Способ переработки отходов полиэтиленовой пленки

Изобретение относится к области переработки вторичного сырья и предназначено для переработки отходов полимеров и пластмасс. Согласно способу переработки отходов полиэтиленовой пленки, загружают отходы в агломератор, измельчают отходы, измельченную до тестообразного состояния массу охлаждают, сушат и высушенную массу выгружают. Одновременно с измельчением производят процесс облучения отходов наносекундными электромагнитными импульсами. В качестве электродов для облучения наносекундными электромагнитными импульсами используют пластины-электроды, смонтированные на внутренней поверхности корпуса агломератора, контактирующие с перемещаемыми отходами и изолированные от корпуса. Изобретение обеспечивает повышение производительности процесса переработки отходов. 1 ил., 1 пр.

 

Изобретение относится к области переработки вторичного сырья и предназначено для переработки отходов полимеров и пластмасс. Может быть использовано на предприятиях, перерабатывающих пластмассы и их отходы.

Известен способ обезвоживания и плавления термопластичных полимерных материалов в жидкой инертной тепловой среде путем нагревания выше температуры плавления. При этом плавление полимера осуществляется за счет непосредственного контакта полимера с жидким теплоносителем, а последующее разделение системы полимер тепловая среда происходит вследствие различия их плотностей (Бабенко С.А. Получение концентратов полиолефинов гранулированием в жидкой среде. "Пластмассы", 1992, N 6, с. 32-34).

Недостатками известного способа являются ограниченное количество используемых инертных тепловых сред, что связано с требованием различия в плотностях полимера и тепловой среды, недостаточная чистота получаемого расплава из-за присутствия в нем механически захваченных частиц теплоносителя, не отделяющихся от полимера вследствие высокой вязкости полимерного расплава.

Ближайшим аналогом является способ переработки отходов полиэтиленовой пленки, при котором отходы полиэтиленовой пленки загружают в агломератор, измельчают отходы, измельченную до тестообразного состояния массу охлаждают, сушат и высушенную массу выгружают (Патент на изобретение 2120378, В29В C08J, опубл. 20.10.1998).

Однако известный способ не позволяет обеспечивать высокую производительность и получать гранулы вторичных полимеров со свойствами максимально приближенными к свойствам первичных материалов, так как во время агломерации происходит деструктирование (пережигание) материала.

Технической задачей изобретения является повышение производительности процесса переработки отходов полиэтиленовой пленки и качества вторичных полимеров в виде гранул для дальнейшего их использования при производстве изделий из полиэтилена.

Указанная задача решается тем, что в способе, включающем загрузку отходов в агломератор, измельчение отходов, охлаждение измельченной до тестообразного состояния массы, сушку и выгрузку высушенной массы, согласно изобретению одновременно с измельчением производят процесс облучения отходов наносекундными электромагнитными импульсами, при этом в качестве электродов для облучения наносекундными электромагнитными импульсами используют пластины-электроды, смонтированные на внутренней поверхности корпуса агломератора, контактирующие с перемещаемыми отходами и изолированные от корпуса. Кроме того, генератор облучения заготовки вырабатывает наносекундные электромагнитные импульсы длительностью 1 нc, амплитудой более 12 кВ, мощность в одном импульсе от 2 до 3 МВт, частота повторения импульсов 1000 Гц.

При этом одновременное измельчение отходов и их обработка наносекундными электромагнитными импульсами способствует возбуждению полимерных цепей, что вызывает уменьшение энергии её связи. Данный эффект приводит к снижению механической стабильности нагруженной полимерной сетки и таким образом способствует разрыву цепи, возникновению и распространению микротрещин в структуре материала отходов, увеличению дефектных мест, т.е. разрыхлению и охрупчиванию материала и, следовательно, к снижению его механической прочности.

Предлагаемые режимы обработки наносекундными электромагнитными импульсами являются оптимальными для обработки отходов полиэтиленовой пленки.

На чертеже приведена схема реализации способа обработки отходов полимерной пленки.

Для реализации способа применяется агломератор 1 с загрузочным люком 2. Внутри корпуса 3 агломератора 1 размещены электродвигатели 4 с роторными ножами 5. На внутренней стенке корпуса 3 укреплены пластины-электроды 6 и изолирующие элементы 7. Пластины-электроды 6 соединены известным образом с генератором 8 наносекундных электромагнитных импульсов ГНИ-01-1-6, изготовленным Южно-Уральским государственным университетом [Белкин B.C. Наносекундные электромагнитные импульсы и их применение/ B.C. Белкин, В.А. Бухарин, В.К. Дубровин и др./Под ред. В.В. Крымского - Челябинск, 2001.-110 с], имеющим следующие параметры:

- амплитуда импульсов более 12 кВ;

- длительность импульсов 1 нc;

- мощность одного импульса от 2 до 3 МВт;

- максимальная допустимая частота следования генерирующих импульсов 1000 Гц.

Агломератор 1 с помощью гибких трубопроводов 9 соединен с воздуходувкой 10 и циклоном 11. На внешней стенке корпуса 3 закреплены пневмоцилиндр 12 и заслонка 13.

Пример реализации способа.

В корпус 3 агломератора 1 через загрузочный люк 2 при включенных электродвигателях 4 загружаются отходы полиэтиленовой пленки. Измельчение отходов на мелкие частицы осуществляется роторными ножами 5 и вся измельченная масса отходов пленки в результате трения о стенки корпуса 3 нагревается, происходит переход механической энергии в тепловую. Одновременно производится обработка отходов наносекундными электромагнитными импульсами, которые вырабатываются генератором 8 и воздействуют на отходы через пластины-электроды 6. Обработка измельчаемых отходов наносекундными электромагнитными импульсами способствует возбуждению полимерных цепей, что вызывает уменьшение

энергии её связи. Данный эффект приводит к уменьшению механической стабильности нагруженной полимерной сетки и таким образом способствует разрыву цепи, возникновению и распространению микротрещин в структуре материала отходов, увеличению дефектных мест, т.е. разрыхлению и охрупчиванию материала и, следовательно, к снижению его механической прочности. Это позволяет снизить тепловую нагрузку операции измельчения отходов и обеспечить температуру нагрева материала ниже температуры плавления и таким образом гарантированно избежать явления термодеструкции материала. Данный эффект зафиксирован и подтвержден результатами экспериментальных исследований.

Измельченные отходы расплавляют до образования тестообразной массы. Затем в агломератор 1 подают воду и одновременно включают воздуходувку 10 для отсоса паров воды. Вода охлаждает тестообразную массу, при этом образовавшиеся пары воды отсасываются из агломератора 1 через гибкие трубопроводы 9 воздуходувкой 10 вместе с парами воды, которые конденсируют в циклоне 11, а тестообразная масса благодаря гидродеструкции разделяется на мелкие гранулы. После отсоса паров воды из агломератора воздуходувка отключается и включается электроклапан пневматического цилиндра 12, открывается заслонка 13 и происходит выгрузка продукта из агломератора. После выгрузки включается автоматически электроклапан пневматического цилиндра 12 и заслонка 13 закрывается.

В отличие от аналогов предлагаемый способ обеспечивает повышение производительности процесса переработки отходов полиэтиленовой пленки и качества вторичных полимеров в виде гранул для дальнейшего их использования при производстве изделий из полиэтилена за счет обработки измельчаемых отходов наносекундными электромагнитными импульсами.

Способ переработки отходов полиэтиленовой пленки, при котором загружают отходы в агломератор, измельчают отходы, измельченную до тестообразного состояния массу охлаждают, сушат и высушенную массу выгружают, отличающийся тем, что одновременно с измельчением производят процесс облучения отходов наносекундными электромагнитными импульсами длительностью 1 нс, амплитудой более 12 кВ, мощность в одном импульсе от 2 до 3 МВт, частота повторения импульсов 1000 Гц, при этом в качестве электродов для облучения наносекундными электромагнитными импульсами используют пластины-электроды, смонтированные на внутренней поверхности корпуса агломератора, контактирующие с перемещаемыми отходами и изолированные от корпуса.



 

Похожие патенты:

Изобретение относится к технологической оснастке для прессования и затвердевания пропитанных проводниковых стержней, используемых в крупногабаритных электрических машинах, например гидрогенераторах.

Изобретение относится к способу изготовления упрочненных прутковых изделий из аморфно-кристаллических полимеров. Изобретение может быть использовано в различных областях техники, в качестве конструкционного материала.
Изобретение относится к технологии производства композиционных полимерных материалов, компенсирующих движение в или вблизи одной или более соответствующих поверхностей без ущерба для их структурной целостности, после закрепления на них полимерной ткани.

Изобретение относится к технологии формования изделий из твердых сыпучих материалов и термопластичной связки. Способ включает подачу массы активатора порциями, величина которой достаточна для формования отдельного активатора.

Изобретение относится к технике прессования. .

Изобретение относится к технологии изготовления резинотехнических изделий в пресс-форме и может быть применено при изготовлении уплотнительных шнуров. .

Изобретение относится к технике прессования. .

Изобретение относится к способу формовки конструкционного элемента из композиционного материала, который используют, главным образом, для конструкционных элементов канального или уголкового типа, а также к конструкционному элементу из композиционного материала.

Изобретение относится к области механики движения и предназначено для изготовления амортизаторов упругого крепления оборудования и приборов на кораблях и в других отраслях механики. Техническим результатом изобретения является упрощение конструкции устройства для повышения технологичности изготовления двухпластинчатых амортизаторов. Верхняя полуформа выполнена в виде шарнирных секторов, закрепленных на нижней полуформе, периодически взаимодействующих наружной конусной поверхностью с внутренней конусной поверхностью кольца, которое посредством штоков, аксиально подвижно смонтированных в нижней паровой камере, закреплено на воздействующем элементе, смонтированном на штоке силового гидроцилиндра посредством крепежного элемента, торец которого периодически взаимодействует с торцом толкателя, установленном в нижней полуформе с возможностью аксиального перемещения. В верхних торцах шарнирных секторов и в верхнем торце нижней полуформы выполнены полости под металлические пластины амортизатора, стенки которых выполнены под углом 5-15°. 1 з.п. ф-лы, 5 ил.

Изобретение относится к медицине. Способ формирования офтальмологического устройства с энергообеспечением содержит этапы: предварительное дозирование в первой части формы для литья предварительное количество реакционной смеси мономера; функционализация вставки со средой и электронного элемента таким образом, чтобы усилитель адгезии смог связаться с поверхностью вставки со средой и поверхностью электронного элемента; нанесение усилителя адгезии, включающего реактив метоксисилана, на функционализированную вставку со средой и функционализированный электронный элемент; нанесение покрытия на вставку со средой и электронный элемент, содержащую усилитель адгезии; размещение вставки со средой и электронного элемента на предварительную дозу реакционной смеси мономера, предварительное отверждение предварительной дозы реакционной смеси мономера, чтобы она неподвижно удерживала вставку со средой и электронный элемент в непосредственной близости от первой части формы для литья; последующее дозирование в первую часть формы для литья последующей дозы реакционной смеси мономера; размещение второй части формы для литья в непосредственной близости к первой части формы для литья таким образом, чтобы при таком размещении образовывалась сборка формы для литья офтальмологического устройства, имеющая линзообразующую полость; отверждение по последующей дозы реакционной смеси мономера с образованием офтальмологической линзы. При этом вставка со средой содержит элементы энергоснабжения, выполненные с возможностью обеспечения электрической связи между вставкой со средой и электронным элементом. Применение данного изобретения позволит расширить арсенал способов формирования офтальмологических устройств с энергообеспечением. 7 з.п. ф-лы, 6 ил., 1 табл.
Изобретение относится к переработке композитных материалов и может быть использовано для производства окрашенных мишеней-тарелочек из термопластичных материалов. Техническим результатом является улучшение технологических и качественных характеристик мишеней-тарелочек, изготовленных из экологически безопасного композита. Технический результат достигается способом производства мишеней-тарелочек, включающим в себя расплавление связующего, смешивание связующего с наполнителем с получением композиции при нагреве, дозировку композиции и формование мишени. При этом в качестве связующего используют нефтеполимерные смолы с температурой размягчения 95-100°С и плотностью 1,06±0,02 г/см3 в количестве 20-23% от общей массы. Получение композиции осуществляют при температуре 210-220°С. При этом контролируемым параметром технологии является плотность композиции, величина которой составляет 2,00-2,05 г/см3. Формование и охлаждение мишени до 50-55°С осуществляют в течение 5-15 с, а затем производят окрашивание мишени. 2 н. и 3 з.п. ф-лы, 2 пр.

Изобретение относится к технике прессования, в частности к устройствам двухстороннего прессования порошков, но преимущественно пористых материалов с малой насыпной плотностью, типа терморасширенного графита, для получения прутков, стержней различного диаметра и композиции, содержащей металлическую втулку с уплотненным в ней терморасширенным графитом для получения электрода. Устройство для прессования порошков включает пресс-форму мундштучного формования прутков, матрицу цилиндрической формы, закрепленную с обоймой, и пуансон. Дополнительно оно снабжено второй аналогичной пресс-формой, при этом пресс-формы расположены соосно и соединены металлической втулкой и направляющими стержнями. В качестве металлической втулки использована электропроводная трубка. Обоймы выполнены разъемными и дополнительно имеют полости цилиндрической формы для размещения в них матриц, сопряженные с большим основанием конусной части отверстий обойм. Пуансоны снабжены съемными ограничителями перемещения в обоймах в направлении от торцов к центральной части под углом, а втулка, как элемент устройства, выполнена с гладкой внутренней поверхностью. Технический результат, достигаемый при использовании изобретения, заключается в возможности получения монолитного электропроводящего изделия в виде прутка из терморасширенного графита (ТРГ) или электропроводящей композиции, содержащей ТРГ в металлической оболочке с равномерным распределением свойств, и повышения адгезионной связи между компонентами композиции; а также расширения технологических возможностей устройства. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области создания полимерных связующих на основе эпоксивинилэфирного олигомера с наполнителем в виде коротких волокон для полимерных композиционных материалов (ПКМ), получаемых из листового полуфабриката (SMC-препрега) методом прямого прессования (sheet molding compound - SMC-технологии), которые могут быть использованы для изготовления предметов интерьера и объектов инфраструктуры. Эпоксивинилэфирное связующее включает, масс.%: ненасыщенный олигомер эпоксивинилэфирного типа 23,0÷37,0, раствор отвердителя 2,0÷6,5, раствор ингибитора 0,005÷0,100, раствор термопласта 0,2÷5,5, смесь поверхностных активных веществ 0,200÷2,995, гидроксид алюминия 23,0÷43,5, оксид магния 1,0÷3,5, полиизоцианат 0,5÷3,0, неорганический минеральный наполнитель 15,0÷30,0. Дополнительно связующее может содержать стеарат цинка в количестве 0,5-2,5%. SMC-препрег включает, масс. %: эпоксивинилэфирное связующее 70,0-85,0, рубленый волокнистый наполнитель 15,0-30,0. Изобретение позволяет создавать экономически эффективные изделия из ПКМ с низкими показателями степени усадки и повышенной влагоустойчивостью при длительной эксплуатации в открытых пространствах в условиях окружающей среды. 3 н. и 3 з.п. ф-лы, 6 табл., 17 пр.

Изобретение относится к производству строительных изделий из сыпучих материалов и полимерных отходов и может быть использовано для получения химически стойких покрытий полов, плитки и других изделий. Линия по производству изделий из композитного материала снабжена пространственной вертикально ориентированной рамой, на которой закреплены секция для подготовки формовочной смеси и вертикальная секция разогрева. Корпус секции подготовки смеси выполнен с разнотемпературными зонами. В корпусе установлен шнек для перемешивания и подготовки смеси. Вертикальная секция разогрева выполнена в виде полого корпуса с расположенным в нем обогреваемым полым валом, в верхней части которого имеются шнековые лопасти и разрозненные лопатки. Полый вал снабжен приводом с возможностью реверсивного хода вала. Секция подготовки формовочной смеси закреплена на раме под углом до 50° и соединена с секцией разогрева посредством общей рамы и приемопередаточных устройств. Технический результат, достигаемый при использовании линии по изобретению, заключается в улучшении плотности формуемой массы и, соответственно, прочностных характеристик конечного продукта, а также обеспечивается более интенсивный прогрев всей смеси за счет нагрева не только корпуса, но и внутреннего полого вала, разогреваемого индукционными токами. 4 з.п. ф-лы, 3 ил.

Изобретение относится к производству строительных изделий из сыпучих материалов и полимерных отходов и может быть использовано для получения химически стойких покрытий полов, плитки и других изделий. Линия по производству изделий из композитного материала снабжена пространственной вертикально ориентированной рамой, на которой закреплены секция для подготовки формовочной смеси и вертикальная секция разогрева. Корпус секции подготовки смеси выполнен с разнотемпературными зонами. В корпусе установлен шнек для перемешивания и подготовки смеси. Вертикальная секция разогрева выполнена в виде полого корпуса с расположенным в нем обогреваемым полым валом, в верхней части которого имеются шнековые лопасти и разрозненные лопатки. Полый вал снабжен приводом с возможностью реверсивного хода вала. Секция подготовки формовочной смеси закреплена на раме под углом до 50° и соединена с секцией разогрева посредством общей рамы и приемопередаточных устройств. Технический результат, достигаемый при использовании линии по изобретению, заключается в улучшении плотности формуемой массы и, соответственно, прочностных характеристик конечного продукта, а также обеспечивается более интенсивный прогрев всей смеси за счет нагрева не только корпуса, но и внутреннего полого вала, разогреваемого индукционными токами. 4 з.п. ф-лы, 3 ил.

Изобретение относится к способам изготовления пустотелых компонентов турбомашины. Способ включает позиционирование листового материала тканого волокна на основании, которое снабжено продольной оформляющей полостью. Далее позиционируют оправку в этой полости так, чтобы зажать указанный листовой материал между основанием и оправкой. Затем фиксируют положение заднего конца оправки. Потом помещают передний блок с опорой на основание так, чтобы он накрывал передний конец оправки. Формируют два закрылка листа вокруг боковых сторон оправки. Позиционируют два боковых блока с опорой на основание с обеих сторон оправки. Фиксируют положение указанных боковых блоков. Сушат сборку так, чтобы добиться отверждения формы листового материала и сформировать таким образом заготовку, которая содержит плоское основание, от которого перпендикулярно простираются два закрылка. Затем подгоняют закрылки по размерам оправки, обрезая излишний материал. Изобретение обеспечивает точное позиционирование и соблюдение точных размеров. 2 н. и 3 з.п. ф-лы, 14 ил.
Наверх