г MgCl2 и 0,10 г NH4Cl с 300,0 г раствора анионного ПЭ аммониевой соли полиакриловой кислоты в дистиллированной воде, содержащего 26,2 г полимера. Затем к полученному раствору добавляют 699,85 г водного раствора катионного полиэлектролита ПГМГХ, содержащего 173,8 г полимера. При этом общая исходная концентрация ПЭ составляет 20,0 мас. %, ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 30% от содержания звеньев катионного ПЭ, и концентрация соли составляет 0,015 мас. %.

Получают 1.000 г гомогенной композиции, биоцидные свойства которой приведены в таблице.

Пример 4.

Смешивают 10,0 г Na2SO4 с 300,0 г раствора анионного ПЭ натриевой соли полиакриловой кислоты в дистиллированной воде, содержащего 8,08 г полимера. Затем полученный раствор добавляют к 690 г водного раствора катионного ПЭ поли-N-этил-4-винилпиридиний бромида, содержащего 91,92 г полимера и 4,2 г Na2SO4. При этом общая исходная концентрация ПЭ составляет 10,0 мас. %, ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 20% от содержания звеньев катионного ПЭ, и концентрация соли составляет 1,42 мас. %.

Получают 1.000 г гомогенной композиции, биоцидные свойства которой приведены в таблице.

Пример 5.

Смешивают 3,85 г KCl и 2,00 г NaCl с 800 г раствора катионного полиэлектролита ПДМДААХ в дистиллированной воде, содержащего 136,35 г полимера. Затем полученный раствор смешивают с 194,15 г водного раствора анионного ПЭ натриевой соли полиметакриловой кислоты, содержащего 13,65 г полимера. При этом общая исходная концентрация ПЭ составляет 15,0 мас. %, ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 15% от содержания звеньев катионного ПЭ, и концентрация соли составляет 0,585 мас. %.

Получают 1.000 г гомогенной композиции, биоцидные свойства которой приведены в таблице.

Пример 6.

Смешивают 0,50 г NH4Cl и 0,04 г KCl с 100,0 г раствора анионного ПЭ - калиевой соли полиметакриловой кислоты в дистиллированной воде, содержащего 6,8 г полимера. Затем полученный раствор добавляют к 899,46 г водного раствора катионного полиэлектролита ПВП-хлор, содержащего 93,2 г полимера. При этом общая исходная концентрация ПЭ составляет 10,0 мас. %, ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 10% от содержания звеньев катионного ПЭ, и концентрация соли составляет 0,054 мас. %.

Получают 1.000 г гомогенной композиции, биоцидные свойства которой приведены в таблице.

Пример 7.

Смешивают 1,19 г NH4Cl с 100,0 г раствора анионного ПЭ аммониевой соли полиметакриловой кислоты в дистиллированной воде, содержащего 1,55 г полимера. Затем полученный раствор смешивают с 898,81 г водного раствора катионного полиэлектролита ПДМДААХ, содержащего 48,45 г полимера. При этом общая исходная концентрация ПЭ составляет 5,0 мас. %, ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 5% от содержания звеньев катионного ПЭ, и концентрация соли составляет 0,119 мас. %.

Получают 1.000 г гомогенной композиции, биоцидные свойства которой приведены в таблице.

Таким образом, из приведенных примеров действительно видно, что предложенный способ дает возможность получать композиции, биоцидные свойства которых в 3-5 раз превышают биоцидные свойства известной композиции, описанной в прототипе. Биоцидная активность полученных композиций сохраняется в течение длительного времени (месяцы).

Таблица. Эффективность обеззараживания поверхностей, контаминированных бактериями и грибами, биоцидными композициями, полученными с помощью предложенного способа (примеры 1-7), и композицией, полученной с помощью способа, описанного в прототипе

Способ получения биоцидной композиции путем смешения растворителя, водорастворимого полиэлектролита и соли, отличающийся тем, что в качестве растворителя используют воду, в качестве полиэлектролита используют смесь водного раствора катионного полиэлектролита и водного раствора анионного полиэлектролита, взятых в соотношении, при котором содержание заряженных звеньев анионного полиэлектролита составляет от 3 до 30% от содержания заряженных звеньев катионного полиэлектролита при общей исходной концентрации полиэлектролитов от 0,1 до 20 мас.%, а в качестве соли используют по крайней мере одну водорастворимую соль, выбранную из группы, включающей соль щелочного металла или аммония, или смесь такой соли с солью кальция или магния при концентрации соли от 0,01 до 6,0 мас.%, причем соль или водный раствор соли смешивают с водным раствором по крайней мере одного из полиэлектролитов.



 

Похожие патенты:

Изобретение относится к предохраняющей от обрастания композиции для покрытия и может быть использована для защиты судов, рыболовных сетей или других подводных структур, или оборудования, которые могут быть атакованы водными организмами, такими как моллюски, мидии, морские водоросли и т.п.
Изобретение относится к препаратам для защиты и декоративной обработки древесины и материалов на ее основе. Защитно-декоративный препарат содержит бороксан и живицу.
Изобретение относится к синергетической противомикробной композиции, включающей флуметсулам или диклозулам и пиритион цинка, где массовое соотношение флуметсулама и пиритиона цинка составляет от 8:1 до 1:7, а массовое соотношение диклозулама и пиритиона цинка составляет от 15:1 до 1:2.

Изобретение относится к применяемой в качестве биоцида соли цинка или меди общей формулы (II), в которой М - Zn или Cu, R1 выбран из группы, включающей водород и метил, R2 - замещенный С1-С5 алкил, m=0-5, n=0-2, m+n=1-5.

Изобретение относится к инсектицидному и акарицидному составу краски, который ингибирует синтез хитина, регулирует ювенильный гормон насекомых и отпугивает членистоногих.

Изобретение относится к дезинфекции и представляет собой состав полимерной дезинфицирующей рецептуры для создания пленок, обеспечивающих защиту и дезинфекцию поверхностей внутри гермозамкнутых объемов.

Изобретение относится к области промышленности строительных материалов и предназначено для поверхностной огнебиозащитной пропитки древесины и древесных плиточных материалов.
Изобретение относится к биоцидам. Синергетическая противомикробная композиция содержит: (a) гидроксиметилзамещенное соединение фосфора, представляющее собой соли тетракис(гидроксиметил)фосфония, и (б) второй биоцид, выбранный из группы, включающий (1) гексагидро-1,3,5-трис(2-гидроксиэтил)-s-триазин, (2) 2,6-диметил-1,3-диоксан-4-илацетат и (3) орто-фенилфенол или его соли щелочных металлов или соли аммония.

Изобретение относится к области химических полимеров, в частности к созданию биоцидных композиций, которые могут найти применение при создании покрытий с биоцидными антимикробными свойствами на полимерных изделиях.
Изобретение относится к гибридным органонеорганическим нанокомпозиционным покрытиям. Композиция для получения матрицы с фотокаталитической активностью включает золь на основе элементорганического соединения и эпоксидной составляющей, в которой в качестве элементоорганического соединения в составе композиции использован алкоксид титана при следующем соотношении компонентов, мас.%: алкоксид титана 30-70, эпоксидная составляющая золя 30-70, при этом в качестве эпоксидных соединений композиция содержит диглицидиловый эфир дициклогексилпропана, а в качестве алкоксида титана - тетрабутоксититан.

Изобретение относится к антивирусным средствам. Жидкая композиция, способная образовывать покрытие, содержит эффективное количество по меньшей мере одного вируцида природного происхождения, выбранного из лауриновой кислоты, монолаурина, лактоферрина и эфирных масел, обладающих антивирусной активностью, и/или его предшественника, причем указанная композиция имеет вязкость от 30 мПа·с до 40 Па·с при комнатной температуре и атмосферном давлении. Изделие для частого использования большим количеством людей покрывают указанной композицией. Изобретение позволяет реализовать указанное назначение. 4 н. и 17 з.п. ф-лы, 5 табл., 3 пр.

Изобретение относится к биоцидным композициям для получения покрытий, которые могут найти применение при создании покрытий с биоцидными свойствами, например, на полимерах, стеклах, металлах, бумаге, строительных материалах и т.д. Биоцидная композиция для получения покрытий состоит из растворителя, водорастворимого полиэлектролита (ПЭ) и соли, в качестве растворителя она содержит воду, в качестве ПЭ она содержит заряженный ПЭ, являющийся продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, взятых в соотношении, при котором содержание заряженных звеньев анионного ПЭ составляет от 3 до 30% от содержания заряженных звеньев катионного ПЭ, и в качестве соли она содержит по крайней мере одну водорастворимую соль, выбранную из группы, включающей соль щелочного металла или аммония, или смесь такой соли с солью кальция или магния. Изобретение позволяет в 3-5 раз повысить биоцидную активность композиции по сравнению с активностью известной композиции. 1 табл., 7 пр.

Изобретение относится к способам защиты от биообрастания и может быть использовано в судостроении для защиты подводной части корпусов судов, судовых устройств и механизмов, находящихся в контакте с водой, для защиты морских буровых установок, портовых сооружений. Предложен способ защиты с использованием полимерного покрытия, включающего 45-47 мас.% эпоксикаучукового аддукта на основе низкомолекулярных полисульфидных и бутадиеннитрильных каучуков и избытка низкомолекулярной эпоксидной смолы, 24-28,5 мас.% металлического цинка, 4,5-5,0 мас.% отвердителя аминного типа, 16,0-17,0 мас.% пигментов и 6,0-7,0 мас.% олигоэфирэпоксида, причем металлический цинк вводят методом напыления после смешения всех остальных компонентов и нанесения их на защищаемую поверхность. Способ позволяет достичь высокой степени защиты от биологического обрастания и при этом обеспечить повышенную стойкость к биоповреждению. 3 табл., 7 пр.
Изобретение относится к технологии обработки высокомолекулярных полимерных материалов органическими соединениями для нанесения покрытий на основе углеродных соединений. Описан способ получения антимикробных нанокомпозитных полимерных материалов формированием наноструктурированной поверхности полимерной подложки путем предварительной обработки ее поверхности ионами химически активных и/или инертных газов посредством изменения состава газов для ионной обработки поверхности или режимов этой операции, до получения рельефа с заданной среднеквадратичной шероховатостью (Rq), и последующим нанесением наноразмерной пленки на основе углерода ионно-стимулированным осаждением из газовой фазы паров углеродсодержащих соединений, включающих sp2- и sp3-гибридизованные состояния углерода, отличающийся тем, что обработку поверхности полимерной подложки ионами активных и/или инертных газов проводят в течение 3-10 минут при средней энергии ионов 300-2000 эВ и плотности тока 0,5-2 мА/см2, а наноразмерную углеродсодержащую пленку выполняют в виде многослойной структуры, периодически изменяя напряжение средней энергии ионов или чередованием газов, формирующих пары углеродсодержащих соединений при постоянной энергии ионов, регулируя тем самым содержание в молекулах нанослоев пленки количество sp3- и sp2-гибридизованных состояний углерода, при этом в нанослоях соотношение sp3-/sp2-гибридизованных состояний углерода поддерживают в интервале от 0,7 до 1,8. Технический результат - обеспечение антимикробного нанокомпозитного полимерного материала с повышенным оптическим пропусканием и гидрофобностью. 2 пр.
Изобретение относится к нанотехнологии, а более конкретно к способу изготовления полимерного материала с биологической активностью, который характеризуется наноструктурированием поверхности травлением ионами газов с последующим нанесением пленочного наноразмерного покрытия, включающего фтор и углерод, с помощью ионно-стимулированного осаждения в вакууме. Способ изготовления материала с биологической активностью включает подложку из биосовместимого полимера, преимущественно политетрафторэтилена или полиэтилентерефталата, содержит травление поверхности подложки посредством ионно-плазменной обработки в вакууме с использованием ионов тетрафторметана и последующее ионно-стимулированное осаждение модифицирующей углеродсодержащей пленки из циклогексана в вакууме на наноструктурированную поверхность подложки. Наноструктурирование поверхности подложки проводят в течение 10-40 минут, а модифицирующую углеродсодержащую пленку толщиной 0,3-1,0 мкм формируют из плазмообразующей смеси паров циклогексана и тетрафторметана в диапазоне их содержания (об. %): 62-32 / 35-65 соответственно. Предложенный способ обеспечил формирование двухслойной матричной системы, повышенные антимикробные свойства которой достигаются автоматически. 2 пр.
Изобретение относится к области нанотехнологии, а более конкретно, к нанокомпозитным материалам с пленочным углеродсодержащим покрытием, получаемым осаждением ионов из газовой фазы углеводородов посредством ионно-стимулированного осаждения.Нанокомпозитный материал с биологической активностью включает подложку из биосовместимого полимера, преимущественно политетрафторэтилена или полиэтилентерефталата, имеющую наноструктурированную поверхность в результате ее травления потоками ионов тетрафторметана до формирования среднеквадратичной шероховатости Rq величиной 5-200 нм, при этом рельеф поверхности подложки модифицирован углеродсодержащей наноразмерной пленкой, полученной ионно-стимулированным осаждением в вакууме из циклогексана.Новым является то, что модифицирующая углеродсодержащая пленка, которая получена при осаждении из плазмообразующей смеси тетрафторметана и циклогексана, дополнительно содержит фтор в массовом соотношении к углероду в диапазоне 0,5-1,3, а рельеф наноструктурированной поверхности подложки образован выступами, отстоящими между собой на расстоянии 0,3-1,0 мкм, высота которых, как минимум, вдвое превышает радиус их основания, причем модифицирующая пленка содержит фтор и углерод в следующем их массовом соотношении 32-55% и 65-42% соответственно.Предложенное техническое решение полностью исключило адгезию микроорганизмов на поверхности наноструктурированного материала, супергидрофобность которого достигнута за счет оптимизированного содержания фтора и углерода на заданном нанорельефе поверхности подложки, при этом полученная оптическая прозрачность материала в видимом спектральном диапазоне обеспечила пригодность для использования в политронике.

Изобретение относится к неорганическим бактерицидным материалам и способам их получения, которое может быть использовано при производстве стекла, керамики, огнеупорных материалов, пигментов и красок, различных строительных материалов, экранов дисплеев, мониторов и телевизоров, различных приборов. Состав композиции содержит высокомолекулярный поливинилпирролидон, алкоксид титана, водорастворимые и термически разлагаемые при нагревании до температуры менее 550°С соль (или соли) цинка, полярные органические растворители и воду. Композиция обеспечивает формирование на поверхности стекла двухкомпонентного прозрачного оксидного покрытия, обеспечивающего высокие бактерицидные свойства и обладающего способностью эффективно генерировать активный синглетный кислород. 3 табл., 2 пр.

Изобретение относится к области пленкообразующих ингибирующих составов и может быть использовано для дополнительной защиты от коррозии элементов конструкций, изготовленных из алюминиевых сплавов. Ингибирующий состав содержит компоненты при следующем соотношении, мас.ч.: полисульфидный олигомер (55-65), эпоксидная диановая смола (4-7), фенолформальдегидная смола (4-6), по меньшей мере один неорганический наполнитель (25-34), неорганический ингибитор коррозии (6,2-11), антисептическая добавка (0,01-0,05), органический растворитель (50-200). Обеспечивается повышение антикоррозионных свойств состава за счет сочетания высокой адгезии к подложке с грибостойкостью, физико-механической прочностью и длительной защитной способностью, вязкости и толщины слоя. 2 табл., 7 пр.

Изобретение относится к противообрастающим покрытиям, предназначенным для защиты бетонных и железобетонных поверхностей, эксплуатируемых в водной среде, и может быть использовано для защиты водоводов технического водоснабжения ТЭЦ, а также портовых и гидротехнических сооружений. Описано многослойное противообрастающее покрытие, содержащее грунтовочный слой, промежуточный слой, выполненные на основе эпоксидной смолы и отвердителя аминного типа, и наружный самополирующийся биоцидный слой, в котором в грунтовочном и промежуточном слоях в качестве основы использована эпоксидная диановая смола, модифицированная каменноугольной смолой, содержащей (% по массе): фенолы 8-18, парафины и олефины 4-12, нейтральные кислородные соединения 20-30, карбоновые кислоты 1-2, пиридиновые основания 1-3, ароматические углеводороды 22-34, и введен водорастворимый растворитель, сольватирующая способность которого не меньше, чем у воды, в промежуточный слой, кроме того, введен железный сурик, а наружный самополирующийся слой выполнен на основе акрилатов меди с добавлением нанодисперсного низкомолекулярного политетрафторэтилена. Технический результат изобретения – получено противообрастающее покрытие с повышенной эффективностью защиты от обрастания бетонных и железобетонных поверхностей, эксплуатируемых в пресной и морской воде. 4 табл.
Наверх