Конусная инерционная дробилка с усовершенствованным противодебалансом

Дробилка относится к средствам для измельчения различных материалов и может быть использована в строительной и горно-обогатительной отраслях промышленности. Дробилка содержит опертый на фундамент 9 через эластичные амортизаторы корпус 1 с наружным конусом 2 и размещенный внутри него на сферической опоре 4 внутренний конус 3. На приводном валу 5 внутреннего конуса 3 посредством втулки скольжения с возможностью регулировки центра тяжести относительно оси вращения расположен дебаланс 6. Втулка скольжения дебаланса 12 соединена через шаровую опорно-компенсационную муфту 20 с зубчатым колесом 16, соединенным зубчатой передачей с двигателем. Шаровая опорно-компенсационная муфта 20 включает верхнюю 21 и нижнюю 23 полумуфты. Нижняя полумуфта 23 через опорный подшипник скольжения 22 установлена внутри опертой на фланец оси вращения 15 противодебаланса 11, на которую с помощью втулки скольжения 19 установлен противодебаланс 11. При этом противодебаланс 11 жестко соединен с зубчатым колесом 16 и с нижней полумуфтой 23 с возможностью образования противодебалансом 11, зубчатым колесом 16, нижней полумуфтой 23 и втулкой скольжения 19 единого подвижного узла противодебаланса 11, причем фланец жестко закреплен в донной части корпуса 1 дробилки. В дробилке за счет узла противодебаланса обеспечивается динамическая стабилизация, что позволяет понизить высоту дробилки, повысить степень дробления. 9 з.п. ф-лы, 6 ил.

 

Изобретение относится к области тяжелого машиностроения, к дробильному измельчительному оборудованию, в частности к конусным дробилкам, и может быть использовано в технологических процессах строительной и горно-обогатительной отраслях промышленности.

Дробильные агрегаты, используемые в настоящее время, являются конструктивно сложными в создании и трудоемкими в эксплуатации машинами. Поэтому одна из самых актуальных проблем - это возможность создания конструкции, обладающей одновременно отличными рабочими характеристиками и вместе с тем простотой в эксплуатации и сервисном обслуживании.

Конусная инерционная дробилка известна из уровня техники. Конструкция дробилки содержит корпус с наружным конусом и размещенным внутри него внутренним конусом, обращенные друг к другу поверхности которых образуют камеру дробления. На приводном валу внутреннего подвижного конуса установлен дебаланс приводимый во вращение трансмиссионным узлом. При вращении дебаланса создается центробежная сила, заставляющая внутренний конус обкатываться по наружному конусу без зазора, если в камере дробления нет перерабатываемого материала (на холостом ходу); или через слой дробимого материала.

Однако большая величина центробежной силы, создаваемая дебалансом и приводящая к увеличению дробящей силы, одновременно приводит к нарушению динамического равновесия и к увеличению вибрационных нагрузок на все элементы дробилки, прежде всего на корпус. Это в свою очередь приводит к необходимости увеличивать прочностные характеристики корпуса, такие как толщину стен, прочность амортизаторов, прочность фундамента, на котором установлен корпус, элементов привода и других деталей.

Упомянутая проблема динамического уравновешивания решается введением в конструкцию дробилки противодебаланса, то есть дополнительного неуравновешенного дебаланса, установленного в противофазе к дебалансу, генерирующего свою собственную центробежную силу, направленную противоположно центробежным силам внутреннего конуса и его дебаланса.

Таким образом, обеспечение динамического уравновешивания дробилки, то есть создание таких условий ее работы, когда сумма всех действующих в ней сил и моментов была бы близка к нулю, является основным вопросом создания надежной эффективной конструкции.

Теория динамического расчета дробилок описана в специальной литературе, например, «Вибрационные дробилки», Вайсберг Л.А. И другие, Издательство ВСЕГЕИ, Санкт-Петербург, 2004, ISBN 93761-061-X, Глава 6 «Динамика конусной инерционной дробилки с дополнительным вибратором на корпусе», стр. 103, [1].

Известно изобретение «Инерционная конусная дробилка» RU 2174445, которое представляет собой одно из эффективных решений проблемы динамического уравновешивания дробилки.

Согласно этому изобретению в инерционной конусной дробилке, содержащей опертый на фундамент через эластичные амортизаторы корпус с наружным конусом и размещенный внутри него на сферической опоре внутренний конус, на валу которого с помощью подшипника смонтирован приводной неуравновешенный ротор с возможностью регулировки его центра тяжести относительно оси вращения, соединенной через шаровую опорно-компенсационную муфту и через размещенный в подшипниках корпуса промежуточный вал с приводным шкивом и двигателем; в которой корпус подшипника ротора и корпус шкива выполнены с цилиндрическими поверхностями, эксцентричными относительно оси вращения, шкив снабжен неуравновешенным грузом и упомянутые неуравновешенные грузы также выполнены эксцентричными и установлены с возможностью полного поворота на ответных эксцентрических цилиндрических поверхностях подшипника ротора и шкива и возможностью фиксации их в необходимом положении относительно эксцентриситета упомянутых поверхностей и друг друга.

Известно изобретение «Инерционная конусная дробилка и метод уравновешивания такой дробилки» («Inertia cone crusher and method of balancing such crusher»), WO 2012/005650 A1, приоритетные данные 09.07.2010, SE 20100050771.

Согласно этому изобретению известная конструкция конусной инерционной дробилки содержит корпус, внешний конус, внутренний конус, на вертикальном валу которого установлен дебаланс; и систему противодебалансов, состоящую из двух отдельных частей. Одна часть противодебаланса установлена на промежуточном приводном валу ниже подшипника скольжения и расположена снизу за пределами корпуса дробилки, при этом вторая часть противодебаланса крепится к промежуточному приводному валу над подшипником скольжения и расположена внутри корпуса дробилки. Общий суммарный вес обоих противодебалансов и веса каждого в отдельности рассчитываются таким образом, чтобы они соответствовали требуемым для создания нужной центробежной силы и для решения проблемы согласования и динамического уравновешивания дебаланса и противодебаланса.

Такое техническое решение позволяет разрешать широкий перечень аспектов динамического уравновешивания дробилки при помощи изменения соотношения весов частей противодебаланса, их взаимного расположения и их взаимного расположения с дебалансом. Важным преимуществом двойного распределения весов противодебаланса является и то, что нагрузки на промежуточный приводной вал уменьшаются и распределяются более равномерно, следовательно, срок службы приводного узла увеличивается.

Главным недостатком обоих описанных выше технических решений является расположение нижнего противодебаланса на уровне, который находится существенно ниже уровня дна корпуса, под которым в свою очередь расположен приводной вал шкива и сам приводной шкив. Двигатель может быть соединен, например через клиноременную передачу, со шкивом. Исходя из такой конструкции необходимо обеспечить доступ к дробилке строго снизу, в зону, расположенную ниже корпуса, для размещения собственно противодебаланса, шкива и его вала, привода, собственно двигателя, а также обеспечить зону доступа для регулировок и сервисного обслуживания.

Это требование можно осуществить или за счет подъема всей конструкции корпуса на определенную высоту, или за счет создания разгрузочной течки больших размеров. Следовательно, общая высота конструкции дробящего агрегата существенно увеличивается и, как следствие этого, увеличивается высота всей технологической цепочки, доставляющей исходный дробимый материал в верхний подающий бункер.

Кроме того, выход готового продукта также осуществляется в зону, расположенную непосредственно под корпусом и ниже уровня корпуса, а совмещение зоны обслуживания и зоны разгрузки готовой продукции затрудняет работу обслуживающего персонала.

Существенными недостатками системы двойного противодебаланса являются очевидно двойная стоимость его изготовления, дополнительные расходы на монтаж, регулировки и обслуживание. Также необходимо предусмотреть специальное пространство внутри корпуса для размещения внутреннего противодебаланса, что дополнительно увеличивает высоту корпуса.

Для любого дробильного агрегата высота корпуса является важным и критичным параметром, который следует по возможности сохранять в заданных пределах а в лучшем случае снижать насколько позволяет конструкция.

На основании сказанного выше задачами настоящего изобретения является модернизация конструкции, повышение надежности конструкции дробилки и упрощение ее сервисного обслуживания за счет того что:

- все подвижные элементы агрегата должны быть расположены строго внутри пределов корпуса,

- сервисное обслуживание должно осуществляться только сверху корпуса,

- общая высота конструкции должна быть снижена.

Поставленная цель может быть реализована за счет усовершенствования проблемы обеспечения динамического уравновешивания дробилки.

Одним из возможных способов усовершенствования обеспечения динамического уравновешивания дробилки является создание улучшенной конструкции узла противодебаланса, которая должна отвечать одновременно следующим требованиям:

- создавать требуемую величину центробежной силы, компенсирующую центробежную силу, генерируемую дебалансом;

- место размещения противодебаланса не должно требовать специального оборудованной зоны, расположенной под дробильным агрегатом, и не должно совмещаться с зоной разгрузки готового материала;

- место размещения противодебаланса должно быть максимально приближено к месту размещения дебаланса для оптимизации динамического равновесия, то есть узел должен быть размещен внутри пределов существующего корпуса дробилки;

- способ и место размещения противодебаланса не должны увеличивать габаритные размеры дробильного агрегата в высоту или в ширину;

- узел должен иметь надежную и простую в исполнении конструкцию, по меньшей мере не приводящую к удорожанию стоимости дробилки;

- конструкция должна способствовать упрощению, ускорению и удешевлению сервисного обслуживания дробилки.

Поставленные задачи решаются в инерционной конусной дробилке, которая содержит:

опертый на фундамент через эластичные амортизаторы корпус с наружным конусом и размещенный внутри него на сферической опоре внутренний конус,

на приводном валу которого с помощью втулки скольжения расположен дебаланс с возможностью регулировки его центра тяжести относительно оси вращения,

втулка скольжения дебаланса соединена через шаровую опорно-компенсационную муфту с зубчатым колесом, соединенным зубчатой передачей с двигателем,

при этом шаровая опорно-компенсационная муфта включает верхнюю и нижнюю полумуфты.

В соответствии с настоящим изобретением:

нижняя полумуфта через опорный подшипник скольжения установлена внутри опертой на фланец оси вращения противодебаланса, на которую с помощью втулки скольжения установлен противодебаланс,

при этом противодебаланс жестко соединен с зубчатым колесом и с нижней полумуфтой таким образом, что упомянутые противодебаланс, зубчатое колесо, нижняя полумуфта и втулка скольжения образуют единый подвижный «узел противодебаланса»,

а фланец жестко закреплен в донной части корпуса дробилки.

Дробилка дополнительно отличается следующими характеристиками.

Ось вращения противодебаланса выполнена в виде полого цилиндрического стакана с маслопроводящим отверстием центре донной части, внутренний диаметр стакана выполнен равным или большим, чем внешний диаметр нижней полумуфты.

Фланец выполнен в виде ступенчатого диска с центральным установочным отверстием, диаметр которого выполнен равным внешнему диаметру оси вращения противодебаланса, имеет крепежные отверстия по краям диска.

Ось вращения противодебаланса и фланец могут быть выполнены как единая деталь.

Установочные отверстия по краям фланца выполнены таким образом, чтобы головки установочных болтов были полностью утоплены в упомянутые установочные отверстия.

Опорный подшипник скольжения выполнен в виде двух дисков с маслопроводящими отверстиями в центре.

Крепежные отверстия противодебаланса совпадают с крепежными отверстиями зубчатого колеса, совпадают с крепежными отверстиями нижней полумуфты.

Противодебаланс в первом варианте выполнен в виде сегмента диска, в центре которого имеется установочное отверстие, равное внешнему диаметру втулки скольжения противодебаланса, по краям которого расположены крепежные отверстия, верхняя поверхность диска имеет два прямоугольных понижающих уступа, нижняя поверхность диска имеет фигурную выборку, выполненную по форме установочного крепежа фланца, торец выполнен закругленным с нижнего края.

Противодебаланс во втором варианте выполнен в виде сегмента диска, в центре которого имеет установочное отверстие, равное внешнему диаметру втулки скольжения противодебаланса, по краям которого расположены крепежные отверстия, верхняя поверхность диска имеет один прямоугольный понижающий уступ, нижняя поверхность диска имеет конический уступ, выполненный под установочный крепеж фланца.

В качестве варианта исполнения противодебаланс имеет две установочные торцевые лыски.

Сущность настоящего изобретения поясняетсячертежами.

На фиг. 1 показана схема конусной инерционной дробилки в поперечном разрезе.

На фиг. 2 представлен отдельный узел дробилки, связывающий дебаланс и противодебаланс, с указанием действующих на них сил и моментов.

На фиг. 3 и 4 представлен противодебаланс в двух вариантах в виде объемного рисунка, а также в виде чертежа в разрезе.

На фиг. 5 и 6 представлен противодебаланс с дополнительными установочными торцевыми лысками в двух вариантах в виде объемного рисунка, а также в виде чертежа в разрезе.

Изобретение конструктивно реализуется следующим образом.

Корпус (1) установлен на фундамент (9) через эластичные амортизаторы (10). Наружный дробящий конус (2) и внутренний дробящий конус (3), размещенный на сферической опоре (4), образуют между собой камеру дробления. На валу (5) внутреннего конуса (3) установлен узел дебаланса (6), состоящий из собственно дебаланса, установленного на втулку дебаланса (12), которая установлена на вал (5) с возможностью вращения вокруг него.

Узел дебаланса (6) соединен шаровой опорно-компенсационной муфтой (20) с зубчатым колесом (16) через верхнюю полумуфту (21) и нижнюю полумуфту (23).

Полумуфта (23) помещена внутри оси вращения противодебаланса (15), которая выполнена в виде полого цилиндрического стакана с маслопроводящим отверстием в центре дна. Полумуфта (23) оперта на опорный подшипник скольжения (22), который выполнен в виде двух тонких дисков с маслопроводящими отверстиями в центре.

Противодебаланс (11) установлен на втулку скольжения (19) методом прессовой посадки, а втулка (19) в свою очередь установлена на ось вращения противодебаланса (15) с возможностью вращения вокруг нее.

Ось вращения (15) оперта на фланец (34), который выполнен в виде ступенчатого диска с центральным установочным отверстием и жестко закреплен в донной части корпуса (1) при помощи крепежных болтов (32), расположенных по периметру диска фланца.

Противодебаланс (11) жестко соединен с зубчатым колесом (16) и с полумуфтой (23) через крепежные отверстия (24) при помощи крепежных болтов. Таким образом, «узел противодебаланса», включающий собственно противодебаланс (11), зубчатое колесо (16), нижнюю полумуфту (23) и втулку скольжения (19), образуют единый подвижный узел, все элементы которого жестко соединены друг с другом при помощи крепежных болтов и прессовой посадки.

Подвижный «узел противодебаланса» в свою очередь установлен с возможностью вращения на неподвижную ось вращения (15), которая или оперта на фланец (34) или выполнена как цельная деталь ось-фланец.

Подвижный «узел противодебаланса» смонтирован таким образом, чтобы противодебаланс (11) всегда находился в противофазе к дебалансу (6).

Патрубок (8), маслопроводящий канал (7) оси вращения (15), маслопроводящие отверстия в дисках опорного подшипник скольжения (22,) маслопроводящий канал в опорном шаровом шпинделе муфты (20) образуют общий маслопроводящий канал.

Изобретение работает следующим образом.

От двигателя (18) через внешнюю муфту (17) крутящий момент поступает на зубчатую передачу: вал - шестерню (25) и зубчатое колесо (16). Зубчатое колесо (16) приводит во вращение «узел противодебаланса», включающий также противодебаланс (11), втулку скольжения (19) и нижнюю полумуфту (23).

Подвижный «узел противодебаланса» вращается вокруг оси вращения (15), таким образом внутренний диаметр втулки скольжения (19) и внешний диаметр оси вращения (15) образуют подшипник скольжения противодебаланса.

Полумуфта (23) является элементом шаровой опорно-компенсационной муфты (20), которая через шаровой шпиндель и верхнюю полумуфту (21) передает крутящий момент узлу дебаланса: дебалансу (6) и втулке скольжения дебаланса (12), смонтированному на валу (5) внутреннего конуса (3).

Узел дебаланса развивает центробежную силу, внутренний конус (3) приходит в движение и совершает обкатку по внешнему конусу (2) воздействуя на дробимый материал в камере дробления.

Фиг. 2 подробно иллюстрирует конструкцию «узла противодебаланса» и принципы его работы.

Вектор F1 условно представляет представляет центробежную силу, развиваемую дебалансом, CG1 - центр тяжести неуравновешенной массы G1 дебаланса; R1 - радиус вращения центра тяжести неуравновешенной массы дебаланса, иначе говоря расстояние на которое центр тяжести его неуравновешенной массы удален от оси симметрии вала (5).

Вектор F2 условно представляет центробежную силу, развиваемую противодебалансом, CG2 - центр тяжести неуравновешенной массы G2 противодебаланса; R2 - радиус вращения центра тяжести неуравновешенной массы дебаланса, иначе говоря расстояние, на которое центр тяжести его неуравновешенной массы удален от центральной оси дробилки.

Согласно теории динамической стабилизации [1] обеспечение полного динамического уравновешивания дробилки достигается тогда, когда сумма действующих в ней (центробежных) сил и моментов стремиться к нулю. Соответственно чем ближе друг к другу расположены центры тяжести неуравновешенных масс дебаланса CG1 и противодебаланса CG2, тем меньшую центробежную силу F2 требуется развить противодебалансу (11) для компенсации центробежной силы F1 развиваемой дебалансом (6).

Поэтому для достижения поставленных целей в данном изобретении «узел противодебаланса» не только перемещается из- под корпуса (1) внутрь его пределов, но и устанавливается настолько максимально близко к дебалансу (6) внутри корпуса (1) дробилки, насколько это позволяет конструкция агрегата.

Центробежная сила F1 дебаланса (6) определяется по формуле:

F 1 = G 1 R 1 ( πn 30 ) 2 [1]

где F1 - центробежная сила дебаланса, Н;

G1 - неуравновешенная масса дебаланса, кг;

R1 - радиус вращения центра тяжести неуравновешенной массы дебаланса, м;

π=3,14;

n - скорость вращения дебаланса, об/мин.

Центробежная сила F2 противодебаланса (11) определяется по формуле:

F 2 = G 2 R 2 ( πn 30 ) 2 [2]

где F2 - центробежная сила противодебаланса, Н;

G2 - неуравновешенная масса противодебаланса, кг;

R2 - радиус вращения центра тяжести неуравновешенной массы противодебаланса, м;

π=3,14;

n - скорость вращения противодебаланса, об/мин, равна скорости вращения дебаланса.

Согласно [2] центробежная сила F2 тем больше, чем больше радиус R2 вращения центра тяжести неуравновешенной массы противодебаланса, иначе говоря расстояние, на которое центр тяжести CG2 удален от центральной оси дробилки. Предложенный противодебаланс сконструирован таким образом, чтобы параметр R2 был максимально возможным для данного профиля корпуса (1).

Центр вертикальной образующей подшипника скольжения противодебаланса, образованного втулкой скольжения (19) и осью вращения (15), обозначен на фиг. 2 как точка CFB.

Конструкция противодебаланса (11) выполнена таким образом, чтобы центр тяжести CG2 его неуравновешенной массы был расположен строго по центру вертикальной образующей подшипника скольжения. Иначе говоря, точки CG2 и CFB должны быть расположены на одном уровне. Если размер высоты вертикальной образующей подшипника скольжения принять равным «а», то расстояние от верхнего края подшипника скольжения до точки CFB и расстояние от точки CFB до нижнего края подшипника скольжения равны между собой и равны «½ а».

В этом случае нагрузка на подшипник скольжения распределена равномерно, следовательно, отсутствует перекос нагрузки, следовательно, износ поверхностей трения подшипника происходит равномерно, следовательно, подшипник служит дольше.

В случае, когда центр тяжести CG2 смещен относительно точки CFB выше или ниже, нагрузка на подшипник распределяется неравномерно, соответственно, выше или ниже центральной точки CFB, то есть имеет место перекос нагрузки, следовательно, подшипник подвергается несимметричному износу поверхностей трения, следовательно быстрее выходит из строя.

Исходя из упомянутых выше задач противодебаланс (11) может быть конструктивно выполнен в двух вариантах.

Первый вариант представлен на фиг. 3, выполнен в виде сегмента диска, в центре диска выполнено установочное отверстие (13), равное внешнему диаметру втулки скольжения (19), по краям которого расположены крепежные отверстия (24). Верхняя поверхность диска противодебаланса имеет два прямоугольных понижающих уступа (26), нижняя поверхность диска имеет фигурную выборку (28), выполненную строго под форму установочного крепежа (32) фланца (34), торец диска выполнен закругленным с нижнего края (14), повторяющим внутренний профиль корпуса (1).

Сложная форма первого варианта противодебаланса обусловлена компромиссом между конструкцией внутреннего профиля корпуса (1), иначе говоря свободным пространством, которое отводиться для размещения противодебаланса без изменения параметров корпуса, и требуемых характеристиках собственно противодебаланса.

Достоинством данного варианта является максимальное использование пространства корпуса (1) при параметрах противодебаланса, близких к оптимальным расчетным. Недостатком варианта является высокая стоимость исполнения данной формы детали.

Второй вариант противодебаланса представлен на фиг. 4, также выполнен в виде сегмента диска, в центре диска выполнено установочное отверстие (13), равное внешнему диаметру втулки скольжения (19), по краям которого расположены крепежные отверстия (24), верхняя поверхность диска имеет два прямоугольных понижающих уступа (26), нижняя поверхность диска имеет понижающий конический уступ (29), выполненный под установочный крепеж (32) фланца (34).

Форма второго варианта противодебаланса представляет собой видоизмененную форму первого варианта и компромисс между требованиями к соблюдению расчетных характеристик и требованиями к снижению стоимости изготовления детали, так как вариант имеет более простую конфигурацию.

Достоинством данного варианта является более низкая стоимость изготовления детали, как известно из уровня техники, чем проще деталь, тем дешевле ее изготовить; а недостатком - отклонение от наилучших расчетных характеристик.

Любой из упомянутых вариантов противодебаланса может иметь две торцевые лыски (27), конструкции представлены на фиг. 5 и 6, расположенные с двух сторон диска, которые предназначены для облегчения установки противодебаланса в корпус в том случае, когда требуемый расчетный диаметр диска противодебаланса больше, чем установочные проемы корпуса данного типоразмера агрегата.

Как вариант исполнения, способ крепления фланца (34) в донной части корпуса (1) может быть видоизменен таким образом, чтобы головки болтов (32) были утоплены в установочные отверстия по краям фланца (34), фиг. 4 и 6.

Как вариант исполнения, ось вращения (15) и фланец (34) могут быть выполнены как единая деталь. Достоинством такого решения является существенное улучшение прочностных характеристик «узла противодебаланса», так как на детали (15) и (34) приходится значительная динамическая нагрузка. Недостатком данного варианта является удорожание стоимости изготовления единой детали и стоимости ее монтажа.

Через патрубок (8), маслопроводящий канал (7) оси вращения (15), маслопроводящие отверстия в дисках опорного подшипник скольжения (22) и маслопроводящий канал в опорном шаровом шпинделе муфты (20) масло подается ко всем поверхностям трения дробилки.

По сравнению с известными из уровня техники решениями, реализация заявленной конструкции дробилки позволит, как было указано выше, существенно улучшить динамическое уравновешивание агрегата при существующих габаритных размерах корпуса. Кроме того, даст возможность работать при больших оборотах двигателя, что приведет согласно [1] к увеличению дробящей силы и в свою очередь может привести к повышению степени дробления на 10-15%.

Вертикальный размер предложенной конструкции дробилки меньше, чем соответствующий размер аналогов, прежде всего за счет перемещения «узла противодебаланса» внутрь корпуса агрегата, а также за счет усовершенствования собственно конструкции противодебаланса, которая позволяет более эффективно распределять его массу и использовать внутреннее пространство корпуса, следовательно, получить большую эффективность при меньших материальных затратах.

Вследствие этого можно снизить общую высоту дробильного агрегата примерно на 20% от первоначальной высоты при тех же типоразмерах.

Зона, расположенная ниже уровня корпуса дробилки, освобождается от узла противодебаланса и от иных приводных деталей, в связи с чем нет необходимости в увеличении зоны разгрузочной течки, нет необходимости обеспечивать «нижний доступ» для сервисного обслуживания: для предложенной конструкции сервисное обслуживание осуществляется только сверху, что более прагматично. Суммарная экономия стоимости изготовления предложенной конструкции в зависимости от выбранного варианта может составить от 5 до 10%.

Все оригинальные детали дробильного агрегата, предложенные в настоящем изобретении, могут быть выполнены любыми известными из уровня техники способами, такими как литье, гидроабразивная или плазменная резка и тому подобное.

1. Конусная инерционная дробилка, содержащая опертый на фундамент через эластичные амортизаторы корпус с наружным конусом и размещенный внутри него на сферической опоре внутренний конус, на приводном валу которого с помощью втулки скольжения расположен дебаланс с возможностью регулировки его центра тяжести относительно оси вращения, втулка скольжения дебаланса соединена через шаровую опорно-компенсационную муфту с зубчатым колесом, соединенным зубчатой передачей с двигателем, при этом шаровая опорно-компенсационная муфта включает верхнюю и нижнюю полумуфты, отличающаяся тем, что нижняя полумуфта через опорный подшипник скольжения установлена внутри опертой на фланец оси вращения противодебаланса, на которую с помощью втулки скольжения установлен противодебаланс, при этом противодебаланс жестко соединен с зубчатым колесом и с нижней полумуфтой таким образом, что упомянутые противодебаланс, зубчатое колесо, нижняя полумуфта и втулка скольжения образуют единый подвижный узел противодебаланса, а фланец жестко закреплен в донной части корпуса дробилки.

2. Конусная инерционная дробилка по п. 1, отличающаяся тем, что ось вращения противодебаланса выполнена в виде полого цилиндрического стакана с маслопроводящим отверстием в центре донной части, внутренний диаметр стакана выполнен равным или большим внешнего диаметра нижней полумуфты.

3. Конусная инерционная дробилка по п. 1, отличающаяся тем, что фланец выполнен в виде ступенчатого диска с центральным отверстием, диаметр которого выполнен равным внешнему диаметру оси вращения противодебаланса, имеющего крепежные отверстия по краям диска.

4. Конусная инерционная дробилка по п. 1, отличающаяся тем, что ось вращения противодебаланса и фланец выполнены как единая деталь.

5. Конусная инерционная дробилка по п. 1, отличающаяся тем, что установочные отверстия по краям фланца выполнены таким образом, чтобы головки установочных болтов были полностью утоплены в упомянутые установочные отверстия.

6. Конусная инерционная дробилка по п. 1, отличающаяся тем, что опорный подшипник скольжения выполнен в виде двух дисков с маслопроводящими отверстиями в центре.

7. Конусная инерционная дробилка по п. 1, отличающаяся тем, что крепежные отверстия противодебаланса совпадают с крепежными отверстиями зубчатого колеса, совпадают с крепежными отверстиями нижней полумуфты.

8. Конусная инерционная дробилка по п. 1, отличающаяся тем, что противодебаланс выполнен в виде сегмента диска, в центре которого имеется установочное отверстие, равное внешнему диаметру втулки скольжения противодебаланса, по краям которого расположены крепежные отверстия, верхняя поверхность диска имеет два прямоугольных понижающих уступа, нижняя поверхность диска имеет фигурную выборку, выполненную по форме установочного крепежа фланца, торец выполнен закругленным с нижнего края.

9. Конусная инерционная дробилка по п. 1, отличающаяся тем, что противодебаланс выполнен в виде сегмента диска, в центре которого имеет установочное отверстие, равное внешнему диаметру втулки скольжения противодебаланса, по краям которого расположены крепежные отверстия, верхняя поверхность диска имеет два прямоугольных понижающих уступа, нижняя поверхность диска имеет понижающий конический уступ, выполненный под установочный крепеж фланца.

10. Конусная инерционная дробилка по п. 1, отличающаяся тем, что противодебаланс имеет две установочные лыски.



 

Похожие патенты:

Изобретение относится к устройствам обработки минерального материала, содержащим внешнюю и внутреннюю изнашиваемые детали. Внутренняя изнашиваемая деталь содержит внешнюю изнашиваемую поверхность, включающую изнашиваемые поверхности начальной и конечной стадии срока службы, и выступ, проходящий от изнашиваемой поверхности конечной стадии.

Группа изобретений относится к способу управления гираторной конусной дробилкой и гидравлическому контуру для осуществления этого способа. Способ управления заключается в том, что размер зазора дробилки, образованного внутренним и наружным корпусами, поддерживают посредством по меньшей мере одного гидравлического цилиндра, причем при превышении давления гидравлической жидкости первой пороговой величины давления гидравлическую жидкость из цилиндра удаляют.

Группа изобретений относится к внешней дробящей броне гирационной дробилки. Дробилка содержит дробящую броню (106) с единственным фланцевым участком (122).

Изобретение предназначено для измельчения зерна, семян бобовых культур, гречихи и других в пищевой промышленности и сельском хозяйстве. Внутри корпуса (3) конусной инерционной дробилки установлены неподвижный статор (4) и подвижный ротор (6).

Изобретение относится к измельчительным устройствам, к системам и способам очистки дробилки от инородного тела. Система 100 содержит по меньшей мере один цилиндр 70 двустороннего действия, служащий как для поддержания постоянного дробильного усилия между головкой 500 и чашей 400, так и для обеспечения очистительного хода, способствующего прохождению этого инородного материала.

Изобретение относится к конусным дробилкам мелкого дробления. Дробилка содержит установленный на опорную раму через амортизаторы корпус с наружным конусом и размещенным внутри него на сферической опоре внутренним конусом с валом, на котором с помощью подшипника установлен регулируемый дебалансный вибратор.

Изобретение относится к горному делу, в частности, к устройствам для измельчения горной породы и определения ее природного гранулометрического состава, знание которого определяет процентный выход по массе полезных ископаемых из единицы массы исходного сырья, стоимость конечного продукта и величину удельных энергозатрат.

Изобретение относится к горному делу, в частности к устройствам для измельчения горной породы. .

Изобретение относится к горному делу, в частности к устройствам для измельчения горной породы и техногенных строительных материалов с помощью реализации различных типов физического процесса измельчения, а именно: ударного разрушения, раздавливания, раскалывания и истирания, а также различных комбинаций выше указанных видов процесса измельчения.

Изобретение относится к области тяжелого машиностроения, к дробильному измельчительному оборудованию, в частности к конусным дробилкам, и может быть использовано в технологических процессах строительной и горно-обогатительной отраслях промышленности. Дробилка содержит корпус 1, установленный на фундаменте 9 посредством эластичных амортизаторов 10 и имеющий наружный конус 2, размещенный внутри наружного конуса 2 внутренний конус 3. На приводном валу внутреннего конуса 3 посредством втулки скольжения 12 расположен дебаланс 6. Дебаланс 6 установлен с возможностью регулировки его центра тяжести относительно оси вращения, при этом втулка скольжения 12 дебаланса 6 соединена с трансмиссионной муфтой 13, через которую передается крутящий момент от двигателя. Трансмиссионная муфта 13 выполнена в виде дисковой муфты, состоящей из ведущей полумуфты, ведомой полумуфты и расположенного между ними плавающего диска. Ведомая полумуфта жестко соединена с втулкой скольжения 12 дебаланса 6, а ведущая полумуфта - с зубчатым колесом 22, которое жестко соединено с противодебалансом 11. При этом ведущая полумуфта, зубчатое колесо 22 и противодебаланс 11 установлены на втулке скольжения таким образом, что ведущая полумуфта 27, зубчатое колесо 22, противодебаланс 11 и втулка скольжения образуют единый подвижный динамический узел. Единый подвижный динамический узел посредством опорного диска установлен на неподвижной оси вращения 23, которая оперта на фланец 24, жестко закрепленный в донной части корпуса 1 дробилки. Конусная инерционная дробилка позволяет решить проблему динамического уравновешивания, понизить высоту дробилки и повысить степень дробления. 16 з.п. ф-лы, 7 ил.

Изобретение относится к конусным дробилкам и может быть использовано в строительной и горно-обогатительной отраслях промышленности. Конусная инерционная дробилка содержит корпус 1, наружный конус 2 и размещенный внутри него на сферической опоре 4 внутренний конус 3. На приводном валу 5 внутреннего конуса 3 посредством втулки скольжения 12 смонтирован дебаланс 6. Втулка скольжения 12 соединена с трансмиссионной дисковой муфтой 13, которая соединена с зубчатым колесом 20 и противодебалансом 11, установленными на втулке скольжения 12 с возможностью образования единого подвижного динамического узла. Внутренний конус 3 и сферическая опора 4 выполнены с фигурным круговым выступом. Система уплотнения включает по меньшей мере один уплотняющий элемент 21 в форме круговой замкнутой манжеты из эластичного материала и систему крепления. Уплотняющий элемент 21 закреплен с одной стороны на фигурном круговом выступе внутреннего конуса 3, а с другой стороны - на круговом выступе сферической опоры 4. В дробилке обеспечивается герметичная изоляция двух сред внутри корпуса дробильного агрегата: области масляного тумана и области выгрузки готового продукта. 9 з.п. ф-лы, 6 ил.

Группа изобретений относится к средствам дробления и измельчения различных материалов и может быть использована в инерционных конусных дробилках. Способ заключается в том, что измеряют положение и/или движение дробильной головки, на основании упомянутого измерения получают величины гирационного перемещения, которые сравнивают с опорной величиной гирационного перемещения. При этом на основании сравнения определяют, выдать ли сигнал предупреждения о постороннем материале, а на основании величины гирационного перемещения определяют положение постороннего материала в дробильной камере. Инерционная конусная дробилка содержит наружную и внутреннюю дробильные брони, образующие между собой дробильную камеру. Внутренняя дробильная броня поддерживается на дробильной головке, присоединенной с возможностью вращения к дебалансной втулке с дебалансным грузом. При этом дробилка дополнительно содержит датчик для измерения положения и/или движения дробильной головки, устройство управления, выполненное с возможностью получения величины гирационного перемещения и определения, выдавать ли сигнал предупреждения о постороннем материале согласно вышеописанному способу. Также для доступа в дробильную камеру дробилка содержит множество люков, каждый из которых позволяет удалять через него какой-либо посторонний материал. Способ и устройство снижают вероятность повреждения и блокировки дробилки. 2 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к дробильному измельчительному оборудованию, в частности к конусным дробилкам, и может быть использовано в строительной и горно-обогатительной отраслях промышленности. Конусная инерционная дробилка содержит опертый на фундамент 9 корпус 1, наружный конус 2 и внутренний конус 3, размещенный внутри корпуса 1 на сферической опоре 4. На валу 5 внутреннего конуса 3 посредством втулки скольжения 12 расположен дебаланс 6. Втулка скольжения 12 дебаланса 6 через трансмиссионную муфту 13 соединена с ведущим валом 5. На ведущем валу 5 закреплен шкив 15 с противодебалансом 11, через который передается вращательный момент от двигателя. Трансмиссионная муфта 13 выполнена в виде дисковой муфты, состоящей из ведущей и ведомой полумуфт и расположенного между ними плавающего диска. Ведущая полумуфта выполнена в виде диска с вогнутой рабочей торцевой поверхностью и радиально расположенной на ней шпонкой. Ведомая полумуфта выполнена в виде диска с выгнутой торцевой рабочей поверхностью и радиально расположенной на ней шпонкой. Плавающий диск имеет выгнутую и вогнутую торцевые поверхности, обращенные к ведущей и ведомой полумуфтам соответственно. Дробилка обеспечивает повышение надежности работы. 6 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам для тонкого измельчения хрупких высокотвердых материалов и может быть использовано для получения микропорошков керамических материалов, пигментов, присадок в топливо и других материалов. Мельница содержит закрытый корпус с патрубками 1, 2 соответственно для ввода и вывода продукции, цилиндрическую рабочую камеру 3 с внутренней футеровкой 5 и расположенную в закрытом корпусе и имеющую внешнюю водяную рубашку 4, и соединенный с приводом вращения 7 вертикальный ротор в виде вала 6 и соединенных с ним горизонтальных опорных дисков 8. Вертикальный ротор установлен в рабочей камере 3 по ее оси. На опорных дисках 8 посредством осей вращения 9 закреплены мелющие элементы 10, центр тяжести которых смещен относительно оси вращения. Мелющие элементы 10 состоят из металлического корпуса и закрепленной на нем мелющей вставки, которая при вращении элемента контактирует с поверхностью футеровки 5. При этом мелющие вставки и футеровка рабочей камеры выполнены из керамического композиционного материала, содержащего алмаз - 20-75% об., карбид кремния - 20-75% об., кремний - 3-40% об. Мельница характеризуется повышенным ресурсом работы и более широкой областью применения. 2 ил.
Изобретение относится к способам получения микропорошков твердых материалов, например микропорошков керамических материалов, пигментов. Способ заключается в том, что измельчение частиц твердых материалов производят в роторно-истирающей мельнице, в которой мелющие вставки и футеровка рабочей камеры выполнены из керамического композиционного материала, содержащего алмаз - 20-75 об.%, карбид кремния - 20-75 об.%, кремний - 3-40 об.% Способ обеспечивает получение химически чистых микропорошков твердых материалов.

Изобретение относится к средствам измельчения и может быть использовано для переработки пищевых отходов в сфере общепита, пищевой промышленности, сельском хозяйстве. Измельчитель пищевых отходов содержит корпус 1 с загрузочным люком 2 и рабочей камерой 3. Рабочая камера 3 снабжена неподвижной дробящей поверхностью в виде полого конуса 4 и установленной с зазором относительно измельчающего органа в виде подвижной измельчающей шарошки 5 с приводом от электродвигателя 8. Подвижная измельчающая шарошка 5 установлена на валу 6 с дебалансом 9, прикреплена к основанию чаши 7 и представляет собой усеченный конус, на конической поверхности которого в шахматном порядке в три яруса размещены резьбовые гнезда 12 для ввинчивания пирамидальных штифтов 13. Измельчитель позволяет перерабатывать как твердые компоненты, так и пленочные или волокнистые компоненты пищевых отходов. 10 з.п. ф-лы, 2 ил.

Блокировочная система, предназначенная для использования в дробилке для породы. Блокировочная система 20 содержит стационарный корпус 24, дробящую головку 26 конусной дробилки, узел вращения 27, вал 28, подшипники 30, дробильную камеру 31, броню 32 дробильной камеры 31 и рабочую гидравлическую жидкость. Предпочтительно блокировочная система включает устройство для нагнетания потока, предназначенное для обеспечения потока рабочей гидравлической жидкости, источник рабочей гидравлической жидкости, предназначенный для подачи рабочей гидравлической жидкости, регулирующий клапан, сообщающийся по текучей среде с источником рабочей гидравлической жидкости и предназначенный для обеспечения потока рабочей гидравлической жидкости к источнику рабочей гидравлической жидкости, и узел передачи крутящего момента, предназначенный для соединения дробящей головки 26 конусной дробилки и источника рабочей гидравлической жидкости и для передачи крутящего момента от дробящей головки 26 конусной дробилки на стационарный корпус. При этом в блокировочной системе 20 используется такая же рабочая гидравлическая жидкость, что и в других системах дробилки для породы. Способ управления блокировочной системой 20 заключается в том, что посредством устройства для нагнетания потока обеспечивают поток рабочей гидравлической жидкости, посредством источника рабочей гидравлической жидкости подают рабочую гидравлическую жидкость, при этом регулирующим клапаном, сообщающимся по текучей среде с источником рабочей гидравлической жидкости, обеспечивают поток рабочей гидравлической жидкости к источнику рабочей гидравлической жидкости. В блокировочной системе используют такую же рабочую гидравлическая жидкость, что и в других системах дробилки для породы. Блокировочная система и способ обеспечивают возможность управления вращением дробящей головки конусной дробилки, исключая при этом перекрестное загрязнение рабочих гидравлических жидкостей. 2 н. и 21 з.п. ф-лы, 10 ил.

Изобретение относится к устройствам для дробления твердых материалов, а именно к инерционным конусным дробилкам с вертикальной осью, и может быть широко использовано в горнорудной, металлургической и строительной отраслях промышленности. Вибрационная дробилка содержит корпус 1 с верхним загрузочным отверстием 2, внутренним конусом 3 и фланцем 4. Дробящее тело имеет конус 5, к которому снизу при помощи осевого стержня 6 прикреплен диск 7. Между рабочими поверхностями конусов имеется кольцевой щелевой зазор 8 (камера дробления) с кольцевым разгрузочным отверстием 9. На нижнем торце конуса 5 установлен кольцевой направляющий фартук 10, имеющий форму сужающегося книзу конуса. В диске 7 на его периферийной части размещены верхние дебалансные вибраторы 11. В диске 7 ближе к центру под кольцевым разгрузочным отверстием 9 выполнены сквозные отверстия 12, распределенные по окружности и предназначенные для прохождения дробленого материала. В центральной части диска 7 на нижнем торце имеется кольцевой направляющий фартук 13, выполненный аналогично фартуку 10. Под диском 7 установлена платформа 14, в которой на периферийной части размещены нижние дебалансные вибраторы 15, а ближе к центру непосредственно под отверстиям 12 выполнены сквозные отверстия 16, также расположенные по окружности и предназначенные для прохождения дробленого материала. Платформа 14 установлена на опоре 17 посредством пружин 18 нижнего яруса. Диск 7 дробящего тела установлен на платформе 14 посредством пружин 19 среднего яруса, а корпус 1 своим фланцем 4 установлен на диске 7 посредством пружин 20 верхнего яруса. В дробилке обеспечивается практически полная изоляция опоры от неуравновешенных динамических сил за счет использования эффекта виброгашения. 3 з.п. ф-лы, 4 ил.

Группа изобретений относится к устройствам уплотнительных систем, способам уплотнения и может быть использована в резьбовых соединениях конусных гирационных дробилок. Уплотнительная система 20 содержит элемент с наружной резьбой, включающий секцию с наружной резьбой, имеющую внутреннюю часть, элемент с внутренней резьбой, имеющий секцию с внутренней резьбой и канавку для уплотнения скребкового типа, выполненного с возможностью его установки в вышеуказанной канавке, в которой усилия, создаваемые оборудованием, передаются непосредственно элементу с внутренней резьбой от секции с наружной резьбой. Канавка для уплотнения скребкового типа и уплотнение скребкового типа расположены вдоль только небольшой части дуги окружности секции с внутренней резьбой, а уплотнение скребкового типа включает выступ. Уплотнительная система содержит опорную чашу 24 с резьбовой секцией 26 опорной чаши 24, которая имеет внутренний участок 28, верхнюю станину 30, имеющую резьбовую секцию 32 верхней станины 30 и канавку для уплотнения скребкового типа 34, выполненного с возможностью его установки в вышеуказанной канавке и внутри резьбовой секции 26 опорной чаши 24, в которой усилия дробления, создаваемые дробилкой для породы, передаются непосредственно верхней станине 30 от резьбовой секции 26 опорной чаши 24. Канавка для уплотнения скребкового типа и уплотнение скребкового типа расположены вдоль только небольшой части дуги окружности секции с внутренней резьбой, а уплотнение скребкового типа включает выступ. Способ уплотнения внутренней части резьбовой секции элемента с наружной резьбой заключается в создании вышеописанной уплотнительной системы. В уплотнительной системе и способе исключена передача усилий дробления по всей окружности уплотнительной поверхности опорной чаши. 3 н. и 16 з.п. ф-лы, 8 ил.
Наверх