Жаропрочный сплав на основе никеля для литья сопловых лопаток с равноосной структурой газотурбинных установок

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионно-стойким сплавам на основе никеля, и может быть использовано для изготовления литьем сопловых лопаток газотурбинных установок, работающих в агрессивных средах при температурах 700-900°С. Жаропрочный сплав на основе никеля для литья сопловых лопаток с равноосной структурой газотурбинных установок содержит, мас.%: углерод 0,07-0,10; хром 21,0-21,7; кобальт 10,3-10,8; вольфрам 3,6-4,0; титан 3,6-3,9; алюминий 2,5-2,8; ниобий 0,15-0,3; бор 0,010-0,020; цирконий ≤ 0,03; иттрий ≤ 0,03; молибден 0,7-1,0; марганец ≤ 0,03 кремний ≤ 0,3; лантан ≤ 0,02; железо ≤ 0,5; медь ≤ 0,05; сера ≤ 0,005; фосфор ≤ 0,008; азот ≤ 15 ppm; кислород ≤ 20 ppm и никель - остальное. Суммарное содержание алюминия и титана составляет 6,1-6,7 мас.%, а отношение содержания титана к содержанию алюминия 1,3-1,4. Сплав характеризуется повышенной длительной прочностью при рабочих температурах 700-900°С в сочетании с высоким сопротивлением окислению и коррозионным воздействиям, а также повышенной структурной стабильностью на ресурс и улучшенными технологическими характеристиками. 2 табл.

 

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионно-стойким сплавам на основе никеля с хромом и кобальтом, и может быть использовано для изготовления литьем сопловых (направляющих) лопаток газотурбинных установок, работающих в агрессивных средах при температурах 700-900°С.

Высокие прочностные характеристики сплавов для литья сопловых лопаток достигаются за счет значительного количества (20-45 об.%) упрочняющей γ′-фазы (Ni3Al), легированной ниобием, титаном и т.д., а также упрочнением твердого раствора (γ-фазы) кобальтом, хромом, молибденом, вольфрамом.

Известен жаропрочный сплав на основе никеля для литья лопаток газотурбинных установок, содержащий углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, цирконий, бор, гафний, кремний, церий, лантан, иттрий, диспрозий и никель при следующем соотношении компонентов, мас.%: углерод 0,01-0,10; хром 17-21; кобальт 2-12; молибден до 1,0; вольфрам 1-4; алюминий 4,0-4,7; тантал 3-7; цирконий 0,01-0,15; бор 0,002-0,02; гафний 0,05-0,1; кремний ≤ 0,1; церий 0,01-0,2; лантан 0,01-0,2; иттрий 0,01-0,2; диспрозий - 0,02-0,2; никель - остальное.

(RU 2441088; С22С 19/05, опубликовано 27.01.2012).

Однако данный известный сплав при достаточно высокой жаропрочности имеет пониженную коррозионную стойкость (при том, что содержит остродефицитный тантал до 7 мас.%) и некоторое снижение структурной стабильности на ресурс в процессе наработки.

Наиболее близким по технической сущности является жаропрочный сплав на основе никеля MGA2400 для изготовления литьем элементов газовых турбин и сопловых лопаток с равноосной структурой.

Известный сплав включает углерод, хром, кобальт, вольфрам, титан, алюминий, бор, тантал, цирконий, ниобий, церий, иттрий и никель при следующем соотношении компонентов, мас. %: углерод 0,08-0,12; хром 18,5-19,5; кобальт 18,5-19,5; вольфрам 5,8-6,2; титан 3,6-3,8; алюминий 1,8-2,2; бор 0,004-0,012; тантал 1,3-1,5; цирконий 0,08-0,12; ниобий 0,9-1,1; церий и иттрий в сумме до 0,02; никель - остальное.

(I. Okada и др. Development of Ni Base Superalloy of Industrial Gas Turbine, Сб. «Superalloys 2004» под ред. K.A. Green, 2004, стр. 707-712).

Данный известный сплав имеет высокую жаропрочность, умеренную коррозионную стойкость, но отличается пониженной структурной стабильностью на ресурс - прогнозируется выпадение до 5-6% σ-фазы и фазы Ni3Ti, которые существенно понижают пластичность.

Таким образом, известные сплавы при рабочих температурах сопловых лопаток 700-900°С и выше, а также воздействиях агрессивной среды не обладают оптимальным сочетанием служебных характеристик (жаропрочность, сопротивление коррозии, структурная стабильность на ресурс) с высокими технологическими характеристиками.

Целью изобретения и его техническим результатом является создание жаропрочного сплава на основе никеля для литья сопловых лопаток с равноосной структурой газотурбинных установок, обладающего повышенной длительной прочностью при рабочих температурах 700-900°С в сочетании с высоким сопротивлением окислению и коррозионным воздействиям, а также повышенной структурной стабильностью на ресурс и улучшенными технологическими характеристиками.

Технический результат достигается тем, что жаропрочный сплав на основе никеля для литья сопловых лопаток с равноосной структурой газотурбинных установок включает углерод, хром, кобальт, вольфрам, титан, алюминий, бор, ниобий, цирконий, иттрий, молибден, марганец, кремний, лантан, железо, медь, серу, фосфор, азот, кислород и никель, при следующем соотношении компонентов, мас.%: углерод 0,07-0,10; хром 21,0-21,7; кобальт 10,3-10,8; вольфрам 3,6-4,0; титан 3,6-3,9; алюминий 2,5-2,8; ниобий 0,15-0,3; бор 0,010-0,020; цирконий ≤ 0,03; иттрий ≤ 0,03; молибден 0,7-1,0; марганец ≤ 0,03 кремний ≤ 0,3; лантан ≤ 0,02; железо ≤ 0,5; медь ≤ 0,05; сера ≤ 0,005; фосфор ≤ 0,008; азот ≤ 15 ppm; кислород ≤ 20 ppm и никель - остальное, при этом суммарное содержание алюминия и титана составляет 6,1-6,7 мас.%, а отношение содержания титана к содержанию алюминия 1,3-1,4.

Количество упрочняющей γ′-фазы (Ni3Al) в сплаве по изобретению составляет 34-36 ат.%, что обеспечивает высокий и стабильный уровень служебных характеристик, например жаропрочность: 219 МПа за 103 часов при 850°С.

Введение молибдена до 1,0 мас.% при оптимальном содержании вольфрама и молибдена и суммарном содержании алюминия и титана 6,1-6,7 мас.% обеспечивает повышенные характеристики жаропрочности. Введение марганца, кремния и лантана при отношении содержания титана к содержанию алюминия 1,3-1,4 приводят к повышенному сопротивлению коррозии.

Ограничение содержания железа, меди, серы, азота, кислорода и фосфора в сочетании с формированием карбидов на основе никеля и титана с оптимальной морфологией обеспечивает устранение примесных соединений с границ зерен и повышенные пластические характеристики и ударную вязкость, а также способствует получению оптимальной равноосной структуры сплава.

Достижение поставленного технического результата можно проиллюстрировать данными из таблиц 1 и 2.

Служебные характеристики металла сравниваемых сопловых лопаток были оценены с использованием известной методики ФАКОМП и других известных методик расчета свойств по их химическому составу. Известные методики позволяют с высокой степенью достоверности оценить структурную стабильность на ресурс (образования охрупчивающих фаз), склонность к выделению в литом состоянии неравновесных эвтектических фаз, на месте которых при термообработке литых лопаток образуются поры и трещины, характеристики длительной прочности, критические точки металла лопатки и другие физико-механические свойства,

(H. Harada и др., Сб. Superalloys, 1988; p.p. 733-742; H. Harada и др., Сб. Superalloys, 2000; p.p. 729-736; H. Harada, Сб. Alloys Design for Nickel-base Superalloys, 1982, p.p. 721-735)

Из представленных данных, полученных с использованием известных расчетных методик, служебных характеристик жаропрочных сплавов на основе никеля, видно, что сплав по изобретению с равноосной структурой превосходит известные сплавы по комплексу служебных характеристик.

При примерно равных показателях жаропрочности сплав по изобретению с равноосной структурой имеет заметно более высокие (~ 25%) показатели сопротивления окислению и коррозионным воздействиям, а также более высокую стабильность на ресурс (в нем не прогнозируется выпадение охрупчивающих фаз).

Повышенная коррозионная стойкость сплава приведет к повышению термоусталостных характеристик и продлению ресурса.

Достижение поставленного технического результата дает возможность использовать сплав по изобретению для изготовления литьем сопловых лопаток газотурбинных установок с рабочими температурами по металлу 700-900°С, при том что цена шихтовых материалов дешевле на ~ 35% по сравнению с прототипом.

Жаропрочный сплав на основе никеля для литья сопловых лопаток с равноосной структурой газотурбинных установок, включающий углерод, хром, кобальт, вольфрам, титан, алюминий, бор, ниобий, цирконий, иттрий и никель, отличающийся тем, что он дополнительно содержит молибден, марганец, кремний, лантан, железо, медь, серу, фосфор, азот и кислород при следующем соотношении компонентов, мас.%: углерод 0,07-0,10; хром 21,0-21,7; кобальт 10,3-10,8; вольфрам 3,6-4,0; титан 3,6-3,9; алюминий 2,5-2,8; ниобий 0,15-0,3; бор 0,010-0,020; цирконий ≤0,03; иттрий ≤0,03; молибден 0,7-1,0; марганец ≤0,03 кремний ≤0,3; лантан ≤0,02; железо ≤0,5; медь ≤0,05; сера ≤0,005; фосфор ≤0,008; азот ≤15 ppm; кислород ≤20 ppm и никель - остальное, при этом суммарное содержание алюминия и титана составляет 6,1-6,7 мас.%, а отношение содержания титана к содержанию алюминия 1,3-1,4.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно, к никель-хром-железо-алюминиевому сплаву с высокими характеристиками коррозионной стойкости и высокотемпературной ползучести и может быть использован в качестве материала, используемого в печных конструкциях, а также в химической промышленности.

Изобретение относится к области металлургии, а именно к высокопрочным инварным сплавам. Заявлен высокопрочный инварный сплав, содержащий, мас.%: никель от 25,0 до менее 38,0, кобальт 0,5÷20,0, углерод 0,05÷1,2, титан 0,05÷4,0, молибден 0,02÷6,0, ванадий 0,01÷4,0, ниобий 0,02÷5,0, вольфрам 0,02÷5,0, цирконий 0,01÷2,0, железо - остальное.

Изобретение относится к области металлургии, в частности к суперсплавам на основе никеля, которые могут быть использованы в деталях газовой турбины. Суперсплав на основе никеля содержит, вес.%: C ≤0,1; Si ≤0,2; Mn ≤0,2; P ≤0,005; S ≤0,0015; Al 4,0-5,5; B ≤0,03; Co 5,0-9,0; Cr 18,0-22,0; Cu ≤0,1; Fe ≤0,5; Hf 0,9-1,3; Mg ≤0,002; Mo ≤0,5; N ≤0,0015; Nb ≤0,01; O ≤0,0015; Ta 4,8-5,2; Ti 0,8-2,0; W 1,8-2,5; Zr ≤0,01; Ni - остальное.

Изобретение относится к области металлургии, а именно к железо-хром-алюминиевому сплаву с высокой коррозионной стойкостью, низкой скоростью испарения хрома и высокой жаропрочностью, получаемому пирометаллургическим способом.

Изобретение относится к области металлургии, а именно к магнитному порошку системы Fe-Co-Ni. Магнитный наноструктурированный порошок частиц системы железо-кобальт-никель характеризуется тем, что каждая частица порошка содержит, мас.%: никель 10-20, кобальт 10-50, железо остальное, при этом состоит из нанокристаллитов размерами менее 20 нм, компактно сложенных в агрегаты размерами от 40 до 80 нм с образованием агломератов сферической формы с размерами от 100 до 200 нм.

Изобретение относится к области металлургии, в частности к эвтектическим композиционным материалам на основе ниобия, упрочненным силицидами ниобия, предназначенным для изготовления теплонагруженных изделий, и может быть использовано в авиационной и энергетической промышленности.
Изобретение относится к области металлургии, а именно к составам сплавов, которые могут быть использованы в ювелирном деле. Ювелирный сплав содержит, мас.%: золото 58,3-58,5; цинк 0,4-0,5; медь 38,2-39,6; галлий 1,5-3,0.
Изобретение относится к разработке прецизионных сплавов для микрометаллургических процессов, в том числе для получения функциональных покрытий, пленок, микропроводов, порошковых материалов, конструкционно-функциональные элементы из которых эффективно работают в жестких условиях эксплуатации, таких как негативное воздействие механических нагрузок, износа, химических реагентов, положительных и отрицательных температур.

Изобретение относится к области металлургии, в частности к поршневому кольцу для двигателя внутреннего сгорания с покрытием, нанесенным термическим напылением порошка.
Изобретение относится к области металлургии, в частности к жаропрочных хромоникелевым сплавам с аустенитной структурой. Жаропрочный хромоникелевый сплав с аустенитной структурой, содержащий, мас.%: углерод 0,05-0,10, хром 24-27, никель 33-35, ниобий 0,6-1,3, церий 0,005-0,10, цирконий 0,005-0,10, лантан 0,005-0,10, кремний 0,81-1,50, марганец 0,60-1,20, ванадий 0,005-0,20, титан 0,005-0,15, алюминий 0,001-0,10, вольфрам менее 0,10, железо и примеси - остальное.

Изобретение относится к области металлургии, а именно к защитным покрытиям конструкционных деталей. Сплав на основе никеля для защитного покрытия конструкционной детали, в частности детали газовой турбины, предназначенного для защиты от коррозии и/или окисления детали при высоких температурах, содержит следующие элементы, вес.%: от 22 до менее 24 кобальта, 15-16 хрома, 10,5-12 алюминия, 0,2-0,6, по меньшей мере одного элемента из группы, включающей скандий (Sc) и/или редкоземельные элементы, кроме иттрия, при необходимости, от 0,3 до 1,5 тантала (Та), никель (Ni) - остальное.

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей ротора, работающих при температурах до 900°C.

Изобретение относится к области изготовления ротора турбины газотурбинного двигателя, состоящего из двух и более деталей, изготовленных преимущественно из никелевого жаропрочного сплава с применением электронно-лучевой сварки.

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 750-900°С.

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al и изделиям из этих сплавов, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой, например деталям газотурбинных двигателей.

Изобретение относится к области металлургии, а именно, к никель-хром-железо-алюминиевому сплаву с высокими характеристиками коррозионной стойкости и высокотемпературной ползучести и может быть использован в качестве материала, используемого в печных конструкциях, а также в химической промышленности.

Изобретение относится к области металлургии, в частности к суперсплавам на основе никеля, которые могут быть использованы в деталях газовой турбины. Суперсплав на основе никеля содержит, вес.%: C ≤0,1; Si ≤0,2; Mn ≤0,2; P ≤0,005; S ≤0,0015; Al 4,0-5,5; B ≤0,03; Co 5,0-9,0; Cr 18,0-22,0; Cu ≤0,1; Fe ≤0,5; Hf 0,9-1,3; Mg ≤0,002; Mo ≤0,5; N ≤0,0015; Nb ≤0,01; O ≤0,0015; Ta 4,8-5,2; Ti 0,8-2,0; W 1,8-2,5; Zr ≤0,01; Ni - остальное.

Изобретение относится к металлургии, в частности к суперсплавам на основе никеля, которые могут быть использованы при сварке. Сплав на основе никеля содержит, вес.%: С 0,13-0,2, Cr 13,5-14,5, Со 9,0-10,0, Мо 1,5-2,4, W 3,4-4,0, Ti 4,6-5,0, Al 2,6-3,0, В 0,005-0,008, при необходимости Nb макс.

Изобретение относится к металлургии. Литая рабочая лопатка с монокристаллической структурой содержит перо, полку замка и замковую часть и состоит из двух фрагментов, соединенных зоной сплавления.

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-920°C, а также для ремонта дефектов поверхности изделия, возникающих в результате литья или эксплуатации.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, используемым при изготовлении труб, листов, поковок и др. металлопроката для теплообменного оборудования, работающего в коррозионных средах, а также для сосудов и аппаратов, работающих при высоком давлении в диапазоне температур от минус 196°С до плюс 450°С. Сплав содержит компоненты в следующем соотношении, мас.%: углерод ≤0,05, хром 19,7-24,0, никель 38,2-45,7, кремний ≤0,50, марганец ≤0,95, титан 0,65-1,25, алюминий ≤0,22, иттрий >0-0,001, кислород >0,0005-0,018, водород >0,0005-0,0017, азот >0,0005-0,050, сера ≤0,020, фосфор ≤0,015, свинец ≤0,009, олово ≤0,009, мышьяк ≤0,009, цинк ≤0,009, сурьма ≤0,009, молибден 2,52-3,55, медь 1,45-2,95, железо остальное. При этом выполняются следующие условия, мас.%: (СrЭ/NiЭ)≥0,61, СrЭ=%Сr+2×%Аl+3×%Ti+%Мо+1,6×%Si, NiЭ=%Ni+32×%С+0,6×%Mn+22×%N+%Cu, где СrЭ - эквивалент хрома, NiЭ - эквивалент никеля. Обеспечивается повышение структурной стабильности сплава в процессе старения, а также снижение склонности сплава к образованию горячих трещин при сварке. 1 з.п. ф-лы.
Наверх