Устройство для получения титановых гранул

Изобретение относится к получению титановых гранул. Устройство содержит рабочую камеру, выполненную с возможностью заполнения ее инертным рабочим газом, плазмотрон для плавления вращающейся заготовки с обеспечением центробежного распыления капель расплавленного материала, компрессор с трубопроводами для непрерывной откачки инертного рабочего газа из рабочей камеры и соединенный с рабочей камерой приемный бункер для сбора гранул. При этом рабочая камера выполнена с возможностью подачи откаченного инертного рабочего газа в плазмотрон. Устройство содержит последовательно соединенные фильтр первичной очистки, фильтр сверхтонкой очистки, холодильную установку и компрессор, выполненные с возможностью охлаждения и очистки откаченного из камеры распыления инертного рабочего газа, а также формирователь охлаждающего газового потока, выполненный с возможностью подачи в камеру распыления навстречу распыленным каплям расплавленного материала заготовки потока охлажденного и очищенного инертного рабочего газа, откаченного из камеры распыления. Обеспечиваются снижение температуры в камере распыления, увеличение скорости охлаждения гранул и ссыпания их в приемный бункер. 12 з.п. ф-лы, 1 ил.

 

Изобретение относится к области порошковой металлургии и способам получения металлических порошков, в частности к устройству для получения титановых гранул.

Из уровня техники известен (RU 2361698, B22F 9/10, 20.07.2009, /1/) способ получения сферических порошков, включающий вращение цилиндрической заготовки вокруг горизонтальной оси, оплавление торца заготовки плазменной струей дугового плазмотрона с обеспечением распыления расплавленных частиц под действием центробежных сил и затвердевания частиц при полете в газовой среде, отличающийся тем, что на торце заготовки формируют вогнутую полость, диаметр которой равен диаметру заготовки, а глубина - 0,1-0,35 диаметра заготовки, путем изменения расхода газа через плазмотрон и перемещения плазмотрона относительно оси вращения заготовки, а распыление расплавленных частиц осуществляют по конической поверхности, образованной касательной к криволинейной поверхности вогнутой полости.

Недостатком указанного способа является его склонность к образованию пористости внутри порошков (гранул), что обусловлено следующим. Расплавленные частицы, оторвавшиеся от кромки торца заготовки, разлетаются в вертикальной плоскости в виде диска. При этом расплавленные частицы, летящие вверх, сталкиваются с уже затвердевшими частицами, падающими вниз. Распыленные сферические частицы имеют разные размеры, и некоторые мелкие твердые частицы при столкновении с более крупными расплавленными частицами протыкают их с образованием каналов или пустот. Это приводит к снижению качества изделий, получаемых из порошков-гранул, и даже вынуждает браковать некоторые изделия. При этом наличие недопустимой внутригранульной пористости выявляется только после изостатического прессования и термообработки изделий, что приводит к непроизводительным затратам вследствие непреднамеренного изготовления бракованных изделий.

Также из уровня техники известно (RU 2376111, B22F 9/06, 20.12.2009, /2/) устройство для получения порошков и гранул, содержащее рабочую камеру, заполняемую инертным газом, дуговой плазмотрон для плавления вращающейся заготовки и компрессоры с трубопроводами для непрерывной откачки инертного газа из рабочей камеры и подачи его в плазмотрон, отличающееся тем, что в качестве компрессоров установлены вакуумные мембранные насосы, а трубопроводы снабжены вентилями, при этом устройство выполнено с возможностью предварительной откачки воздуха из рабочей камеры, заполнения ее инертным газом и последующей непрерывной откачки газа из камеры и подачи его в плазмотрон.

Недостатком данной конструкции является то, что забор газа из камеры распыления происходит только через систему циркуляции газа для плазмотрона, который осуществляется с помощью вакуумных насосов с целью обеспечения ионизации газа для последующего распыления плазмой торца вращающейся заготовки. Попадая в камеру, плазма снова превращается в газ и забирается компрессором, затем снова подается в плазмотрон. Охлаждение газа происходит через охлаждаемые стенки камеры распыления, однако газ на некотором расстоянии от охлаждаемых стенок камеры застаивается в нагретом состоянии, таким образом, понижая эффективность охлаждения капель металла в полете за счет конвекции. Получаемая степень охлаждения для производства гранул титановых сплавов явно недостаточна и ведет к получению частиц несферической формы, что приводит к понижению выхода годного порошка.

При производстве титановых гранул возможно образование частиц несферической чешуйчатой формы. Это объясняется тем, что гранулы из-за недостаточного охлаждения в полете претерпевают существенное формоизменение при соударении со стенкой камеры распыления, вследствие чего они теряют сферическую форму [Статья в журнале «Технология легких сплавов», 2010, №2, с. 44-48]. На некотором расстоянии от водоохлаждаемых стенок камеры распыления нагретый газ застаивается у стенок камеры распыления, а так как теплоотдача у титановых сплавов меньше, чем у никелевых, то гранулы не успевают полностью закристаллизоваться в полете. Поэтому при соударении со стенкой камеры происходит их пластическая деформация, что и ведет к образованию частиц несферической формы. Это, в свою очередь, приводит к понижению выхода годного порошка, так как при дальнейшей ситовой классификации гранул частицы такой формы не проходят через стандартную сетку и попадают в отсев.

При этом, опытным путем установлено, что при получении гранул из титана и его сплавов, гранулы начинают «налипать» на боковые стенки камеры распыления с образованием массивных спеков, затрудняющих процесс ее движения (ссыпания) в приемный бункер и вызывающих перегрев внутренних поверхностей камеры распыления, приемной трубы и приемного бункера, включая герметичные уплотнения из РТИ, при разрушении которых могут возникнуть аварийная ситуация и разгерметизация установки.

Задача, на которую направлено изобретение, заключается в разработке устройства, которое позволит получить гранулы из титана и его сплавов, минимизируя образование спеков.

Техническим результатом изобретения является снижение температуры в камере распыления, увеличение скорости охлаждения (кристаллизации) гранул в процессе распыления и ссыпания ее в приемный бункер, увеличение срока эксплуатации.

На достижение указанного технического результата оказывают влияние следующие существенные признаки.

Устройство для получения титановых гранул, содержащее рабочую камеру, выполненную с возможностью откачки воздуха и заполнения ее инертным рабочим газом, плазмотрон для плавления вращающейся заготовки внутри рабочей камеры с обеспечением центробежного распыления капель расплавленного материала заготовки, компрессор с трубопроводами для непрерывной откачки смеси инертного рабочего газа из рабочей камеры и соединенный с рабочей камерой приемный бункер для сбора гранул, при этом рабочая камера выполнена с возможностью подачи откаченного инертного рабочего газа в плазмотрон и с возможностью охлаждения капель расплавленного материала заготовки охлажденным инертным рабочим газом, откаченным из камеры распыления, характеризующееся тем, что оно содержит последовательно соединенные через металлорукава и трубопроводы фильтр первичной очистки, фильтр сверхтонкой очистки, холодильную установку и компрессор, выполненные с возможностью охлаждения и очистки откаченного из камеры распыления инертного рабочего газа, и формирователь охлаждающего газового потока, выполненный с возможностью подачи в камеру распыления навстречу распыленным каплям расплавленного материала заготовки потока охлажденного и очищенного инертного рабочего газа, откаченного из камеры распыления.

В возможном варианте исполнения компрессор, соединенный с фильтром первичной очистки, фильтром сверхтонкой очистки и холодильной установкой, выполнен в виде воздуходувки.

В возможном варианте исполнения компрессор, соединенный с фильтром первичной очистки, фильтром сверхтонкой очистки и холодильной установкой, выполнен в виде воздуходувки вихревой.

В возможном варианте исполнения фильтр первичной очистки выполнен в виде фильтра типа циклон.

В возможном варианте исполнения устройство содержит пористый фильтр сверхтонкой очистки.

В возможном варианте исполнения устройство содержит тканевый фильтр сверхтонкой очистки.

В возможном варианте исполнения приемный бункер соединен с рабочей камерой посредством приемной трубы.

В возможном варианте исполнения приемный бункер расположен под рабочей камерой.

В возможном варианте исполнения формирователь охлаждающего газового потока выполнен в виде газового радиального спреера.

В возможном варианте исполнения формирователь охлаждающего газового потока выполнен в виде 6-секционного газового радиального спреера.

В возможном варианте исполнения формирователь охлаждающего потока рабочих газов расположен внутри рабочей камеры.

В возможном варианте исполнения устройство содержит теплообменник первичного охлаждения, расположенный перед фильтром первичной очистки.

В возможном варианте исполнения устройство содержит теплообменник первичного охлаждения, встроенный в фильтр первичной очистки.

Устройство изображено на фиг. 1, где обозначено:

1 - Камера (центробежного) распыления

2 - Формирователь охлаждающего потока рабочих газов

3 - Фильтр первичной очистки

4 - Фильтр сверхтонкой очистки

5 - Компрессорный холодильный агрегат

6 - Теплообменник

7 - Воздуходувка вихревая

8 - Трубопроводы и металлорукава

9 - Плазмотрон

10 - Камера загрузочная

11 - Камера приводов

12 - Приемная труба

13 - Приемный бункер.

Установка центробежного распыления (в которую входит 1, 10, 11, 12. 13) в конструкции предназначена для получения металлических гранул металлов, в нашем случае титана и его сплавов, методом центробежного распыления заготовок-электродов, торцы которых оплавляются при вращении заготовки, плазменным источником нагрева (плазмотроном 9) в смеси инертных газов (гелий, аргон) с одновременным пересыпанием получаемых гранул в герметичную емкость (приемный бункер) без контакта с воздухом. В установке предусмотрена загрузка нескольких электродов, но плавятся они поштучно. Установка центробежного распыления состоит из рабочей камеры, заполняемой инертным газом, плазмотрона для плавления вращающейся заготовки и компрессора с трубопроводами для непрерывной откачки смеси рабочих газов из рабочей камеры. При этом установка центробежного распыления выполнена с возможностью предварительной откачки воздуха из рабочей камеры, заполнения ее (рабочей камеры) инертным газом и последующей непрерывной откачки газа из рабочей камеры и подачи его в плазмотрон.

Через теплообменник первичного охлаждения осуществляется забор горячего газа из камеры распыления посредством вихревой воздуходувки 7. Теплообменник первичного охлаждения служит для первичного охлаждения рабочих газов, перед попаданием их в фильтр первичной очистки, что существенно повышает фильтрационные свойства и срок службы фильтра.

Конструктивно теплообменник представляет собой водоохлаждаемый цилиндр, внутри которого проходит спиралевидный трубопровод смеси рабочих газов.

Фильтр первичной очистки 3 используется для исключения попадания в компрессор (вихревой воздуходувки 7) пылевых частиц распыляемого материала, а также прочих механических примесей.

Можно использовать фильтр типа «циклон».

Работа фильтра циклона построена на функционировании центробежных сил. С их помощью, загрязненный воздух, начинает входить в циклон по патрубку, после чего с высокой скоростью спиралеобразно смещается вниз. Частицы пыли, под воздействием центробежной силы прижимаются к внутренним стенкам, а под воздействием силы притяжения смещаются в нижнюю часть циклона, собираясь в бункере для сбора пыли.

В качестве фильтра сверхтонкой очистки 4 может быть использован пористый или тканевый фильтр. В основе работы пористых фильтров всех видов лежит процесс фильтрации газа через пористую перегородку, в ходе которого твердые частицы задерживаются, а газ полностью проходит сквозь нее. В процессе очистки запыленного газа частицы приближаются к волокнам или к поверхности зерен материала, сталкиваются с ними и осаждаются главным образом в результате действия сил диффузии, инерции и электростатического притяжения.

Компрессор (воздуходувка вихревая 7) в устройстве предназначен для откачки и нагнетания в камеру распыления (рабочую камеру) неагрессивной к материалам конструкции смеси рабочих газов (гелий, аргон), не содержащей капельной влаги и механических загрязнений.

Смесь рабочих газов поступает из воздуходувки вихревой 7 в формирователь охлаждающего потока рабочих газов 2, который формирует встречный газовый поток, направленный навстречу разлетающимся к боковым стенкам камеры распыления 1 гранулам, которые образуются из расплавленного электрода и, пролетая через который, кристаллизуются.

Приемный бункер 13 служит для сбора через приемную трубу 12 получаемых гранул и транспортирования бункера с гранулами. Трубопроводы и металлорукава 8 высокого давления изготовлены полностью из нержавеющей стали, что позволяет широко использовать их для транспортировки/подачи различных технических газов и жидкостей, включая агрессивные. Широкий диапазон рабочих температур (от криогенных до +600°C), стойкость к агрессивным средам, герметичность до высоких давлений позволяют практически безальтернативно использовать нержавеющие металлорукава в металлургическом, нефтегазовом, химическом и других видах оборудования. Трубопроводы и металлорукава 8 последовательно и герметично соединяют каждый элемент конструкции - камеру центробежного распыления 1, фильтр первичной очистки 3, фильтр сверхтонкой очистки 4, теплообменник 6, воздуходувку вихревую 8, формирователь охлаждающего потока рабочих газов. Кроме того, трубопроводы и металлорукава 8 соединяют между собой установку центробежного распыления и приемный бункер, в рамках нашей заявки этот элемент конструкции мы называем приемной трубой 12.

Приемная труба 12 полностью изготовлена, служит для транспортировки/ссыпания полученных гранул в приемный бункер 13.

Формирователь охлаждающего потока 2 рабочих газов конструктивно представляет собой замкнутое кольцо из нержавеющей трубки с локальным блоком форсунок (направленными отверстиями), обеспечивающими направление потока охлажденного рабочего газа навстречу к потоку кристаллизующихся капель расплавленного материала (гранул титана и сплавов из него), которое установлено в камере распыления 1. Формирователь охлаждающего потока рабочих газов может быть выполнен, например, в виде радиального газового спреера.

Компрессорный холодильный агрегат 5 соединен с теплообменником и осуществляет циркуляцию и охлаждение рабочей жидкости в теплообменнике. Вместе они представляют холодильную установку.

Последовательное расположение различных частей в устройстве продиктовано, в том числе необходимостью обеспечения эффективной работы устройства и требованием подачи очищенной и охлажденной смеси рабочих газов в вихревую воздуходувку 7 и далее нагнетание ее в рабочую камеру.

В одном из вариантов исполнения устройство для получения титановых гранул содержит рабочую камеру, заполняемую смесью инертных газов (гелий - 90%, аргон - 10%), дуговой плазмотрон для плавления вращающейся заготовки и компрессор с трубопроводами для непрерывной откачки смеси рабочих газов из рабочей камеры, при этом устройство выполнено с возможностью предварительной откачки воздуха из рабочей камеры, заполнения ее инертным рабочим газом и последующей непрерывной откачки инертного рабочего газа из камеры и подачи его в плазмотрон ПСМ-200, характеризуется тем, что устройство содержит последовательно соединенные через металлорукава и трубопроводы из нержавеющей стали фильтр «циклон», фильтр сверхтонкой очистки АМЕ, холодильную установку, которая представляет собой теплообменник, внутри которого проходит трубопровод смеси инертных рабочих газов. Теплообменник заполнен рабочей жидкостью, например жидким фреоном, которая посредством компрессорного холодильного агрегата CAJD/TAJD 2513Z постоянно движется и охлаждает спиралевидный трубопровод. Также устройство содержит компрессор, в качестве которого используется воздуходувка вихревая SCL K10-МО. Также устройство содержит формирователь охлаждающего потока инертных рабочих газов, который конструктивно представляет собой замкнутое кольцо из нержавеющей стали 12Х18Н10Т, имеет форму трубки с локальным блоком форсунок или 6-секционный газовый радиальный спреер. Устройство содержит приемный бункер и приемную трубу. Смесь инертных рабочих газов поступает из вихревой воздуходувки 7 в формирователь охлаждающего потока 2 рабочих газов, который формирует встречный поток инертных рабочих газов, направленный в камере распыления навстречу разлетающимся гранулам, которые образуются из расплавленного электрода, таким образом, при распылении расплавленных частиц они проходят через газовый поток инертных рабочих газов, что приводит к увеличению скорости кристаллизации гранул.

Таким образом, изобретение обеспечивает снижение температуры в камере распыления, увеличение скорости охлаждения (кристаллизации) гранул в процессе распыления и ссыпания в приемный бункер, увеличение срока эксплуатации оборудования, что способствует получению гранул из титана и его сплавов, без образования спеков гранул.

1. Устройство для получения титановых гранул, содержащее рабочую камеру, выполненную с возможностью откачки воздуха и заполнения ее инертным рабочим газом, плазмотрон для плавления вращающейся заготовки внутри рабочей камеры с обеспечением центробежного распыления капель расплавленного материала заготовки, компрессор с трубопроводами для непрерывной откачки инертного рабочего газа из рабочей камеры и соединенный с рабочей камерой приемный бункер для сбора гранул, при этом рабочая камера выполнена с возможностью подачи откаченного инертного рабочего газа в плазмотрон и с возможностью охлаждения капель расплавленного материала заготовки охлажденным инертным рабочим газом, откаченным из камеры распыления, отличающееся тем, что оно содержит последовательно соединенные через металлорукава и трубопроводы фильтр первичной очистки, фильтр сверхтонкой очистки, холодильную установку и компрессор, выполненные с возможностью охлаждения и очистки откаченного из камеры распыления инертного рабочего газа, и формирователь охлаждающего газового потока, выполненный с возможностью подачи в камеру распыления навстречу распыленным каплям расплавленного материала заготовки потока охлажденного и очищенного инертного рабочего газа, откаченного из камеры распыления.

2. Устройство по п. 1, отличающееся тем, что компрессор, соединенный с фильтром первичной очистки, фильтром сверхтонкой очистки и холодильной установкой, выполнен в виде воздуходувки.

3. Устройство по п. 2, отличающееся тем, что компрессор, соединенный с фильтром первичной очистки, фильтром сверхтонкой очистки и холодильной установкой, выполнен в виде воздуходувки вихревой.

4. Устройство по п. 1, отличающееся тем, что фильтр первичной очистки выполнен в виде фильтра типа циклон.

5. Устройство по п. 1, отличающееся тем, что оно содержит пористый фильтр сверхтонкой очистки.

6. Устройство по п. 1, отличающееся тем, что оно содержит тканевый фильтр сверхтонкой очистки.

7. Устройство по п. 1, отличающееся тем, что приемный бункер соединен с рабочей камерой посредством приемной трубы.

8. Устройство по п. 1, отличающееся тем, что приемный бункер расположен под рабочей камерой.

9. Устройство по п. 1, отличающееся тем, что формирователь охлаждающего газового потока выполнен в виде газового радиального спреера.

10. Устройство по п. 9, отличающееся тем, что формирователь охлаждающего газового потока выполнен в виде 6-секционного газового радиального спреера.

11. Устройство по п. 1, отличающееся тем, что формирователь охлаждающего газового потока расположен внутри рабочей камеры.

12. Устройство по п. 1, отличающееся тем, что оно содержит теплообменник первичного охлаждения, расположенный перед фильтром первичной очистки.

13. Устройство по п. 1, отличающееся тем, что оно содержит теплообменник первичного охлаждения, встроенный в фильтр первичной очистки.



 

Похожие патенты:

Группа изобретений относится к получению титановой дроби. Оплавляют торец вращающейся вокруг горизонтальной оси цилиндрической титановой заготовки плазменной струей плазмотрона с обеспечением центробежного распыления расплавленных частиц дроби в камере распыления и затвердевания их в среде рабочих газов, проводят сбор дроби из камеры распыления через приемную трубу в приемный бункер.

Изобретение относится к металлургии. Устройство для получения медных гранул содержит лоток для подачи расплавленного металла, емкость с охлаждающей жидкостью, съемный контейнер, выполненный в виде установленной в емкости конической корзины с сетчатым днищем, и замкнутый циркуляционный контур охлаждающей жидкости, включающий ультразвуковой центробежный диспергатор, соединенный с сопловыми насадками, установленными в емкости над уровнем охлаждающей жидкости под углом 2-5° к горизонту диаметрально и тангенциально внутренней боковой поверхности корзины с обеспечением кругового движения охлаждающей жидкости в корзине.

Изобретение относится к получению металлических порошков. Установка содержит камеру с накопителем заготовок и устройством их поштучной подачи на распыление, камеру с механизмом вращения заготовки в виде двух приводных опорных барабанов с нажимным роликом и механизмом продольной подачи заготовки с толкателем, камеру плавления с плазмотроном, направленным на торец распыляемой заготовки.

Изобретение относится к металлургии, к области производства слитков, предназначенных для последующей переработки методом горячего изостатического прессования (ГИП).
Изобретение относится к порошковой металлургии, в частности к получению гранул магния и магниевых сплавов путем литья. .

Изобретение относится к порошковой металлургии, в частности к способам непрерывного получения металлического порошка. .

Изобретение относится к порошковой металлургии, в частности к производству металлических порошков. .

Изобретение относится к получению порошков тугоплавких металлов, их сплавов, карбидов, боридов, нитридов, карбонитридов и т.д., которые могут использоваться в дальнейшем для получения порошковых твердосплавных изделий, износостойких композиционных покрытий.
Изобретение относится к способам изготовления катодных мишеней, используемых, в частности, при получении жаростойких покрытий для защиты жаропрочных сплавов на основе никеля или кобальта, устанавливаемых в установках для распыления.

Изобретение относится к области металлургии, а именно к порошковой металлургии и способам получения металлических порошков, главным образом, из жаропрочных никелевых сплавов.

Изобретение относится к порошковой металлургии. Способ получения ультрадисперсного металлического порошка с размерами частиц 10-2000 мкм включает подачу металлического стержня в камеру электродугового плазмотрона постоянного тока с плазмообразующим газом аргоном, обработку его в потоке плазмы с последующим охлаждением и конденсацией порошка в приемном бункере. Размеры частиц получаемого порошка регулируют путем изменения силы постоянного тока плазмотрона в диапазоне 100-500 А и расстояния между концом стержня и выходным отверстием конфузорно-диффузионного сопла плазмотрона в диапазоне 30-120 мм. Металлический стержень может быть выполнен из титана, кремния, молибдена, меди, титанового сплава, никелевого сплава, кобальтового сплава или инструментального сплава А6. Обеспечивается получение порошка с максимальным выходом заданной фракции. 2 з.п. ф-лы, 1 табл., 48 пр.

Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов и используется при производстве изделий, работающих при высоких температурах с повышенным ресурсом в газотурбинных двигателях летательных аппаратов и газоперекачивающих станциях. В предложенном способе получают порошки кристаллизацией частиц порошка из расплава заданного сплава, осуществляют сепарацию порошка от посторонних металлических и неметаллических частиц, помещают порошок в стальную капсулу, вакуумируют капсулы с порошком и осуществляют горячее изостатическое прессование. Далее удаляют материал капсулы с поверхности изделия и осуществляют термическую обработку для достижения оптимальных заданных механических свойств. Причем кристаллизацию частиц порошка осуществляют со скоростью не менее 50000 градусов Кельвина в секунду с получением частиц, размер которых не превышает в диаметре 50 микрометров, а газовая среда при получении частиц порошка имеет точку росы не более, чем минус 52 градуса по Цельсию, соответствующую не более 0,0012% объемной доли водяного пара. Обеспечивается повышение экономичности производства и качества изделий. 1 табл., 1 пр.

Изобретение относится к порошковой металлургии с использованием технологии быстрой кристаллизации, в частности к получению заготовок из алюминиевых сплавов. Предложенный способ включает приготовление алюминиевого расплава, центробежное литье гранул, их охлаждение и последующую ступенчатую вакуумную дегазацию в герметичных технологических капсулах, затем ведут компактирование гранул в герметичных технологических капсулах без дополнительного нагрева в контейнере пресса, нагретом до температуры не менее 400°C, и механическую обточку скомпактированных брикетов с получением компактных заготовок. При этом центробежное литье гранул и охлаждение полученных гранул ведут в среде жидкого азота при постоянной его температуре минус 196°C, при этом скорость охлаждения при кристаллизации гранул составляет от 1,05×10000 до 100000 Кельвина в секунду. Обеспечивается снижение содержания водорода и кислорода в металле заготовок, увеличение механических свойств заготовок, уменьшение себестоимости продукции. 1 табл., 1 пр.

Изобретение относится к получению гранул магниевых сплавов. Способ включает распыление жидкого расплава магниевого сплава в защитной газовой среде с помощью вращающегося стакана-распылителя. Распыление ведут в защитной газовой среде, расположенной между поверхностью стакана-распылителя и охлаждающей средой. В качестве защитной среды используют газообразный азот с точкой росы не более минус 50 °C, а в качестве охлаждающей среды используют 4-6-процентный щелочной водный раствор КОН. Обеспечивается повышение механических свойств магниевых сплавов. 1 табл., 1 пр.

Изобретение относится к получению сферического порошка из интерметаллидного сплава. Способ включает оплавление торца вращающейся вокруг горизонтальной оси цилиндрической заготовки из интерметаллидного сплава в камере распыления плазменной струей дугового плазмотрона с обеспечением центробежного распыления расплавленных частиц и их затвердевания при полете в среде рабочих газов, при этом производят забор горячей смеси рабочих газов из камеры распыления, охлаждают ее и подают охлажденную смесь рабочих газов в камеру распыления с обеспечением охлаждения расплавленных частиц, причем затвердевшие частицы собирают в приемном бункере. Охлажденную смесь рабочих газов подают в камеру распыления с регулируемой интенсивностью и направленностью посредством формирователей охлаждающих потоков, выполненных в виде по меньшей мере двух осевых спрейеров разного диаметра, обеспечивающих перехлестывание исходящих из спрейеров охлаждающих потоков с образованием зоны охлаждения расплавленных частиц с регулируемым температурным градиентом. Обеспечивается снижение температуры в камере распыления до необходимых нам значений, увеличение эффективности регулирования скорости охлаждения гранул. 1 ил.

Изобретение относится к получению порошков жаропрочных никелевых сплавов. Способ включает плавление торца вращающейся цилиндрической литой заготовки потоком плазмы с обеспечением центробежного распыления расплава и образованием частиц затвердевающих в микрослитки при полете в атмосфере холодной плазмообразующей смеси газов, содержащей инертные газы и водород. В плазмообразующую смесь газов дополнительно вводят азот и поддерживают его концентрацию в смеси на уровне, обеспечивающем путем ионизации газов в потоке плазмы и взаимодействия ионов с расплавом насыщение расплава азотом до уровня, превышающего предельную растворимость его в твердом растворе, характерную для жаропрочных сплавов на никелевой основе. Охлаждают микрослитки в холодной плазмообразующей смеси газов со скоростью не менее 103 °C/с. Обеспечивается повышение прочностных характеристик жаропрочных никелевых сплавов. 1 табл., 1 ил.

Изобретение относится к области плазменной техники. Предложен способ измерения зазора в плазменной струе между плазмотроном и заготовкой в производстве металлических порошков и гранул. В заявленном способе измерения зазора в плазменной струе между плазмотроном и заготовкой в производстве металлических порошков и гранул производят видеосъемку процесса плавления заготовки цифровой цветной FHD-видеокамерой с черным светофильтром высокой плотности, передачу изображения на ЭВМ. Полученное цифровое изображение подвергается операциям исключения засветок, бликов и избыточности посредством цифрового кадрирования, фильтрации синего и интерактивного формирования полихромного цветового профиля, последующего преобразования в изображение в градациях серого, бинаризации с заданным порогом, выделения информативной области черно-белого изображения по максимуму плотности пиксельного горизонтального заполнения в продольно-вертикальной плоскости. Полученное изображение сравнивают со шкалой измерительной калиброванной размерной сетки и получают результат однократного измерения зазора. Производят накопление выборки измерений и их статистическую обработку с последующей оценкой среднего значения величины зазора и дисперсии. Технический результат - повышение производительности технологического процесса центробежного распыления заготовки. 1 ил.

Изобретение относится к получению металлического порошка центробежным распылением заготовки. Способ включает подачу заготовки во вращающийся распылительный узел и в зону плавления, плавку заготовки плазменной струей, направленной на ее торец, с обеспечением центробежного распыления посредством вращения распылительного узла и получения частиц, их охлаждение и затвердевание при полете в газе. Используют узел распыления, выполненный в виде полого цилиндра для подачи через него заготовки и состоящий из двух участков из различных материалов, первый из которых является рабочим участком и выполнен из материала заготовки, а второй выполнен охлаждаемым из материала с более высокими теплопроводящими свойствами, чем материал первого участка. Подачу заготовки в распылительный узел ведут с обеспечением совмещения в вертикальной плоскости торца заготовки и торца рабочего участка распылительного узла, причем сначала плазменной струей совместно нагревают и оплавляют торцы заготовки и рабочей части распылительного узла с обеспечением формирования на торце рабочей части распылительного узла устойчивого профиля и стационарной пленки расплава. Обеспечивается повышение качества порошка и увеличение ресурса используемого оборудования. 2 н.п. ф-лы, 2 ил., 1 табл.
Наверх