Авиационное сконденсированное топливо (варианты)

Изобретение описывает авиационное сконденсированное топливо, включающее смесь парафиновых углеводородов, при следующем содержании компонентов, % масс.: ΣC4H10 - 25,0-82,0; ΣC5H12 - 4,0-41,0; ΣC6H14 - 0,1-16,0; ΣC7H16 - 0,1-11,0; ΣC8H18 - 0,01-5,0; ΣC9H20-C12H26 - остальное до 100%, а также включающее противоизносные и антиокислительные присадки, при этом суммарное содержание противоизносных и антиокислительных присадок составляет не более 0,01% масс., ароматических и нафтеновых углеводородов составляет не более 6,0% масс., а давление насыщенных паров смеси составляет, МПа (абс.), при 20°C - не более 0,1. Также раскрывается авиационное сконденсированное топливо, включающее смесь парафиновых углеводородов при следующем содержании компонентов, % масс.: CH4 - 0,1-99; C2H6 - 0,1-99; C3H8 - 0,1-99; ΣC4H10 - 0,1-99; ΣC5H12 - 0,1-99, а также включающее противоизносные и антиокислительные присадки, при этом суммарное содержание противоизносных и антиокислительных присадок составляет не более 0,01% масс., ароматических и нафтеновых углеводородов составляет не более 6,0% масс., а давление насыщенных паров смеси составляет, МПа (абс.), при -162°С - не более 0,1, а при -82,6°C - не более 4,64. Технический результат заключается в расширении ассортимента авиационного сконденсированного топлива, увеличении плотности топлива и повышении его хладоресурса. 2 н.п. ф-лы, 1 пр.

 

Изобретение относится к альтернативным газомоторным топливам, преимущественно авиационным, используемым в газотурбинных, жидкостных и поршневых двигателях вертолетов и самолетов, а также в ракетно-космической технике.

Известно сконденсированное авиационное топливо для газотурбинных двигателей на основе смеси парафиновых углеводородов общей формулы CnH2n+2-H-деканов и H-додеканов в количестве не менее 45 масс. ароматических углеводородов общей формулы CnH2n-6 в количестве 12-16 масс. олефиновых углеводородов общей формулы CnH2n остальное (Патент США №3985638, кл. 208-15, 1976).

Недостатком получаемого топлива является высокая температура застывания (от -29 до -45°C), затрудняющая его использование в районах Крайнего Севера, значительная склонность к дымлению, увеличивающему содержание токсичных веществ в отработавших продуктах сгорания, довольно сложная технология получения, а также ограниченные ресурсы для получения этого топлива.

Известно авиационное сконденсированное топливо (АСКТ) для газотурбинных двигателей на основе смеси парафиновых углеводородов общей формулы CnH2n+2, содержащей в качестве парафиновых углеводородов парафиновую фракцию C3-C8 при следующем соотношении компонентов, масс. пропан C3H8 - 6-10, н-бутан C4H10 - 13-22, изобутан C4H10 - 34-48, н-пентан C5H12 - 10-12, изопентан C5H12 - 10-15, гексаны C6H14 - 5-11, гептаны C7H16 - 0,8-5,0, октаны C8H18+высшие - 0,4-2,1 (Патент РФ 2044032).

Однако при всех своих преимуществах АСКТ обладает некоторыми недостатками, ограничивающими возможность его широкого применения, особенно в разных вариантах использования. В частности, в силу того что АСКТ практически не содержит полярных гетероатомных примесей, оно имеет несколько худшие по сравнению с авиакеросинами, например с ТС-1, противоизносные и противоокислительные свойства. Это затрудняет непосредственное использование АСКТ на летательных аппаратах и в авиадвигателях, рассчитанных для работы на традиционных топливах (авиакеросине и авиабензине), без доработки их топливных систем. Кроме того, из-за повышенного давления насыщенных паров при плюсовых температурах АСКТ невозможно даже в зимних условиях (температуры на земле до +5°C в некоторых районах Сибири и Севера бывают до 10 месяцев в году) размещать в обычных топливных баках с открытым дренажем, используемых на летательных аппаратах для традиционных топлив с высотой полета, не превышающей 7 км (вертолеты, малая, легкомоторная и региональная авиация, средние магистральные самолеты и т.п.). Поэтому для хранения АСКТ на борту летательного аппарата необходимо использовать топливные баки с закрытым дренажем, рассчитанные на повышенное давление. К недостаткам АСКТ можно также отнести его меньшую плотность по сравнению с традиционными топливами и относительно небольшой хладоресурс, более высокие показатели которых могут потребоваться от топлива при некоторых условиях применения в авиационной и ракетно-космической технике.

Известно авиационное сконденсированное топливо, содержащее, % масс.: C3H8 - 0,1-12,0, ΣC4H10 - 24,0-72,0, ΣC5H12 - 4,0-36,0, ΣC6H14 - 0,3-14,0, ΣC7H16 - 0,1-9,0, ΣC8H18 - 0,01-3,0, ΣC9H20-C12H26 - остальное до 100% (Патент РФ №2458101).

Это топливо обладает практически теми же недостатками, которые присущи АСКТ (Патент РФ 2044032), так как они имеют одну и ту же сырьевую базу и близкий композиционный состав.

Техническим результатом предлагаемого изобретения является расширение ассортимента авиационного сконденсированного топлива, получаемого из углеводородного сырья, повышение разновариантности и эффективности его использования в существующих и в перспективных поршневых, газотурбинных и жидкостных двигателях, рассчитанных для работы на традиционных топливах (авиабензине, авиакеросине и др.).

Этот результат достигается тем, что по первому варианту АВИАЦИОННОЕ СКОНДЕНСИРОВАННОЕ ТОПЛИВО включает смесь парафиновых углеводородов, при следующем содержании компонентов, % масс.: ΣC4H10 - 25,0-82,0; ΣC5H12 - 4,0-41,0; ΣC6H14 - 0,1-16,0; ΣC7H16 - 0,1-11,0; ΣC8H18 - 0,01-5,0; ΣC9H2012Н26 - остальное до 100%, а также противоизносные и антиокислительные присадки, при этом суммарное содержание противоизносных и антиокислительных присадок составляет не более 0,01% масс, ароматических и нафтеновых углеводородов составляет не более 6,0% масс, а давление насыщенных паров смеси составляет, МПа (абс) при 20°C - не более 0,1; по второму варианту авиационное сконденсированное топливо включает смесь парафиновых углеводородов при следующем содержании компонентов, % масс: СН4 - 0,1-99; С2Н6 - 0,1-99; С3Н8 - 0,1-99; C 4 H 10 - 0,1-99; C 5 H 12 - 0,1-99, а также противоизносные и антиокислительные присадки, при этом суммарное содержание противоизносных и антиокислительных присадок составляет не более 0,01% масс, ароматических и нафтеновых углеводородов составляет не более 6,0% масс, а давление насыщенных паров смеси составляет, МПа (абс.) при -162°C - не более 0,1, а при -82,6°C - не более 4,64.

Учитывая, что все вышеуказанные варианты авиационного сконденсированного топлива должны работать на тех же двигателях и храниться в тех же условиях, что и традиционные авиатоплива - керосин или бензин - они должны обладать близкими к ним противоизносными и антиокислительными свойствами. Обычно для улучшения этих свойств в традиционные авиатоплива добавляют соответствующие присадки - антиокислительные, например, «Агидол-1» (2,6-ди-трет-бутил-4-метилфенол) по ТУ 385901237-90, ее зарубежный аналог «Ионол» или другие, и противоизносные, например, «К» (дистиллированные нафтеновые кислоты) по ГОСТ 13302-77), ее зарубежный аналог Хайтек-580 или другие. Эффективность таких присадок достаточно высока. Их используют в различных композициях практически для всех, особенно, гидроочищенных реактивных топливах.

В качестве примера можно привести результаты испытаний на натурном стенде ВНИИ НП гидроочищенного авиатоплива типа ТС-1, чистого и с противоизносной присадкой «К». Износ сфер плунжеров топливных насосов в миллиметрах при одном и том же времени наработки составлял: без добавления присадки - 4,56, при добавлении присадки в топливо в количестве 0,003% - 1,15. Аналогично и с антиокислительными присадками. Возрастание кислотности (кислотного числа К) того же топлива без использования присадок после 12 месяцев хранения при температуре 45-50°C составляет 500-700% по сравнению с топливом с добавленными антиокислителями в оптимальной (0,003-0,004%) концентрации. (В.М.Капустин. «Нефтяные и альтернативные топлива с присадками и добавками». Москва. «КолосС». 2008 г. Стр. 145 и 151).

Специальных исследований влияния вышеуказанных присадок на характеристики АСКТ, в силу отсутствия его производства, до сих пор не проводилось. Однако можно предположить, учитывая сырьевое родство АСКТ и традиционных топлив, что эти присадки также влияют на эксплуатационные свойства и сжиженных газов. Это было подтверждено в ходе лабораторных испытаний топлива-имитатора АСКТ - сжиженного изопентана (2-метилбутан), являющемся одним из основных компонентов АСКТ и наиболее близкого к нему по эксплуатационным показателям (таблица 1) - с противоизносной и антиокислительной присадками в концентрации 0,003% масс, каждая. Они показали, что эксплуатационные характеристики изопентана близки к нормам, установленным для топлива ТС-1.

Термоокислительная стабильность АСКТ должна быть выше, чем у авиакеросина, поскольку АСКТ - это парафиновое топливо, которое не содержит не термостабильных гетероатомных соединений. Поэтому для длительного его хранения и сохранения качества не потребуется введение в него большей концентрации антиокислительной присадки, чем для авиакеросина. С другой стороны, вследствие более низкой вязкости, АСКТ имеет худшие противоизносные свойства. Поэтому для их улучшения могут потребоваться более высокие концентрации противоизносных присадок, чем для авиакеросина. Точные их величины можно установить только в процессе лабораторных, стендовых (на представительном натурном двигателе) и летных испытаний опытно-промышленной партии АСКТ. Таким образом общий анализ показывает, что суммарное содержание противоизносных и антиокислительных присадок в АСКТ будет соответствовать присадкам в традиционные авиатоплива и вряд ли превысит 0,01% АСКТ масс, (как и для авиакеросина).

Пример осуществления изобретения.

В авиационное сконденсированное топливо, полученное с использованием одного из известных способов, которые могут быть реализованы на всех газоперерабатывающих заводах, установках комплексной переработки газа и малогабаритных мобильных промысловых установках подготовки газа, добавляется антиокислительная присадка, например, «Агидол-1», ее зарубежный аналог «Ионол» или другие, и противоизносная присадка, например, «К», ее зарубежный аналог Хайтек-580 или другие.

В качестве известного способа получения авиационного сконденсированного топлива подготовки и фракционирования может быть использован, например, способ, включающий компримирование углеводородного сырья до 35 кгс/см2 и охлаждение дросселированием, внешним или внутренним холодильным циклом до минус 1030°C, выделение сконденсированных углеводородов. При этом в зависимости от условий компримирования и охлаждения (давления и температуры), а также отгонки ее легкой части C13 известными способами выделяют жидкую углеводородную смесь заданного состава, представляющую собой авиационное сконденсированное топливо.

При получении авиационного сконденсированного топлива одним из известных способов, включающем выделение из углеводородного сырья путем подготовки и фракционирования смеси парафиновых углеводородов общей формулы CnH2n+2, новым является то, что при этом выделяют смесь парафиновых и олефиновых углеводородов, включающую фракцию С412, при следующем соотношении компонентов, % масс:

причем суммарное содержание олефиновых углеводородов CnH2n в смеси - не более 10% масс, а давление насыщенных паров смеси составляет, МПа (абс) при 20°C - не более 0.1;

При получении авиационного сконденсированного топлива одним из известных способов, включающем выделение из углеводородного сырья путем подготовки и фракционирования смеси парафиновых углеводородов общей формулы CnH2n, новым является то, что при этом выделяют смесь парафиновых углеводородов, включающую фракцию С15, причем, в зависимости от необходимых условий «плотность-хладоресурс-минимальная температура», в композиции допускается наличие метана (СН4), этана (C2H6), пропана (С3Н8), бутана (С4Н10) и пентана (С5Н12) до 99% каждого.

Таким образом, в результате реализации изобретения будет обеспечено расширение ассортимента авиационного топлива, получаемого из углеводородного сырья, повышение разновариантности и эффективности его использования в существующих и в перспективных поршневых, газотурбинных и жидкостных двигателях, рассчитанных для работы на традиционных топливах (авиабензине, авиакеросине и др.), приближение его эксплуатационных свойств к уровню традиционных авиатоплив, обеспечение возможности размещения его в зимних условиях при температуре не превышающей +5°C (такие температуры в некоторых районах Сибири и Севера бывают до 10 месяцев в году) в обычных топливных баках летательных аппаратов с высотой полета, не превышающей 7 км (вертолеты, малая и легкомоторная авиация, средние магистральные самолеты и т.п.), а также увеличение плотности АСКТ и повышение его хладоресурса.

1. Авиационное сконденсированное топливо, включающее смесь парафиновых углеводородов, при следующем содержании компонентов, % масс.: ΣC4H10 - 25,0-82,0; ΣC5H12 - 4,0-41,0; ΣC6H14 - 0,1-16,0; ΣC7H16 - 0,1-11,0; ΣC8H18 - 0,01-5,0; ΣC9H20-C12H26 - остальное до 100%, а также включающее противоизносные и антиокислительные присадки, при этом суммарное содержание противоизносных и антиокислительных присадок составляет не более 0,01% масс., ароматических и нафтеновых углеводородов составляет не более 6,0% масс., а давление насыщенных паров смеси составляет, МПа (абс.), при 20°C - не более 0,1.

2. Авиационное сконденсированное топливо, включающее смесь парафиновых углеводородов при следующем содержании компонентов, % масс.: CH4 - 0,1-99; C2H6 - 0,1-99; C3H8 - 0,1-99; ΣC4H10 - 0,1-99; ΣC5H12 - 0,1-99, а также включающее противоизносные и антиокислительные присадки, при этом суммарное содержание противоизносных и антиокислительных присадок составляет не более 0,01% масс., ароматических и нафтеновых углеводородов составляет не более 6,0% масс., а давление насыщенных паров смеси составляет, МПа (абс.), при -162°С - не более 0,1, а при -82,6°C - не более 4,64.



 

Похожие патенты:
Изобретение описывает способ получения авиационного бензина Б-100/130 на основе бензина, содержащего компоненты каталитического риформинга, изомеризации, алкилирования с добавлением антиокислительной присадки, тетраэтилсвинца и красителя, характеризующийся тем, что в качестве основы используется фракция, выкипающая в интервале 40-145°C, выделяемая из целевого автомобильного бензина АИ-95 ректификацией по периодической или непрерывной схеме.

Изобретение описывает композицию автомобильного бензина, которая содержит изомеризат, ароматические углеводороды, метил-трет-бутиловый эфир, алкилбензин, бензиновую фракцию, при этом в качестве изомеризата используют концентрат изопарафиновых углеводородов С5-С6 установки изомеризации легких бензиновых фракций с рециклом нормального гексана или изомеризата с полным рециклом нормального пентана и нормального гексана, в качестве ароматических углеводородов используют толуол, в качестве бензиновой фракции используют бензин, полученный каталитическим крекингом глубоко гидроочищенного вакуумного дистиллата, и дополнительно содержит изобутан и антиокислительную присадку Агидол при следующем соотношении компонентов, мас.%: концентрат изопарафиновых углеводородов С5-С6 15-32, толуол 26-35, метил-трет-бутиловый эфир 13-14,6, алкилбензин до 15, изобутан 1-8, Агидол до 0,2, бензин, полученный каталитическим крекингом глубоко гидроочищенного вакуумного дистиллата, до 100.

Изобретение относится к способу переработки отработанных нефтепродуктов. Способ включает процесс предварительного обезвоживания и отбензинивания сырья, термический крекинг исходного сырья в крекинг-реакторе с отделением парообразных продуктов от тяжелой фракции, конденсацию парообразных продуктов, разделение конденсата на легко- и высококипящую фракции, после чего легкокипящие фракции конденсируют, а из полученной водно-бензиновой смеси путем отстоя отделяют воду, которую в дальнейшем очищают.

Изобретение описывает топливную композицию авиационного бензина, которая включает изооктан, изопентан, толуол, тетраэтилсвинец в виде этиловой жидкости, при этом композиция содержит допустимое количество примесей углеводородов С4-С12, входящих в состав изооктана, изопентана и толуола, при следующем соотношении компонентов, мас.%: изопентан 10-25 толуол 10-28 примеси углеводородов С4-С12 до 25 изооктан до 100 с последующим введением тетраэтилсвинца в количестве 0,30-0,50 мл/дм3 бензина.

Изобретение относится к способу получения судового маловязкого топлива, включающему перегонку нефти с выделением дизельной фракции и каталитическую гидроочистку.

Изобретение относится к топливной композиции авиационного неэтилированного бензина, которая в качестве изомерных углеводородов содержит технический изооктан, изопентан или изомеризат С6 или их смесь; в качестве ароматических углеводородов содержит толуол или фракцию бензина риформинга НК-180°C или их смесь, а также дополнительно содержит монометиланилин (ММА) и метил-трет-бутиловый эфир (МТБЭ) при следующем соотношении компонентов, мас.%: технический изооктан 30-70 изопентан или изомеризат C6 или их смесь 10-25 толуол или фракция бензина риформинга НК-180°C   или их смесь 8-40 ММА 0,5-2,0 МТБЭ до 15 Топливная композиция может содержать присадки, выбранные из группы: антикоррозионные, антистатические, противообледенительные и другие, разрешенные стандартом на авиационный бензин.

Изобретение описывает топливо для турбореактивных двигателей, которое содержит от 50 до 99 масс. % мезитилена и от 1 до 50 масс.

Изобретение относится к композиции автомобильного бензина, которая включает изомеризат, ароматические углеводороды, алкилбензин, метил-трет-бутиловый, этил-трет-бутиловый эфиры, изооктан, при этом в качестве изомеризата используют концентрат изопарафиновых углеводородов C5-С6 установки изомеризации легких бензиновых фракций с рециклом нормального гексана или изомеризата с полным рециклом нормального пентана и нормального гексана, в качестве ароматических углеводородов - толуол или п-ксилол или их смесь, и дополнительно содержит изобутан при следующем соотношении компонентов, % масс.: Технический результат заключается в получении композиции автомобильного бензина для двигателей с форсированным режимом работы, обладающей высокими антидетонационными свойствами, пониженной по сравнению с аналогами чувствительностью, и полностью соответствует действующему ГОСТ Р 51866-2002 (ЕН 228-2004) на автомобильные бензины.
Изобретение описывает универсальное дизельное топливо, состоящее из базового компонента с присадками, в количестве 0,02-0,04 мас.% противоизносной присадки и 0,15-0,30 мас.% цетаноповышающей присадки, при этом базовый компонент представляет собой фракцию нефти, выкипающую в пределах 170-340°C, или ее смесь с газойлем замедленного коксования и/или каталитического крекинга, выкипающих в пределах 170-340°C, с последующими гидроочисткой и гидродепарафинизацией или гидроизомеризацией, а также глубокой стабилизацией до температуры начала кипения не ниже 175°C, позволяющих получить показатели качества, удовлетворяющие дизельному топливу как для умеренного климата, так и для холодного и арктического климата: Цетановое число, не менее 51 Плотность при 15°C, кг/м3 820-840 Температура вспышки в закрытом тигле, °C, не менее 55 Кинематическая вязкость при 40°C, мм2/с 2,0-4,0 Технический результат заключается в получении универсального дизельного топлива, которое обладает повышенной температурой вспышки и кинематической вязкостью, что позволяет использовать его как для холодного и арктического топлива, так и для умеренного климата.
Изобретение описывает способ получения авиационного бензина Б-95/130 на основе бензина, содержащего компоненты каталитического риформинга, изомеризации, алкилирования с добавлением антиокислительной присадки, тетраэтилсвинца и красителя, при этом в качестве основы используется фракция, выделяемая из целевого автомобильного бензина АИ-92 ректификацией по периодической или непрерывной схеме и выкипающая в интервале 40-145°C.

Изобретение относится к способу переработки жидкого углеводородного сырья, включающему предварительную подготовку потока сырья и дальнейшую переработку с разделением на фракции.

Изобретение относится к способу получения судового маловязкого топлива, включающему перегонку нефти с выделением дизельной фракции и каталитическую гидроочистку.

Изобретение относится к способу подготовки нефти и может быть использовано в нефтегазодобывающей промышленности. Изобретение касается способа подготовки нефти, включающего предварительную сепарацию, блок обезвоживания и обессоливания и концевую сепарацию, в котором в качестве концевого сепаратора используют колонну с насадкой и рибойлер.

Изобретение относится к нефтеперерабатывающей промышленности. Завод по переработке углеводородного сырья в северных регионах включает сырьевой и продуктовый резервуарные парки, установку стабилизации углеводородного сырья, установку атмосферной перегонки стабильного углеводородного сырья, установку газофракционирования углеводородного газа, выделенного на установке атмосферной перегонки и установке стабилизации, установку изомеризации, гидроочистки и риформинга фракции бензина, выделенного на установке атмосферной перегонки, с получением высокооктановых бензинов, установку гидроочистки фракции дизельного топлива, выделенного на установке атмосферной перегонки, и ее депарафинизации с выработкой дизельного топлива либо зимнего, либо арктического, установку санитарной очистки от кислых газов с применением воды в качестве поглотителя кислых газов с последующей утилизацией стоков в поглощающие скважины для закачки в пласт, установку компаундирования различных потоков углеводородного сырья, установку компаундирования товарных продуктов, таких как остаток фракционирования атмосферной перегонки, балластные фракции установок вторичной переработки и часть стабилизированного исходного сырья, с получением отгружаемой товарной нефти, и систему трубопроводов, связывающих технологические установки между собой и резервуарными парками.

Изобретение относится к извлечению потоков гидрообработанных углеводородов. Изобретение касается способа гидрообработки с извлечением гидрообработанных углеводородов, включающего гидрообработку углеводородного сырья в реакторе гидрообработки с получением потока эффлюента гидрообработки; отпаривание относительно холодного потока эффлюента гидрообработки, который является частью указанного потока эффлюента гидрообработки, в холодной отпарной колонне с помощью отпаривающей среды с получением холодного отпаренного потока; отпаривание относительно горячего потока эффлюента гидрообработки, который является частью указанного потока эффлюента гидрообработки, в горячей отпарной колонне с помощью отпаривающей среды с получением горячего отпаренного потока и фракционирование холодного отпаренного потока и горячего отпаренного потока в колонне конечного фракционирования для получения потоков продукта.
Изобретение относится к нефтегазоперерабатывающей промышленности. Изобретение касается способа ректификации углеводородных смесей, включающего ввод метансодержащего газа в углеводородную смесь, нагревание и подачу полученной смеси в питательную секцию ректификационной колонны.

Изобретение относится к нефтяной промышленности и может найти применение при подготовке нефти на нефтепромысле с выделением широкой фракции легких углеводородов (ШФЛУ).

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для безотходной переработки эмульсионных и эмульсионно-суспензионных нефтешламов, отработанных моторных масел и т.п.

Изобретение относится к химической, нефтехимической и нефтеперерабатывающей промышленности. Изобретение касается способа испарения многокомпонентных смесей, в котором смесь нагревают при повышенном давлении, а затем производят трехкратное испарение при снижении давления, полученные пары смешивают и выводят из системы, а жидкость выводят после третьей стадии испарения.
Изобретение относится к способам получения углеводородного топлива для ракетной техники и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа получения углеводородного топлива повышенной плотности для ракетной техники из нефтей Ванкорского месторождения путем выделения фракции, выкипающей внутри интервала температур 120-270°C с получением топлива.

Изобретение относится к области нефтепереработки. Установка первичной перегонки нефти содержит сообщенную с трубой подвода сырой нефти первую колонну, верхняя зона которой предназначена для отделения паров бензина для последующего охлаждения и конденсации, а нижняя зона которой предназначена для направления через нагревательное устройство отбензиненной нефти во вторую колонну, используемую для отвода бензина с верхней зоны и получения мазута в нижней части этой колонны, а также получения керосина и дизельной фракции в средней части колонны, способ отличается тем, что установка снабжена последовательно расположенными теплообменниками, расположенными на входе подвода сырой нефти в первую колонну для нагрева этой сырой нефти за счет рекуперации тепла, снимаемого последовательно с потоков бензина, керосина, дизельной фракции и мазута для повышения температуры сырой нефти до 250-260°С, электродегидратором для очистки сырой нефти от солей и воды, расположенным перед входом подогретой сырой нефти в теплообменник, использующий рекуперацию тепла, снимаемого с выходной трубы выдачи в виде готового продукта мазута, последовательно расположенными воздушным холодильником и нефтяным холодильником для охлаждения и конденсации отделенных паров бензина с верхней зоны первой колонны для получения конденсата с температурой +40-+60°С и направления его в рефлюксную емкость для отделения углеводородного газа и возврата по крайней мере части прямогонного бензина в виде холодного орошения в верхнюю зону первой колонны, последовательно расположенными воздушным холодильником и нефтяным холодильником для охлаждения и конденсации отделенных паров бензина с верхней зоны второй колонны для получения конденсата и направления его в рефлюксную емкость для отделения углеводородного газа и возврата по крайней мере части бензина в виде холодного орошения в верхнюю зону второй колонны, при этом указанные нефтяные холодильники сообщены с системой подвода холодной сырой нефти к установке. Технический результат - повышение уровня утилизации тепла, снижение капиталовложений за счет снижения затрат электроэнергии, воды, химических реагентов, топлива. 1 ил.
Наверх