Способ обработки последовательности изображении для определения координат объектов на основе комплексирования базовых алгоритмов

Изобретение относится к области цифровой обработки изображений и может быть использовано в охранных системах, системах мониторинга и контроля воздушного движения, оптикоэлектронных системах сопровождения объектов. Техническим результатом является повышение точности измерения координат объектов. Способ обработки последовательности изображений для определения координат объектов на основе комплексирования базовых алгоритмов заключается в принятии и аналого-цифровом преобразовании сигнала изображения каждого кадра, в расчете критериев работоспособности алгоритмов измерения координат: на основе байесовской классификации, на основе корреляционного совмещения изображений со сглаживанием эталона, на основе пространственной и пространственно-временной фильтрации, в переходе от значений критериев работоспособности к характеристике работоспособности, в выборе алгоритма измерения координат согласно правилу принятия решения, в измерении координат выбранным алгоритмом.

 

Изобретение относится к области цифровой обработки изображений и может быть использовано в охранных системах, системах мониторинга и контроля воздушного движения, оптикоэлектронных системах сопровождения объектов и др.

Известен способ [Eric Hueber, Laurent Bigué, and Pierre Ambs. Active Contour Segmentation by Use of a Multichannel Incoherent Optical Correlator // Applied Optics, №42, pp. 4681-4687 (2003)], в котором для повышения точности и надежности измерения координат объектов используется модифицированный алгоритм сопоставления с эталоном. Данный алгоритм базируется на вычислении меры сходства изображения объекта, полученного в предыдущем кадре, с текущим изображением кадра. Область изображения, где выбранная мера сходства достигает максимального значения, принимается за новое местоположение объекта в текущем кадре. В не модифицированном алгоритме изображение объекта описывается приближенно и содержит участки фона (эталон представляет собой прямоугольную область, описанную вокруг объекта), что приводит к накоплению ошибок измерения координат и, как следствие, к срыву слежения. В данном способе для исключения точек фона из эталонного изображения используется метод активного контура.

Недостатками указанного способа являются высокие вычислительные затраты, а также тот факт, что он дает выигрыш только при условии статистического различия точек фона и объекта.

Известен способ обработки [Zhang, Y.J. and Luo, Н.Т. (2000): Optimal selection of segmentation algorithms based on performance evaluation // Optical Engineering 39(6). PP. 1450-1456], заключающийся в том, что для измерения координат используется один из четырех алгоритмов сегментации в зависимости от наблюдаемой фоноцелевой обстановки. Выбор алгоритма измерения координат осуществляется в момент захвата объекта на сопровождение за счет анализа признаков, характеризующих эффективность алгоритма сегментации. Для определения наиболее подходящего алгоритма используется правило классификации, сформированное заранее на основе тестовых изображений.

Недостаток указанного способа заключается в том, что анализ признаков осуществляется только в момент захвата объекта на сопровождение и не учитывается изменение фоноцелевой обстановки с течением времени.

Наиболее близким к заявляемому способу является выбранный в качестве прототипа способ селекции наземных и воздушных объектов (его варианты) и устройство для его осуществления (его варианты) [пат. РФ №2173881, опубликован 20.09.2001], ориентированный на захват и сопровождение малоразмерных объектов или размерных объектов на сложных фонах. Суть данного способа заключается в том, что в режиме захвата объекта обработка изображения осуществляется алгоритмом сегментации на основе байесовской классификации. На основании полученного бинарного изображения определяются координаты объекта, и вычисляется показатель селекции объекта. При показателе меньше порогового значения осуществляется переход в режим автономного сопровождения, при котором одновременно производят байесовскую, структурную и корреляционную классификацию. В процессе байесовской классификации осуществляется построение гистограмм распределения яркостей, и определяются координаты объекта по бинарному изображению. В процессе структурной классификации изображение подвергают дифференциальной обработке, после чего выполняют пороговую сегментацию градиентного изображения, в результате которой получают бинарное изображение. На этом изображении выделяют композицию примитивов и на основании этой композиции определяют координаты объекта. В процессе корреляционной классификации выполняют структурную предварительную обработку изображения, в результате которой формируют текущий структурный образ объекта. Для определения координат объекта осуществляют привязку структурного образа и бинарного образа объекта, полученного в режиме захвата. Полученные в результате байесовской, структурной и корреляционной классификации координаты и размеры объекта комплексируют.

Недостатком прототипа является использование трех методов классификации, зависящих от результатов сегментации изображения способами на основе дифференциальной обработки и байесовской классификации. Отрицательной чертой этих способов сегментации является недостаточно высокая эффективность при наблюдении объектов на неоднородном фоне. При использовании дифференциальной обработки на изображениях с большой неоднородностью не всегда существуют резкие границы между смысловыми областями, что ведет к большому числу ложных выделений или невозможности построения замкнутого контура объекта. Эффективность дифференциальной обработки изображений резко снижается при уменьшении отношения сигнал/шум. При использовании байесовской классификации в том виде, в котором она предлагается в прототипе (для бинаризации применяется только признак яркости), отсутствует возможность выделения объектов, отличающихся от фона по другим признакам, таким как градиент, энтропия и т.д.

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в расширении условий применения оптикоэлектронных систем сопровождения объектов и повышении точности измерения координат наземных, морских и воздушных объектов.

Технический результат достигается тем, что заявляемый способ обработки последовательности изображений позволяет оценить качество базовых алгоритмов измерения координат на основе вычисления значений критериев работоспособности и осуществить комплексирование этих алгоритмов на основе результатов оценивания качества их работы.

Способ обработки последовательности изображении для определения координат объектов на основе комплексирования базовых алгоритмов включает в себя выполнение следующих действий.

1. Производится прием и аналого-цифровое преобразование сигнала изображения каждого кадра наблюдаемой последовательности. Результат аналого-цифрового преобразования изображения каждого кадра имеет вид матрицы чисел l(i, j, n), i = 0, ( I 1 ) ¯ , j = 0, ( J 1 ) ¯ , где I и J - размеры оцифрованного изображения в элементах разрешения (пикселях), n=1, 2, 3, … - номер кадра. Каждый элемент матрицы l(i, j, n) является результатом квантования яркости соответствующей точки наблюдаемой сцены.

2. После получения целеуказания от оператора на каждом кадре рассчитываются критерии работоспособности для каждого базового алгоритма измерения координат:

- для алгоритма измерения координат на основе байесовской классификации, известного из [Методы автоматического обнаружения и сопровождения объектов. Обработка изображений и управление / Алпатов Б.А., Бабаян П.В., Балашов О.Е., Степашкин А.И. - М.: Радиотехника, 2008. - 176 с.], критерий работоспособности определяется выражением:

где H ^ ( P ) , H ^ ( O ) - энтропии изображений в рамке и окне соответственно, p(x, y) - совместная яркостно-градиентная гистограмма, N, М - число разрядов гистограммы по яркости и по градиенту соответственно;

- для алгоритма измерения координат на основе корреляционного совмещения изображений с сглаживанием эталона, известного из [Алпатов Б.А., Селяев А.А., Степашкин А.И. Цифровая обработка изображений в задаче отслеживания движущегося объекта // Изв. вузов. Сер. Приборостроение. - 1985. - №2. - С. 39-43], критерий работоспособности определяется по формуле:

где Fg - оценка степени различия эталонного изображения объекта и фона, Fh - оценка межкадровой изменчивости изображения объекта. Fg определяется как минимальное значение разностной критериальной функции в области, граничащей с объектом на кадре n0. Fh определяется как минимальное значение критериальной функции на кадре n0+1;

- для алгоритма измерения координат на основе пространственно-временной фильтрации, известного из [Алпатов Б.А., Бабаян П.В. Выделение движущихся объектов в условиях геометрических искажений изображения // Цифровая обработка сигналов. - 2004. - №4. - С. 9-14], критерий работоспособности основан на оценке степени отличия объекта от фона:

где g ^ ( i , j , n 0 ) - оценка яркости фонового изображения в точке (i, j), σ ^ ( i , j , n 0 ) - оценка СКО фона, M, N - размеры объекта. Оценки g ^ ( i , j , n 0 ) и σ ^ ( i , j , n 0 ) определяются в процессе работы алгоритма измерения координат;

- для алгоритма измерения координат на основе пространственной фильтрации, известного из [пат. РФ №2419150, опубликован 20.05.2011], критерий работоспособности рассчитывается по формуле:

где dстроба(i, j) - яркость разностного изображения в точке, принадлежащей стробу, σ ^ - оценка СКО остаточного фона. Для вычисления яркости разностного изображения и оценки СКО остаточного фона должны использоваться процедуры, аналогичные тем, что применяются в рассматриваемом алгоритме.

3. Переход от значений критериев работоспособности к характеристике работоспособности осуществляется путем сравнения критериев работоспособности с пороговыми значениями. В случае если значение критерия работоспособности больше порогового значения, то характеристике работоспособности алгоритма измерения координат присваивается единичное значение (работоспособен), в противном случае - нулевое значение (не работоспособен).

4. После перехода от значений критериев работоспособности к значениям характеристики работоспособности принимается решение, какой базовый алгоритм измерения координат применять в текущих условиях наблюдения. В случае, если единичное значение характеристики работоспособности присутствует лишь для одного алгоритма измерения координат, то выбор алгоритма для данного кадра последовательности соответствует единичному значению. В противном случае предлагается производить выбор алгоритма, обладающего самым высоким приоритетом. Перечень алгоритмов в порядке убывания приоритета следующий: алгоритм на основе байесовской классификации, алгоритм на основе пространственно-временной фильтрации, алгоритм на основе пространственной фильтрации, алгоритм на основе корреляционного совмещения изображений.

В случае когда значения всех характеристик работоспособности равны нулю, принимается решение о невозможности измерения координат.

5. Производится измерение координат объекта выбранным базовым алгоритмом.

Таким образом, отличия заявляемого способа от прототипа состоят в следующем:

1) использование 4-х алгоритмов измерения координат, базирующихся на разных методах обработки изображений;

2) использование алгоритма измерения координат на основе байесовской сегментации с построением яркостно-градиентных гистограмм;

3) использование критериев оценки работоспособности алгоритмов измерения координат для выбора алгоритма, обеспечивающего лучшее значение показателя качества.

Способ обработки последовательности изображений для определения координат объектов на основе комплексирования базовых алгоритмов, заключающийся в принятии и аналого-цифровом преобразовании сигнала изображения каждого кадра, в расчете критериев работоспособности алгоритмов измерения координат: на основе байесовской классификации, на основе корреляционного совмещения изображений со сглаживанием эталона, на основе пространственной и пространственно-временной фильтрации, в переходе от значений критериев работоспособности к характеристике работоспособности, в выборе алгоритма измерения координат согласно правилу принятия решения, в измерении координат выбранным алгоритмом.



 

Похожие патенты:

Изобретение относится к медицинской технике, а именно к офтальмологическим системам. Система содержит стыковочный блок, выполненный с возможностью совмещения офтальмологической системы и глаза, систему формирования изображений, контроллер формирования изображений, содержащий процессор, контроллер локальной памяти, выполненный с возможностью управлять передачей вычисленных данных сканирования из процессора в буфер данных, и выходной цифроаналоговый преобразователь, связанный с буфером данных.

Изобретение относится к технологиям панорамного видеонаблюдения. Техническим результатом является обеспечение возможности одновременного независимого панорамного видеонаблюдения различных участков панорамы с различным увеличением несколькими операторами.

Изобретение относится к бортовому устройству распознавания изображений. В модуле (50) регулирования чувствительности обнаружения, который регулирует чувствительность обнаружения таким образом, что она увеличивается согласно уровню (U) белой замутненности, чувствительность обнаружения детектора (70) транспортных средств (модуля выполнения приложения для распознавания изображений), который обнаруживает другое транспортное средство (6) (движущийся объект), присутствующий в окружающей области транспортного средства (5), с предварительно определенной чувствительностью обнаружения из изображения, полученного посредством модуля (10) формирования изображений, расположенного в транспортном средстве (5) с возможностью наблюдать окружающую область транспортного средства (5) через линзу (12) и преобразовывать световой сигнал наблюдаемой окружающей области транспортного средства (5) в сигнал изображения, корректируется на основе уровня M прилипания прилипшего вещества, такого как грязь или капля воды, к линзе (12), который вычисляется посредством модуля (26) вычисления уровня прилипания.

Группа изобретений относится к вариантам выполнения устройства обнаружения трехмерных объектов. Устройство содержит: модуль 41 задания областей обнаружения для задания области обнаружения позади с правой стороны и с левой стороны от транспортного средства; модули 33, 37 обнаружения трехмерных объектов для обнаружения трехмерного объекта, который присутствует в правосторонней области A1 обнаружения или левосторонней области A2 обнаружения позади транспортного средства, на основе информации изображений из камеры 10 сзади транспортного средства; модуль 34 оценки трехмерных объектов для определения того, представляет или нет обнаруженный трехмерный объект собой другое транспортное средство VX, которое присутствует в правосторонней области A1 обнаружения или левосторонней области A2 обнаружения.

Изобретение относится к области вычислительной техники, а именно к анализу и обработке изображений. Технический результат - обеспечение реконструкции значений пикселей динамических двумерных сигналов в условиях неполной априорной информации.

Изобретение относится к области навигации и топопривязки, в частности к способам представления и использованиям цифровой топогеодезической информации, и предназначено для определения навигационно-топогеодезических параметров для наземных подвижных объектов.

Изобретение относится к телевидению и может быть использовано для пространственно-временной обработки изображений. Техническим результатом изобретения является обеспечение адаптации к уровню освещенности без каких-либо ограничений на значения отсчетов импульсной характеристики при выделении неподвижных и движущихся слабоконтрастных объектов на нестационарном фоне при пространственно-временной обработке изображений.

Изобретение относится к обработке медицинских изображений. Техническим результатом является сокращение времени реконструкции изображения МРТ из недосемплированных данных.

Изобретение относится к области обработки данных. Технический результат - эффективная обработка изображения без записи исходного изображения в память.

Изобретение относится к средствам обработки и многослойной 2D/3D-визуализации атрибутивных данных с геопространственной привязкой. Техническим результатом является повышение достоверности обработки и многослойной 2D/3D-визуализации атрибутивных данных с геопространственной привязкой в режиме реального времени.

Изобретение относится к средствам анализа содержимого изображений. Техническим результатом является повышение эффективности оценки содержимого изображений.

Изобретение относится к средствам определения гряд и поясов торосов на ледяном покрове акваторий. Техническим результатом является обеспечение мониторинга состояния ледяного покрова акваторий за счет определения толщины ледяного покрова, осредненной на локальном элементе разрешения.

Изобретение относится к области получения фото- и видеоизображений, в частности, с помощью мобильных устройств со встроенными фото- и видеокамерами и может быть использовано, например, для улучшения качества результирующего изображения, полученного из нескольких исходных снимков.

Изобретение относится к обнаружению «водяных знаков» в информационных сигналах. .

Изобретение относится к обнаружению водяного знака в информационном сигнале. .

Изобретение относится к системам маркировки изображений водяным знаком и, в частности, к обнаружению водяного знака в информационном сигнале. .

Изобретение относится к области навигационной техники и может быть использовано для создания датчиков перемещения и скорости. .

Изобретение относится к автоматике и вычислительной технике. .

Изобретение относится к области вычислительной техники и может быть использовано для обработки изображений. .

Изобретение относится к обработке сигналов при считывании информации. Технический результат заключается в повышении точности распознавания данных. Блок (41) формирования значения оценки наличия/отсутствия структуры определяет наличие или отсутствие структуры путем сравнения данных (d3) распознавания и данных (d44) коррекции. Работая в соответствии со значением (d41) оценки наличия/отсутствия структуры, полученным от блока (41) формирования значения оценки наличия/отсутствия структуры, блок (42) обновления данных коррекции выдает данные (d42) коррекции, обновленные путем взвешенного сложения данных (d3) распознавания и данных (d44) коррекции, увеличивая вес данных (d44) коррекции, когда имеется структура изображения, и увеличивая вес данных (d3) распознавания, когда структура изображения отсутствует. Блок (43) вычитания данных коррекции вычитает данные (d42) коррекции из данных (d3) распознавания и выдает выходные данные (d4) распознавания. В результате становится возможным уменьшение эффекта изменений уровня сигнала распознавания для сигнала распознавания, формируемого в интервале считывания распознаваемого объекта, и точное считывание структуры. 7 н. и 4 з.п. ф-лы, 22 ил.
Наверх