Способ производства биметаллического проката на основе низкоуглеродистой стали и алюминиевого сплава

Изобретение относится к производству двух-, трех- и многослойных материалов горячей прокаткой и может быть использовано при производстве биметаллического проката на основе низкоуглеродистой стали и алюминиевых сплавов. Способ включает предварительную механическую обработку поверхности стальной заготовки, нагрев, сборку пакета и его прокатку. Повышение прочностных характеристик и ресурса пластичности изделий обеспечивается за счет того, что на поверхности стальной заготовки в поперечном направлении к оси прокатки формируют зубчатый рельеф с углом при вершине 30°-90°, после чего заготовку из алюминиевого сплава нагревают до температуры, равной 0,65-0,75 температуры плавления алюминия, а прокатку пакета производят со степенью деформации 65-80% за один проход. 2 ил., 1 табл.

 

Изобретение относится к производству двух-, трех- и многослойных материалов горячей прокаткой и может быть использовано при производстве биметаллического проката на основе низкоуглеродистой стали и алюминиевых сплавов. Из существующего уровня техники известен способ прокатки конструкционных биметаллов без деформации стальной основы [Биметаллический прокат / П.Ф.Засуха, В.Д.Корщиков, О.Б.Бухвалов, А.А.Ершов // М.: Металлургия, 1971. - 264 с.]. Общая схема технологического процесса состоит из следующих этапов:

1) подготовка металлов к плакированию, включающая обезжиривание, травление и зачистку проволочными щетками заготовок из стали и алюминиевых сплавов, предварительно плакированных слоем чистого алюминия;

2) нагрев заготовок из алюминиевых сплавов до температуры их горячей обработки;

3) формирование пакетов;

4) прокатка пакетов на стане горячей прокатки;

5) отжиг биметаллических листов;

6) резка и правка биметалла;

7) контроль качества, маркировка и т.д.

Недостатками известного способа являются низкие прочностные свойства зоны соединения слоев биметалла и низкая стабильность качества соединения слоев из-за отсутствия оптимальной технологии подготовки контактных поверхностей компонентов биметалла к совместной прокатке.

Наиболее близким решением к заявленному способу, который был принят в качестве прототипа, является способ получения биметаллов из низколегированной стали и алюминиевых сплавов (Патент №2368475 от 27.09.2009), включающий предварительную механическую обработку соединяемых поверхностей с удельным давлением 0,5-8,5 МПа с образованием перекрещивающегося рельефа, острый угол которого составляет от 20° и 70°; нагрев алюминиевой заготовки, предварительно плакированной слоем технически чистого алюминия, до температуры, равной 0,65-0,75 температуры плавления алюминия; сборку пакета, состоящего из холодной стальной и нагретой алюминиевой заготовок; совместную прокатку пакета за один проход с обжатием 65-80% и термообработку.

К недостатку прототипа относятся низкие прочностные свойства зоны соединения слоев готового биметалла (предел прочности на отрыв σотр и на срез σср), а также низкий ресурс пластичности металла Λр и зависящие от него высокие значения поврежденности металла ω. Указанный недостаток является следствием подготовки профиля контактной поверхности стальной составляющей в виде перекрещивающегося рельефа с углом при вершине от 20° до 70°. Показатель Лоде близок к значению µσ=-1, для которого пластичность алюминия меньше, чем при µσ=0. Высокое значение поврежденности металла в зоне соединения слоев биметалла приводит к локальным макроразрушениям металла и общему снижению прочностных характеристик и стабильности свойств вдоль зоны соединения слоев.

Техническим результатом изобретения является разработка способа производства биметаллического проката, предусматривающая пониженные значения поврежденности металла в зоне соединения слоев после совместной прокатки и обеспечивающая повышение эксплуатационных свойств и их стабильность в зоне соединения слоев биметаллического проката.

Указанный технический результат достигается тем, что в способе получения биметаллического проката из низкоуглеродистой стали и алюминиевого сплава, включающем предварительную механическую обработку поверхности стальной заготовки с удельным давлением 0,5-8,5 МПа с получением высоты неровностей профиля Rmax, находящейся в пределах 0,05-0,2 толщины плакирующего слоя алюминиевой заготовки, нагрев алюминиевой заготовки, предварительно плакированной слоем технически чистого алюминия, до температуры, равной 0,65-0,75 температуры плавления алюминия, сборку пакета, состоящего из холодной стальной и нагретой алюминиевой заготовок, совместную прокатку пакета за один проход с обжатием 65-80% и термообработку, согласно изобретению перед сборкой пакета на соединяемой поверхности стальной заготовки в поперечном направлении к оси прокатки формируют зубчатый рельеф с углом при вершине 30°-90°.

Схематично предлагаемый профиль поверхности твердой составляющей представлен на фиг. 1. Как показали результаты теоретических и экспериментальных исследований, одним из основных факторов, влияющих на эксплуатационные свойства переходной зоны, является рельеф контактных поверхностей компонентов биметалла. При совместном деформировании пакета контактные поверхности сближаются и начинается обжатие металла алюминиевой заготовки выступами поверхности стальной заготовки. При этом профиль стальной поверхности определяет напряженное состояние металла алюминиевой составляющей в процессе совместного обжатия, которое оценивается такими величинами, как относительное среднее нормальное напряжение σ/Т и коэффициент Лоде µσ. Значения показателей напряженного состояния, которые способствуют минимизации поврежденности металла ω, обеспечивают повышение эксплуатационных свойств. На фиг. 2 приведены диаграммы пластичности алюминиевого сплава, выступающего в роли более мягкой составляющей биметалла, по вариантам совместной раздачи со стальной составляющей пакета, имеющей перекрещивающийся рельеф (прототип) и имеющей предлагаемый поперечный направлению прокатки рельеф. Из диаграммы следует, что при формировании рельефа в поперечном направлении к оси прокатки обеспечивается повышение коэффициента Лоде µσ от -1 до 0 и, следовательно, увеличение ресурса пластичности. Экспериментальным и теоретическим путем было установлено, что оптимальной формой профиля поверхности стальной заготовки, удовлетворяющей условию минимизации поврежденности металла ω алюминиевой заготовки и развитию фактической площади контакта, является рельеф с углом при вершине 30°-90°. В этом случае реализуется схема деформации, максимально приближенная к схеме плоской деформации и достигается максимально возможное значение коэффициента Лоде µσ=0, способствующее увеличению ресурса пластичности металла алюминиевой заготовки и снижению поврежденности металла в зоне соединения слоев.

Образование рельефа с углом при вершине меньше 30° затрудняет заполнение металлом алюминиевой заготовки полости профиля стальной составляющей биметалла и, следовательно, не обеспечивается надежное сцепление составляющих. Применение рельефа с углом при вершине больше 90° не обеспечивает площадь контакта, необходимую для получения надежного сцепления составляющих биметалла.

Пример осуществления изобретения

Процесс получения биметалла «сталь - алюминиевый сплав», состоящий из листа 1Х18Н9Т, толщиной 5 мм и алюминиевого сплава АМг6 13 мм, включает в себя следующие операции:

1) травление и зачистка дисковыми щетками алюминиевой заготовки;

2) механическая обработка шлифовальным инструментом поверхности стали с образованием на соединяемой поверхности рельефа с углом вершины в пределах 30°-90°, нанесенного в поперечном направлении к оси прокатки;

3) предварительный нагрев заготовки из алюминиевого сплава до 400-440°С;

4) сборка пакета;

5) совместная прокатка пакета со степенью деформации, равной 70-80%, без обжатия стали за один проход;

6) отжиг биметаллического листа.

С целью оценки эксплуатационных характеристик из прокатываемых биметаллических листов вырезались и подготавливались специальные образцы для испытания на прочность сцепления слоев биметалла на отрыв и на срез. Как показали результаты испытаний, приведенные в таблице, достигнуто увеличение прочности сцепления на 12-18% по сравнению с прототипом.

Способ получения биметаллического проката из низкоуглеродистой стали и алюминиевого сплава, включающий предварительные плакирование алюминиевой заготовки слоем технически чистого алюминия и механическую обработку поверхности стальной заготовки с удельным давлением 0,5-8,5 МПа с формированием рельефа, высота неровностей профиля которого составляет 0,05-0,2 толщины плакирующего слоя алюминиевой заготовки, нагрев алюминиевой заготовки до температуры, равной 0,65-0,75 температуры плавления алюминия, сборку пакета, состоящего из холодной стальной и нагретой алюминиевой заготовок, совместную прокатку пакета за один проход с обжатием 65-80% и термообработку, отличающийся тем, что рельеф на поверхности стальной заготовки перед сборкой пакета формируют с зубчатым профилем в поперечном направлении к оси прокатки с углом при вершине 30°-90°.



 

Похожие патенты:
Изобретение относится к области обработки металлов давлением и может быть использовано для получения многослойного композиционного материала с микроразмерной структурой слоев.
Способ может быть использован при изготовлении биметаллического проката для изготовления ювелирных изделий, часов, сувенирных изделий, посуды, столовых приборов, церковных украшений.
Способ может быть использован при изготовлении биметаллического проката для изготовления ювелирных изделий, часов, сувенирных изделий, посуды, столовых приборов, церковных украшений.

Изобретение относится к металлургической промышленности и касается способа получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали.
Изобретение может быть использовано для изготовления супермногослойных листовых полуфабрикатов на основе разнородных материалов. В качестве исходных заготовок используют листы из сплавов разнородных металлов, взаимно растворимых друг в друге в интервале температуры нагрева при горячей обработке давлением.

Изобретение может быть использовано при изготовлении сваркой давлением плакированных фасонных слоистых композиционных металлических изделий, преимущественно на стальной основе.

Изобретение может быть использовано для изготовления изделий, эксплуатирующихся в широком температурном интервале (до -60°C) в условиях повышенного коррозионного износа под воздействием морской воды и других агрессивных сред.
Изобретение относится к металлургии, а именно к получению биметаллических листов с наплавленным (плакирующим) слоем из износостойкой стали и основным слоем из легированной стали.

Изобретение относится к области обработки металлов давлением, в частности к изготовлению слоистых листовых материалов методом совместной пластической деформации, и может быть использовано при производстве биметаллических листов и плит, предназначенных для изготовления переходников.

Изобретение относится к металлургической отрасли, а именно изготовлению прокаткой в вакууме заготовок и полос слоистой коррозионно-стойкой стали, состоящих из основного слоя углеродистой стали, легированной кремнием, и, по меньшей мере, одного плакирующего слоя коррозионно-стойкой стали.

Изобретение относится к области металлургии, в частности к изготовлению биметаллических заготовок из алюминиево-оловянных антифрикционных сплавов путем изменения их физической структуры сочетанием термической обработки и пластической деформации, и может быть использовано, например, в производстве подшипников скольжения. Способ изготовления биметаллической заготовки из антифрикционного сплава включает выплавку сплава, содержащего, мас. %: свинец - 2,0-4,0, олово - 8,0-12,0, медь - 2,0-5,0, цинк - 1,5-4,0, кремний - 0,1-1,0, титан - 0,02-0,2, алюминий - остальное, его термообработку осуществляют не позднее чем через 3 ч после его выплавки при температуре Т=230°-270°С в течение 2,5-3,5 ч, и последующую прокатку в три стадии, со степенью деформации на первой стадии прокатки, обеспечивающей плакирование заготовки алюминием, подготовку полученной плакированной алюминием полосы антифрикционного сплава и стальной полосы для совместного деформирования, их совместное деформирование для получения биметаллической заготовки и окончательный отжиг заготовки, при этом термообработку антифрикционного сплава после каждой стадии прокатки осуществляют при Т=230°-270°С в течение 1-3 ч, а окончательный отжиг биметаллической заготовки осуществляют при Т=300°-320°С в течение не менее 2 ч. Изобретение направлено на получение биметаллической заготовки с высокими триботехническими свойствами при сохранении требуемых характеристик прочности и пластичности по всей глубине заготовки. 4 з.п. ф-лы, 1 пр., 1 табл.

Изобретение может быть использовано для получения биметалла из меди и низкоуглеродистой стали при изготовлении деталей, применяемых в конструкциях установок для электролиза алюминия. Перед диффузионной сваркой проводят сжатие поверхностей заготовок при комнатной температуре с приложением к ним удельного давления величиной p=(0,7-1,0) от условного предела текучести меди с фиксацией пакета в сжатом состоянии. Диффузионную сварку сжатого пакета в печи осуществляют при температуре 950-1000°C в течении 20 мин. Прокатывают полученную заготовку при температуре нагрева 950-1000°C с относительной степенью деформации по высоте 10-20%. Способ обеспечивает получение биметалла, сочетающего высокую электро- и теплопроводность меди и прочностные свойства стали. 1 ил., 1 табл.

Изобретение относится к области металлургии, а именно к плакирующему материалу для стального листа, используемого в морских конструкциях, устройствах опреснения морской воды. Плакирующий материал содержит, мас.%: 0,03 или менее углерода, 1,5 или менее кремния, 2,0 или менее марганца, 0,04 или менее фосфора, 0,03 или менее серы, от 22,0 до 25,0 никеля, от 21,0 до 25,0 хрома, от 2,0 до 5,0 молибдена, от 0,15 до 0,25 азота, остальное железо и неизбежные примеси. Критическая температура питтинговой коррозии (СРТ) плакирующего материала после нормализации, определяемая в соответствии с ASTM G48-03 Method E, составляет 45°С или выше, а потери от коррозии в зоне сварки, определенные посредством коррозионного испытания в соответствии со стандартом NORSOK M-601, составляют 1,0 г/м2 или менее. Плакирующий материал для стального листа обладает высокой коррозионной стойкостью к морской воде, обеспечивает целостность соединения с улучшенной надежностью при одновременном поддержании высоких коррозионных и механических свойств основного и плакирующего материалов. 5 н. и 4 з.п. ф-лы, 1 табл., 1 пр.

Изобретение может быть использовано при изготовлении биметаллической проволоки на стальной основе с оболочками из различных металлов, преимущественно цветных. Предварительно обрабатывают стальной сердечник и медную оболочку в виде ленты в электролите в электрогидродинамическом режиме анодного процесса. Собирают заготовку путем оборачивания оболочкой сердечника. Соединяют ее кромки. Осуществляют нагрев полученной заготовки до 750-850°С в электролитной плазме в режиме анодного процесса. Производят прокатку полученной заготовки. Способ позволяет изготавливать биметаллическую проволоку с высоким качеством соединения входящих в ее состав металлов, при значительно меньших усилиях прокатки обеспечивает прочное соединение разнородных металлов, например стали сердечника и меди оболочки, при этом медная оболочка не утончается и на ней не образуется грат. 1 ил.

Изобретение может быть использовано при изготовлении тонких биметаллических полос, содержащих слои из сплавов алюминия и сплавов меди. Биметаллическая полоса содержит основной слой на основе алюминия в отожженном состоянии и, по крайней мере, один плакирующий слой на основе меди в отожженном состоянии. Отношение пределов прочности плакирующего слоя и основного слоя больше единицы, а отношение толщин плакирующего слоя и основного слоя определено условием: Нпл/Нос<0,2235(σпл/σос)-0,628, где Нпл, Нос - толщина плакирующего слоя и основного слоя, мм; σпл, σос - предел прочности плакирующего слоя и основного слоя, МПа. При изготовлении биметаллической полосы осуществляют совместную прокатку подготовленных слоев, диффузионный отжиг, последующую холодную прокатку с последующим отжигом. Диффузионный отжиг проводят при достижении суммарной деформации, определяемой условием: Е=-0,0543(Нпл/Нос)2+2,5686(Нпл/Нос)+49,4, где Е - суммарная деформация ленты от исходного состояния. Каждый последующий отжиг проводят при достижении суммарной деформации, определяемой условием: Е≤-0,23(Нпл/Нос)2+9,8(Нпл/Нос)-11,2. Изобретение обеспечивает отсутствие разрывов плакирующих лент и, как следствие, повышение выхода годного продукта. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение может быть использовано при получении листового композиционного материала системы титан-алюминий для изготовления деталей летательных аппаратов, в том числе подвергаемых повышенным тепловым нагрузкам. Способ включает получение слоистой заготовки в виде пакета и последующую ее прокатку. Слоистую заготовку получают сваркой пакета в твердой фазе в газозащитной среде путем прокатки при температуре 420-470°C с относительным обжатием 20-30%. Затем заготовку подвергают многопроходной холодной прокатке до заданной толщины при относительном обжатии за проход 10-15% и с промежуточными отжигами при температуре не выше 500°C после достижении суммарной степени деформации более 35%. После чего проводят заключительную термическую обработку при температуре 500-800°C с выдержкой 1-4 ч. Технический результат состоит в повышении механических и функциональных свойств листового композиционного материала. 1 табл.

Изобретение относится к области металлургии, а именно к способам производства высокопрочного износостойкого биметаллического конструкционного материала с основным слоем из низколегированной стали и плакирующим слоем из коррозионно-стойкой стали, предназначенного для применения в изделиях нефтяного и химического машиностроения, а также других отраслях, где необходимо применение коррозионно-стойких в агрессивных средах элементов конструкций и аппаратов. На основной слой наносят плакирующий слой из коррозионно-стойкой износостойкой аустенитно-ферритной стали электрошлаковой наплавкой расходуемыми электродами. Электроды изготовлены из стали следующего состава, мас.%: углерод 0,010-0,035, кремний 0,5-1,0, марганец 0,7-2,0, хром 21-25, никель 4,5-7,5, молибден 2,5-4,5, титан не более 0,005, алюминий не более 0,03, азот 0,01-0,20, сера 0,0025-0,0035, фосфор 0,010-0,020, железо и неизбежные примеси остальное, а глубина проплавления основного слоя при наплавке составляет не более 5 мм. Затем осуществляют горячую прокатку и термическую обработку. Повышается коррозионная стойкость, в том числе стойкость к питтинговой коррозии, прочностные характеристики и износостойкость биметаллических конструкционных материалов, а также снижается себестоимость биметалла. 1 табл.

Изобретение относится к обработке металлов давлением, конкретно к изготовлению длинномерных биметаллических полуфабрикатов ювелирного назначения из драгоценных металлов, и металлургии сплавов на основе золота, предназначенных для изготовления ювелирных изделий. Способ изготовления биметаллической проволоки из драгоценных металлов, содержащей сердечник и оболочку, включает прокатку биметаллического полуфабриката, причем в качестве сердечника используют серебряный пруток, а в качестве оболочки – полученную прокаткой ленту из сплава на основе золота 585 пробы, содержащего, мас.%: золото 58,0-59,0, серебро 7,5-8,5, иридий 0,001-0,05, родий 0,001-0,1, медь - остальное, при этом полученную прокаткой ленту сворачивают вокруг сердечника при условии соотношения площадей поперечного сечения сердечника и биметаллического полуфабриката 0,27-2,6, полученный биметаллический полуфабрикат подвергают сортовой прокатке без предварительного подогрева с последующим волочением. Технический результат заключается в повышении механических и эксплуатационных характеристик готовой продукции. 2 табл., 2 ил.

Изобретение относится к обработке металлов давлением, в частности к производству композиционных материалов, и может быть использовано для изготовления биметаллической проволоки из разнородных металлов. зоной, которая состоит из соединенных между собой металлов сердечника и оболочки и углеродных нанотрубок, предварительно нанесенных, по крайней мере, на одну из контактных поверхностей соединяемых металлов. Углеродные нанотрубки наносят на стадии подготовки контактных поверхностей сердечника и оболочки к соединению. Далее осуществляют холодное волочение с образованием переходной зоны из металлов сердечника, оболочки и упомянутых нанотрубок. Повышается равномерность толщины оболочки по длине и по сечению. 1 з.п. ф-лы, 2 ил.
Изобретение может быть использовано при производстве многослойных плакированных листов и плит горячей прокаткой с различными вариантами основного и плакирующего слоя (слоев), в частности, для изготовления листов с высокой коррозионной стойкостью рабочих поверхностей. После подготовки контактных поверхностей плакирующего и плакируемого металлических листов наносят на плакирующий лист приваркой взрывом промежуточный слой с получением промежуточной двухслойной заготовки. Собирают пакет, нагревают его и деформируют горячей прокаткой до заданной толщины изготавливаемого плакированного металлического листа. В качестве промежуточного слоя используют лист металла, одинаковый по химическому составу с металлом плакируемого листа и толщина которого меньше, чем толщина плакируемого листа. При сборке пакета полученную промежуточную двухслойную заготовку размещают с одной или обеих сторон плакируемого листа. 5 з.п. ф-лы, 1 пр.
Наверх