Композиционный гранулированный сорбент на основе силикатов кальция

Группа изобретений относится к области получения сорбентов. Способ включает приготовление смеси, содержащей саморассыпающиеся шлаковые отходы на основе силиката кальция, магния, и гидроалюмосиликаты из ряда глин и гидрослюд, гранулирование смеси и ее термообработку при 850-900°C, обеспечивающую формирование единого алюмокремнекислородного каркаса, содержащего структурную фазу типа карбонатного спурита. Перед гранулированием в смесь вводят модификатор - водный раствор эфира целлюлозы и гликолевой кислоты. Техническим результатом является повышение эффективности сорбента в отношении сорбции тяжелых металлов и радионуклидов. 2 н.п. ф-лы, 3 табл., 2 пр.

 

Изобретение относится к области сорбционно-осадительных технологий извлечения тяжелых металлов и радионуклидов из водных растворов и может найти применение на предприятиях цветной металлургии, производства металлоизделий, предприятиях химической промышленности, а также может быть использовано для иммобилизации радиоактивных отходов из растворов, для очистки почв и водоемов, подвергшихся загрязнению тяжелыми металлами и радионуклидами.

Известен гранулированный неорганический сорбент (Патент РФ №2032460, «Гранулированный неорганический сорбент и способ его получения», МПК B01J 20/06, от 10.04.1995), применяемый для переработки жидких и газовых технологических потоков, при очистке отходящих газов и сбросных вод предприятий от радиоактивных и токсичных веществ в атомной энергетике и химической промышленности. Сорбент представляет собой сферогранулированный (диаметр 0,001-3 мм) материал с кристаллической структурой двухфазного твердого раствора, состоящего из анатаза и рутила. Количество сорбционных центров определяется степенью нестехиометрии сложного оксида.

Недостатком данного изобретения является то, что сорбционная емкость ограничена количеством сорбционных центров, определяемых химической предысторией сорбента. Возможность генерирования дополнительных сорбционных центров в процессе сорбционного взаимодействия отсутствует. В результате сорбент характеризуется низким коэффициентом распределения по тяжелым металлам. Процесс сорбции является обратимым.

Известен «Сорбент на основе силикатов кальция» (Патент РФ №2230609, МПК B01J 20/10, 20/04, 20/08, от 21.04.2003). Известный сорбент на основе силикатов кальция с добавлением оксида алюминия и оксида магния производится методом плавления исходных компонентов. Технология производства сорбента рассчитана на получение саморассыпающегося материала с фракционным составом 0,1-0,4 мм. Основными фазовыми составляющими известного композиционного сорбента являются силикаты: 2CaO·SiO2; трехкальциевый силикат 3CaO·SiO2; мервинит 3CaO·MgO·SiO2, а также периклаз MgO и оксид алюминия Al2O3, присутствующий в виде шпинели MgO·Al2O3. Указанный сорбент необратимо фиксирует радионуклиды, о чем свидетельствует низкая степень выщелачивания последних из отработанного сорбента. Недостатком известного решения является низкий коэффициент распределения, поскольку при эксплуатации сорбента отсутствует возможность самоактивирования и саморегулирования сорбционного процесса. Присутствующая в составе сорбента шпинель не участвует в сорбционном процессе.

Высокая дисперсность исходного сорбента и еще более высокая дисперсность продуктов сорбционного взаимодействия исключает возможность их разделения и регенерации сорбента. Соотношение сорбционной и осадительной стадии не регулируется составом сорбента, поэтому при его эксплуатации возможно накопление мелкодисперсных плохо отстаивающихся осадков, снижающих фильтрующие и сорбционные свойства. Использование известного сорбента для отсыпки дна водоемов и поверхностных слоев почв, загрязненных тяжелыми металлами и радионуклидами, создает опасность ветрового загрязнения территорий мелкодисперсными токсичными продуктами сорбции, например при обмелении водоемов.

Из уровня техники известен композиционный сорбент (патент РФ №2481153, «Композиционный сорбент на основе силикатов кальция», МПК B01J 20/16, опубл. 10.05.20163), представляющий собой гранулированную смесь саморассыпающегося шлака на основе силикатов кальция, магния и гидроалюмосиликаты из ряда глин и гидрослюд, термически обработанную в интервале температур, обеспечивающем формирование единого алюмокремнекислородного каркаса, и содержащий следующие компоненты (в пересчете на оксиды), мас. %:

Диоксид кремния 28÷31
Оксид кальция 40÷53
Оксид алюминия 7÷9
Оксид магния 6÷8
Оксид калия 0,5÷1,0
Оксид натрия 0,5÷1,0
Оксид железа 1,0÷3,0

Соотношение компонентов выбрано с учетом процессов фазообразования при оптимальных температурах (850-900°C), обеспечивающих формирование единого алюмокремнекислородного каркаса при слабом спекании гранул сорбента, сохраняющем их диффузную проницаемость.

Основными фазовыми составляющими этого композиционного сорбента являются силикаты: двухкальциевый силикат 2CaO·SiO2; трехкальциевый силикат 3СаО·SiO2; мервинит 3CaO·MgO·SiO2; геленит 2CaO·SiO2·Al2O3. Оксиды калия, натрия, железа не образуют индивидуальных фаз, а входят в состав силикатов кальция, образуя нестехиометрические соединения в результате реакций дефектообразования. Благодаря участию в обменном сорбционном процессе иновалентных катионов, в процессе сорбции генерируются вторичные активные сорбционные центры. Композиционный сорбент обладает способностью необратимо удерживать тяжелые металлы как селективно, так и комплексно. Использование композиционного сорбента в гранулированном состоянии и присутствие в его составе активирующих добавок обеспечивает реализацию следующих преимуществ:

- регулирования сорбционной и осадительной стадии сорбционного процесса;

- разделения сорбента и мелкодисперсных продуктов сорбционного взаимодействия;

- регенерации сорбента.

Недостатком данного решения является уменьшение механической прочности гранул сорбента в процессе длительной эксплуатации, что приводит к увеличению количества мелкодисперсных осадков. Блокирование поверхности гранул мелкодисперсными продуктами приводит к снижению сорбционной емкости, что требует регенерации сорбента. К блокированию поверхности сорбента и снижению сорбционной емкости приводит также сорбция анионов, таких как Cl-, SO4-2, NO3- и др., присутствующих в составе кислых растворов тяжелых металлов и радионуклидов.

Также, в способе приготовления известного сорбента, заключающемся в приготовлении смеси, содержащей саморассыпающиеся шлаковые отходы на основе силикатов кальция и магния, и гидроалюмосиликаты из ряда глин и гидрослюд, гранулировании и ее термообработке при 850-900°C, обеспечивающей формирование единого алюмокремнекислородного каркаса, имеются следующие недостатки: низкая технологичность формовочной смеси ввиду отсутствия временной связки для обеспечения эффективности процесса гранулирования. Недостаточная эффективность процесса гранулирования и тем самым агрегатирования исходных компонентов создает кинетические ограничения при последующем их твердофазном взаимодействии и спекании с формированием единого алюмокремнекислородного каркаса.

Техническим результатом настоящего изобретения является увеличение сорбционной емкости и повышение прочности гранул композиционного сорбента в процессе эксплуатации.

Технический результат достигается тем, что в способе получения композиционного сорбента, включающем приготовление смеси, содержащей саморассыпающиеся шлаковые отходы на основе силикатов кальция, магния, и гидроалюмосиликаты из ряда глин и гидрослюд, гранулирование и ее термообработку при 850-900°C, обеспечивающую формирование единого алюмокремнекислородного каркаса, согласно изобретению, перед гранулированием в смесь вводят модификатор - водный раствор эфира целлюлозы и гликолевой кислоты, и термообработку проводят с формированием в алюмокремнекислородном каркасе структурной фазы типа карбонатного спурита.

Структурообразующий модификатор до термообработки играет роль временного связующего при агрегатировании формовочной смеси. В процессе термообработки гранул и деструкции эфира карбометилцеллюлозы активируется твердофазное взаимодействие компонентов с образованием единого алюмокремнекислородного каркаса, в котором участвуют продукты деструкции модификатора - углекислый газ и пары воды. Пары воды участвуют в реакциях протонного переноса, а углекислый газ встраивается в силикатный мотив.

Также, указанный технический результат достигается за счет того, что композиционный сорбент на основе силикатов кальция и магния и гидроалюмосиликатов из ряда глин и гидрослюд, полученный заявляемым способом, содержит следующие компоненты (в пересчете на оксиды), мас.%:

Диоксид кремния 28÷31
Оксид кальция 40÷53
Оксид алюминия 7÷9
Оксид магния 6÷8
Оксид калия 0,5÷1,0
Оксид натрия 0,5÷1,0
Оксид железа 1,0÷3,0
Диоксид углерода 1,0÷4,0

Термическая обработка, наряду с известными процессами фазообразования, формирующими алюмокремнекислородный каркас, приводит в результате взаимодействия 2CaO·SiO2 с модификатором к частичному замещению кремния на углерод в силикатном мотиве и формированию дополнительных структурных фрагментов типа карбонатного спурита 2(2CaO·SiO2)·CaCO3.

Процессы фазообразования при оптимальных температурах обеспечивают слабое спекание гранул при повышении их пористости и тем самым диффузионной проницаемости. При этом повышение пористости не приводит к снижению механической прочности гранул.

Термообработка с формированием в алюмокремнекислородном каркасе структурной фазы типа карбонатного спурита, обладающего сорбционной емкостью, способствует:

- повышению механической и химической устойчивости сорбента в процессе эксплуатации;

- регулированию процесса образования вторичных активных сорбционных центров;

- поверхностному перераспределению анионов Cl-, SO4-2, NO3- и подавлению их блокирующих функций в процессе сорбции;

- после завершения сорбционного процесса созданию зародышевых центров для эпитаксиального роста СаСО3 на поверхности гранул, выполняющего упрочняющее и блокирующее действие.

Введение структурообразующего модификатора непосредственно перед гранулированием смеси переводит сорбционный процесс в режим саморегуляции, повышая сорбционную емкость при высоких коэффициентах распределения. При дезактивации водных бассейнов и влажных почв без дополнительного поступления загрязняющих веществ процесс сорбционной очистки может реализоваться до полного исчерпывания загрязняющих веществ. Блокирование и упрочнение гранул сорбента в процессе эксплуатации поверхностным карбонатом кальция в открытых природных системах служит надежным способом захоронения тяжелых металлов и радионуклидов. В свою очередь, в процессе использования в съемных блоках и кассетах при эксплуатации сорбента образуется меньше мелкодисперсных продуктов, повышается эффективность сорбционного процесса и отпадает необходимость в регенерации сорбента до достижения полной сорбционной емкости.

При содержании структурообразующего модификатора менее указанных пределов карбонатный спурит не образуется и сорбционная емкость уменьшается. Увеличение содержания структурообразующего модификатора более указанных пределов приводит к увеличению пористости гранул и уменьшению механической прочности до величин, исключающих их практическое использование.

Примером конкретного выполнения композиционного сорбента на основе шлаковых отходов и гидроалюмосиликатов кальция могут служить смеси саморассыпающихся шлаковых отходов производства цветных металлов с минеральными гидроалюмосиликатами в соотношениях 85 мас. % к 15 мас. % соответственно с добавкой водного раствора структурообразующего модификатора. Соотношения компонентов выбраны таким образом, чтобы в пересчете на оксиды соответствовали заявляемым. В качестве гидроалюмосиликатов могут быть использованы монтмориллониты, каолиновые минералы, гидрослюды и др. (Г.Н. Пшинко, Т.Г. Тимошенко и др. Сорбционная очистка воды от 90Sr и его иммобилизация в керамических матрицах. // Химия и технология воды. - 2007. - 29, №3. - с. 262-274). В качестве структурообразующего модификатора применен водный раствор эфира целлюлозы и гликолевой кислоты (З.А. Роговицин. Химия целлюлозы. М. - 1972. - с. 402-404; Целлюлоза и ее производные. Пер. с англ. T.1, М. - 1974. - с. 430-435, 468-471. Т.2, М. - 1974. - с. 99-102).

Смеси саморассыпающегося шлака с минеральными гидроалюмосиликатами, модифицированные водным раствором эфира целлюлозы и гликолевой кислоты, гранулировали на тарельчатом грануляторе, термически обрабатывали в интервале температур 850-900°C, обеспечивающем слабое спекание гранул композиционного сорбента при формировании единого модифицированного углеродом алюмокремнекислородного каркаса, содержащего в себе структурные фрагменты типа карбонатного спурита.

Варианты составов композиционного сорбента приведены в таблице 1.

В качестве модельного раствора выбран водный раствор тяжелых металлов с содержанием катионов никеля - 70 мг/л, меди - 70 мг/л, железа -70 мг/л, цинка - 50 мг/л, марганца - 50 мг/л, кадмия - 50 мг/л, церия - 100 мг/л, pH - 2,8. Катионы церия использованы в качестве имитатора радионуклидов.

Предлагаемое техническое решение иллюстрируется следующими примерами.

Пример 1. В 6 емкостей помещали модельный раствор, затем в каждую емкость добавляли композиционный сорбент с размером частиц 0,5-5 мм, в соотношении твердое: жидкое = 1:30. В каждую емкость помещали сорбент определенного состава, согласно таблице 1. Растворы, содержащие композиционный сорбент, выдерживали при температуре 22°C и перемешивали, измеряя значения pH каждые 0,5 часа до установления постоянного pH (9-9,5). Процесс сорбции завершали, отделяли сорбент от раствора отстаиванием. Растворы фильтровали и определяли концентрацию ионов никеля, меди, железа, цинка, марганца, кадмия и церия на атомно-эмиссионном спектрометре Optima 2100 DV. Коэффициент распределения Kd (мл/г) рассчитывали по известной формуле

, где

V - объем модельного раствора, мл,

m - масса сорбента, г,

Co - исходная концентрация катионов в модельном растворе, мг/л,

С - концентрация катионов в отфильтрованном модельном растворе, мг/л.

Результаты представлены в таблице 2.

Пример 2. Полную сорбционную емкость определяли на модельном растворе, содержащем 100 мг/л церия. В одну емкость заливали модельный раствор, содержащий катионы церия, и помещали композиционный сорбент в соотношении твердое:жидкое = 1:30. Процесс сорбции проводили, как в примере 1 (до установления постоянного значения pH), затем композиционный сорбент промывали водой и снова заливали модельным раствором. Процесс осуществляли многократно до прекращения сорбционного взаимодействия композиционного сорбента с модельным раствором. Результаты определения сорбционной емкости представлены в таблице 3.

1. Способ получения композиционного сорбента, включающий приготовление смеси, содержащей саморассыпающиеся шлаковые отходы на основе силиката кальция, магния, и гидроалюмосиликаты из ряда глин и гидрослюд, гранулирование смеси и ее термообработку при 850-900°C, обеспечивающую формирование единого алюмокремнекислородного каркаса, отличающийся тем, что перед гранулированием в смесь вводят модификатор - водный раствор эфира целлюлозы и гликолевой кислоты, и термообработку проводят с формированием в алюмокремнекислородном каркасе структурной фазы типа карбонатного спурита.

2. Композиционный сорбент на основе силикатов кальция и магния и гидроалюмосиликатов из ряда глин и гидрослюд, полученный способом, охарактеризованным в п. 1, и содержащий следующие компоненты (в пересчете на оксиды), мас.%:

Диоксид кремния 28÷31
Оксид кальция 40÷53
Оксид алюминия 7÷9
Оксид магния 6÷8
Оксид калия 0,5÷1,0
Оксид натрия 0,5÷1,0
Оксид железа 1,0÷3,0
Диоксид углерода 1,0÷4,0



 

Похожие патенты:

Изобретение относится к способам получения адсорбента на основе цеолитсодержащей породы. Цеолитсодержащую породу размалывают и перемешивают с выгорающей добавкой, связующим и с водным раствором пластификатора и формируют гранулы.

Изобретение относится к области биотехнологии. Предложен биопрепарат для биоремедиации нефтезагрязненных почв для климатических условий Крайнего Севера.

Изобретение может быть использовано для детоксикации водоемов и очистки сточных вод, загрязненных солями мышьяка. Для осуществления заявленного способа детоксикацию сточных вод проводят с использованием сорбирующих материалов, состоящих из термически и химически модифицированного цеолита.

Изобретение относится к области получения синтетических алюмосиликатных адсорбентов. Предложенный способ осуществляют взаимодействием в водном растворе силиката натрия и серной кислоты, содержащей 2,5-8,4 г/л оксида алюминия.

Изобретение относится к сорбционной очистке сточных и питьевых вод. Очистку воды, имеющей концентрацию катионов свинца до 200 мг/л, проводят путем сорбции 95%-ным концентратом глауконита, который предварительно подвергнут кислотной обработке.
Изобретение относится к области производства строительных материалов и может быть использовано в качестве функциональной эффективной добавки к бетонам, растворам, ячеистым строительным материалам, в том числе газобетонам, пенобетонам, газогипсам, пеногипсам.

Изобретение относится к неорганическим мелкодисперсным материалам, а именно полым остеклованным микросферам на основе перлита, и может быть использовано при изготовлении микросфер из других кислых гидроалюмосиликатов.

Изобретение относится к синтетическим сорбентам и может быть использовано в ядерной энергетике и химико-металлургической промышленности при очистке жидких радиоактивных отходов и сточных вод от радионуклидов, в частности ионов цезия, а также может использоваться для детоксикации организмов животных и человека при радиохимическом заражении.

Изобретение относится к получению сорбентов, используемых для детоксикации организмов животных и человека при радиохимическом заражении цезием. Смешивают мелкодисперсный кремнезем с водным раствором гидрооксида калия и смесь подвергают гидротермальной обработке при температуре не менее 120°C в течение 2-3 часов.

Группа изобретений относится к сорбентам, используемым при очистке водных сред от техногенных загрязнителей. Состав для приготовления гранулированного наноструктурированного сорбента включает, мас.%: глауконит - 20-50, интеркалированный графит, представляющий собой бисульфат графита, - 1-5, бентонитовую глину - 40-70, модификатор, выбранный из NaHCO3, - 10, или KMnO4 - 5, или NaCl - 8, и воду.

Изобретение относится к области очистки окружающей среды, в частности к изготовлению сорбента для сбора нефти и нефтепродуктов. Способ включает пропитку холста из базальтовых волокон гидрофобизирующей жидкостью и последующую сушку. В качестве базальтовых волокон используют волокна с диаметром 0,2-2 мкм и плотностью не более 20-25 кг/м3. Перед пропиткой холст предварительно распушают сжатым воздухом до плотности 12-15 кг/м3. Пропитку производят путем введения сжатым воздухом в предварительно распушенные базальтовые волокна холста гидрофобизирующей жидкости в виде аэрозольных частиц. Последующую сушку пропитанного холста проводят сжатым воздухом, преимущественно при температуре 65-75°C. Объем гидрофобизирующей жидкости выбирают из расчёта достижения требуемой величины плотности готового материала. Технический результат заключается в улучшении сорбирующих свойств материала. 2 н. и 5 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к области охраны окружающей среды, а именно к сорбционным материалам для удаления соединений тяжелых металлов и мышьяка из вод. Способ получения сорбента включает пропитку пористого носителя водным раствором соединений железа при перемешивании, добавление раствора щелочи или концентрированного аммиака, промывку и сушку сорбента при 120-150°С. В качестве носителя берут измельченный до размера 0,25-8 мм вермикулитобетон, который в своем составе содержит (мас.%): вермикулит от 6 до 20, цемент от 24 до 40, песок от 50 до 70. Полученный сорбент содержит оксогидроксид железа в количестве 47-69% на носителе. Изобретение позволяет получить сорбент с высокими характеристиками адсорбционной способности и механической прочности. 2 н. и 1 з.п. ф-лы, 2 табл.

Изобретение относится к способу бескислородного сочетания метана в олефины, в котором: метан в качестве исходного газа можно напрямую конвертировать в олефины и совместно получать ароматические соединения и водород; указанные катализаторы представляют собой катализаторы, в которых элементы-металлы легированы в каркас аморфных материалов в расплавленном состоянии, изготовленных из Si, связанного с одним или более атомами из С, N и О; количество легирующих металлов в легированном каркасе катализаторов составляет более чем 0,001 массового %, но менее чем 10 массовых % от общей массы катализатора. Также изобретение относится к катализатору. Использование предлагаемого изобретения при конверсии метана 8-50% позволяет получать селективность по олефинам 30~90% и селективность по ароматическим соединениям 10~70%. 2 н. и 20 з.п. ф-лы, 3 ил., 36 пр.

Изобретение относится к катализатору гидрокрекинга углеводородного сырья, включающему никель, молибден, алюминий и кремний. При этом никель и молибден содержатся в форме биметаллических комплексных соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где L - частично депротонированная форма лимонной кислоты C6Н5О7; x=0 или 2; y=0 или 1; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата. Компоненты в катализаторе содержатся в следующих концентрациях, мас.%: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 13,1-23,3, аморфный алюмосиликат - 40,0-61,3; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.%: МoО3 - 7,0-13,0, NiO - 1,8-3,4, аморфный алюмосиликат - 43,1-66,9; γ-Al2O3 - остальное. При этом массовое соотношение Si/Al в аморфном алюмосиликате составляет от 0,6 до 0,85, причем рентгенограммы аморфных алюмосиликатов содержат широкий пик в области 16,5-33,5° с максимумом 23,1-23,4°. Технический результат - высокая активность в гидрокрекинге углеводородного сырья и высокая селективность по отношению к дизельной фракции. 1 з.п. ф-лы, 3 табл., 6 пр.

Изобретение относится к способу приготовления катализатора гидрокрекинга углеводородного сырья, включающего в свой состав никель, молибден, алюминий и кремний. Способ включает приготовление гранулированного носителя, содержащего оксид алюминия и 50-80 мас. % аморфного алюмосиликата с массовым отношением Si/Al от 0,6 до 0,85, нанесение на полученный гранулированный носитель биметаллических комплексных соединений [Ni(Н2O)x(L)y]2[Мо4O11(С6Н5O7)2], где L - частично депротонированная форма лимонной кислоты С6Н5О7; x=0 или 2; y=0 или 1, сушку катализатора при температуре 100-250°С. Компоненты в получаемом катализаторе содержатся в следующих концентрациях, мас. %: [Ni(Н2O)x(L)y]2[Мо4O11(С6Н5O7)2] - 13,1-23,3; аморфный алюмосиликат - 40,0-61,3; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 7,0-13,0; NiO - 1,8-3,4; аморфный алюмосиликат - 43,1-66,9; γ-Al2O3 - остальное. Технический результат - использование в гидрокрекинге катализатора, приготовленного заявляемым способом, обеспечивает получение дизельной фракции с высоким выходом. 3 з.п. ф-лы, 1 табл., 6 пр.

Изобретение относится к области ремедиации почв и может быть использовано при очистке земель различного назначения, загрязненных мышьяксодержащими соединениями. Состав для ремедиации почв, загрязненных мышьяксодержащими соединениями, содержит опоку, обработанную хлоридом железа(III), и окислитель пероксид кальция при следующем соотношении компонентов, мас.%: опока - 99,5, хлорид железа(III) - 0,2, пероксид кальция - 0,3. Состав снижает содержание водорастворимых форм мышьяка в почве от 90 до 96,8% и обеспечивает иммобилизацию соединений мышьяка(V) на алюмосиликате опоки. 2 ил., 1 табл.

Изобретение относится к области получения сорбционных материалов. Предлагается способ модифицирования природных сорбентов. Способ включает введение в суспензию, содержащую мелкодисперсный цеолит или диатомит в 0,5% растворе сульфата алюминия, многостенных углеродных нанотрубок в количестве 0,1-1,0 мас.%. Проводят ультразвуковую обработку суспензии, добавляют в суспензию раствор гидроксида аммония до pH 7-8, отделяют жидкость и проводят термообработку полученного сорбента при температуре 120°C. Изобретение обеспечивает получение сорбента, характеризующегося степенью извлечения нефтепродуктов и катионов металлов из воды до 99,4%. 2 табл.

Изобретение относится к очистке сточных вод промышленных предприятий от ионов тяжелых металлов. Очистку сточных вод от ионов тяжелых металлов осуществляют путем сорбции на твердом нерастворимом природном сорбенте. В качестве природного сорбента используют горную породу агальматолит с содержанием минерала пирофиллита не менее 80 об. %, с размером зерен сорбента от 3,0 до 5,0 мм. Изобретение позволяет увеличить скорость фильтрации и уменьшить расхода сорбента. 1 табл.

Изобретение относится к сорбентам, которые могут быть использованы для сбора и удаления жидких и газообразных отходов производства, в частности для сбора и утилизации выделений продуктов жизнедеятельности человека и домашних животных. Сорбент выполнен в виде гранул с влажностью не более 5%. Гранулы характеризуются прочностью не менее 15 Н, сорбционной емкостью не менее 25 мг/г, влагопоглощением не менее 120% и содержат целлюлозосодержащий компонент 60-95 мас.% и вермикулит 5-40 мас.%. В качестве целлюлозосодержащего компонента сорбент содержит отходы лесопильного производства в виде опилок, и/или отходы фанерного производства в виде шлиф-пыли, и/или отходы лесоперерабатывающего производства в виде гидролизного лигнина и/или измельченной древесной зелени хвойных пород деревьев. Технический результат состоит в расширении арсенала экологически чистых и безопасных сорбентов. 2 з.п. ф-лы, 2 ил., 2 табл.

Изобретение может быть использовано на предприятиях машиностроительной, химической, горнодобывающей промышленности и в коммунальном хозяйстве. Способ включает сорбцию адсорбентом, в качестве которого используют экологически чистый, технологичный композитный сорбент, содержащий 80 мас.% 95%-ного концентрата глауконита Бондарского месторождения Тамбовской области и 20 мас.% SiO2. Сорбент предварительно подвергают последовательно щелочной и кислотной обработке и переводят в Na-форму в солевом растворе NaCl. Линейная скорость потока технологических и сточных промышленных вод составляет до 0,5 м/ч, при этом высота слоя сорбента - от 0,01 м. Способ обеспечивает снижение концентрации ионов никеля в очищенной воде менее 0,01 мг/л и гарантирует глубину сорбции не менее 99,3%. 2 ил., 1 табл.
Наверх