Состав для повышения нефтеотдачи пластов и способ его приготовления

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения нефтеотдачи пластов высоковязкой нефти с низкой пластовой температурой путем изоляции или ограничения водопритока к нефтяным скважинам. Состав для повышения нефтеотдачи пластов, содержащий карбамид, соль алюминия, уротропин и воду, дополнительно содержит метилцеллюлозу и глицерин в следующем соотношении компонентов, мас.%: карбамид 2,0-25,0, соль алюминия 2,0-10,0, метилцеллюлоза 0,5-1,5, уротропин 2,0-8,0, глицерин 0-30,0, вода остальное. Способ приготовления указанного выше состава, включающий растворение уротропина в воде, добавление карбамида, перемешивание, добавление в раствор глицерина и предварительно приготовленного 1,0-2,0%-ного раствора метилцеллюлозы, перемешивание до полного растворения, добавление указанной соли алюминия с перемешиванием до полного растворения. Изобретение развито в зависимом пункте. Технический результат - повышение эффективности состава. 2 н. и 1 з.п. ф-лы, 11 пр., 2 табл., 2 ил.

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения нефтеотдачи пластов высоковязкой нефти с низкой пластовой температурой путем изоляции или ограничения водопритока к нефтяным скважинам.

Известны составы для повышения нефтеотдачи пластов, содержащие хлорид или натрат алюминия, карбамид и воду (пат. РФ №1654554, кл. E21B 43/22, опубл. 07.06.1991), соль алюминия, карбамид, неионогенный и/или анионактивный ПАВ и воду (пат. РФ №2055167, кл. E21B 43/22, опубл. 27.02.1996), соль алюминия (хлорид алюминия), карбамид, цеолит натрия и воду (пат. РФ №2143551, кл. E21B 43/22, опубл. 27.12.1999). В них используется способность системы соль алюминия - карбамид - вода непосредственно в пласте при тепловом воздействии генерировать неорганический гель и CO2. За счет тепловой энергии закачиваемого теплоносителя карбамид постепенно гидролизуется, образуя CO2 и аммиак, pH раствора увеличивается, происходит гидролиз ионов алюминия и через определенное время во всем объеме раствора образуется гель. В результате образования геля снижается проницаемость пласта для воды. Однако составы можно использовать только для пластов с температурой выше 60-70°C, кроме того, гели не обладают достаточной прочностью, что снижает эффективность их применения.

Известны составы для изоляции водопритока к скважинам, полученные из растворов, содержащих соли алюминия, карбамид и воду, с добавлением в состав водорастворимого полимера - полиакриламида (пат. РФ №2076202, кл. E21B 43/22, опубл. 27.03.1997 и пат. РФ №2348792, кл. E21B 33/138, C03K 8/508, опубл. 10.03.2009), и состав для повышения нефтеотдачи пластов, содержащий карбамид, хлорид алюминия, водорастворимый полимер - метилцеллюлозу и воду (пат. РФ №21174592, кл. E21B 43/22, опубл. 10.10.2001). Гели имеют высокие структурно-механические свойства, однако гелеобразование в этих составах происходит при температурах выше 60-70°C, поэтому невозможно использовать их для низкотемпературных и охлажденных закачкой воды пластов.

Известны составы для повышения нефтеотдачи пластов, содержащие хлорид алюминия, карбамид и воду с добавлением серной кислоты (пат. РФ №2143550, кл. E21B 43/22, E21B 33/138, опубл. 27.12.1999), хлорида цинка (пат. РФ №2186956, кл. E21B 43/22, опубл. 10.08.2002), хлорида цинка и фосфорной кислоты (пат. РФ №2196883, кл. E21B 43/22, опубл. 20.01.2003). Гелеобразование в этих составах происходит при температурах ниже 60-70°C. Однако гели имеют сравнительно невысокую прочность, что снижает эффективность применения составов.

Известен состав для повышения нефтеотдачи пластов, содержащий соль алюминия, карбамид, уротропин, поливиниловый спирт и борную кислоту (пат. РФ №2410406, кл. C09K 8/60, опубл. 27.01.2011) и способ его получения, который заключается в растворении компонентов состава в пресной воде. Состав обладает высокими структурно-механическими свойствами, используется для пластов с низкой пластовой температурой (ниже 60°C). Однако входящий в состав поливиниловый спирт (ПВС) - водорастворимый полимер с верхней критической температурой растворения - с борной кислотой образует гели при температурах ниже 10°C. При использовании состава на промыслах в зимних условиях при низких температурах возможно преждевременное структурирование.

Наиболее близким по технической сущности является состав для повышения нефтеотдачи пластов, содержащий карбамид 4.0-16.0 мас. %, алюминий хлористый или азотнокислый (в пересчете на безводный) 2.0-4.0 мас. %, уротропин 2.0-8.0 мас. % и воду (пат. РФ №2066743, кл. E21B 43/22, опубл. 20.09.1996) и способ его получения, заключающийся в растворении компонентов состава в воде. Состав позволяет получить объемный гель гидроксида алюминия при низких пластовых температурах (ниже 60°C). Однако гель, полученный из раствора данного состава, не обладает достаточной сдвиговой прочностью. Гель довольно быстро подвергается старению, наблюдается склонность к синерезису. Гель гидроксида алюминия имеет низкую структурную устойчивость и способен к постепенному вымыванию из коллектора нагнетаемой или пластовой водой. Кроме того, состав имеет довольно высокую температуру застывания.

Задачей предлагаемого изобретения является создание состава с регулируемыми физико-химическими свойствами (плотность, вязкость, время гелеобразования) для повышения нефтеотдачи пластов высоковязкой нефти с низкой температурой (ниже 60°C), образующего в пласте гель с улучшенными структурно-механическими свойствами; повышение эффективности состава за счет увеличения сдвиговой прочности образующегося в пласте геля, снижения температуры замерзания состава, снижения синерезиса геля.

Технический результат достигается тем, что в предлагаемый состав, включающий карбамид, соль алюминия, уротропин и воду, дополнительно вводят метилцеллюлозу и глицерин. Способ приготовления состава для повышения нефтеотдачи пластов состоит в следующем: уротропин растворяют во всем необходимом количестве воды, потом добавляют карбамид и тщательно перемешивают. Затем в раствор добавляют нужное количество глицерина и необходимое количество предварительно приготовленного 1.0-2.0%-ного раствора метилцеллюлозы. Тщательно перемешивают до полного растворения компонентов состава и при перемешивании добавляют необходимое количество соли алюминия. Перемешивают до полного растворения соли алюминия и получают необходимый состав при следующем соотношении компонентов, % мас.: карбамид - 2.0-25.0; соль алюминия - 2.0-10.0; метилцеллюлоза - 0.5-1.5; уротропин - 2.0-8.0; глицерин - 0-30.0 и вода - остальное. В качестве солей алюминия используют хлористый или азотнокислый алюминий (безводные или гидратированные) или их частично гидролизованные формы.

Предлагаемый состав позволяет получить в пластовых условиях при низких температурах (ниже 60°C) комбинированный гель, «гель в геле», в котором внутри полимерного геля происходит образование геля гидроксида алюминия. Уротропин, входящий в состав, снижает температуру гелеобразования раствора метилцеллюлозы, и сокращает время гелеобразования неорганического геля системы соль алюминия - карбамид. Добавлением метилцеллюлозы и глицерина можно регулировать вязкость раствора, глицерином - плотность и температуру замерзания раствора. Метилцеллюлоза и глицерин, входящие в предлагаемый состав, позволяют в пластовых условиях повысить сдвиговую прочность образующегося в пласте геля, улучшить сцепление геля с породой пласта и исключить старение геля за счет синерезиса.

В качестве показателей структурно-механических свойств гелей используют значения вязкости, модуля упругости, предельного статического напряжения сдвига геля и вязкость геля после разрушения структуры при скорости сдвига 243 с-1. Плотность растворов определяют пикнометрическим методом при температуре 24°C. Время гелеобразования в растворах при 24°C определяют визуально, температуры замерзания растворов с помощью жидкостного криостата НААКE DC 30 - К20.

Измерения вязкости растворов и гелей проводят с использованием вибрационного вискозиметра «Реокинетика» с камертонным датчиком. В качестве калибровочной жидкости используют дистиллированную воду. Предельное статическое напряжение сдвига и зависимость вязкости гелей от скорости сдвига (фиг. 1) определяют с помощью ротационной вискозиметрии с использованием вискозиметра "Реотест-2.1.М" (измерительная система коаксиальных цилиндров S/S2).

Определение модуля упругости гелей проводят на основании диаграмм «напряжение - деформация», полученных в квазистатическом режиме сжатия образцов. Используют оригинальную аппаратуру на базе микрометра и электронных весов. Модуль упругости рассчитывают как угол наклона начального линейного участка зависимости напряжения сжатия от величины деформации, для которого соблюдается закон Гука. Значения модуля упругости гелей, полученных из растворов прототипа и предлагаемого состава, определяли сразу после гелеобразования и через 7 суток.

Синерезис - одна из форм проявления старения гелей, самопроизвольное уменьшение объема гелей, сопровождающееся отделением жидкости. Старение геля определяли через 3 и 5 суток выдерживания при 24°C, с повышением концентрации метилцеллюлозы выделение жидкости из геля снижается, (фиг. 2), при добавлении глицерина жидкость не отделяется.

Приводим примеры конкретных составов.

Пример 1 (по прототипу). К 740.0 г пресной воды добавляют 60.0 г уротропина, после полного растворения в раствор добавляют 140.0 г карбамида и 60.0 г полиоксихлорида алюминия Аква-Аурат-30. После тщательного перемешивания получают 1000.0 г состава, содержащего 14.0% мас. карбамида, 6.0% мас. соли алюминия, 6.0% мас. уротропина и 74.0% мас. воды. Физико-химические характеристики раствора приведены в таблице 1. Полученный состав выдерживают при 24°C до образования геля. Время гелеобразования состава - 4 часа. Затем проводят измерения вязкости, упругости полученного геля. Определяют значение предельного статического напряжения сдвига и определяют зависимость вязкости геля от скорости сдвига. Синерезис геля за 3 суток составляет 39.8%. Результаты исследований геля приведены в таблице 2 и фиг. 1, 2.

Пример 2. 60.0 г уротропина растворяют в 240.0 г пресной воды, после полного растворения в раствор добавляют 140.0 г карбамида и потом добавляют 500.0 г 2%-ного раствора метилцеллюлозы марки МС 2000 S. Затем при перемешивании добавляют 60.0 г полиоксихлорида алюминия Аква-Аурат-30. После тщательного перемешивания получают 1000.0 г состава, содержащего 1.0% мас. метилцеллюлозы, 14.0% мас. карбамида, 6.0% мас. соли алюминия, 6.0% мас. уротропина и 73.0% мас. воды. Физико-химические характеристики раствора приведены в таблице 1. Полученный состав выдерживают при 24°C до образования геля. Время гелеобразования состава - 5 часов. Затем проводят измерения вязкости, упругости полученного геля. Определяют значение предельного статического напряжения сдвига и определяют зависимость вязкости геля от скорости сдвига. Синерезис геля за 3 суток составляет 3.3%. Результаты исследований геля приведены в таблице 2 и фиг. 1, 2.

Пример 3. К 365.0 г пресной воды добавляют 60.0 г уротропина, после полного растворения в раствор добавляют 140.0 г карбамида и потом 375.0 г 2%-ного раствора метилцеллюлозы марки МС 2000 S. Затем при перемешивании добавляют 60.0 г полиоксихлорида алюминия Аква-Аурат-30. После тщательного перемешивания получают 1000.0 г состава, содержащего 0.75% мас. метилцеллюлозы, 14.0% мас. карбамида, 6.0% мас. соли алюминия, 6.0% мас. уротропина и 73.25% мас. воды Полученный состав выдерживают при 24°C до образования геля. Время гелеобразования состава - 4.5 часа. Затем проводят измерения вязкости, упругости полученного геля. Определяют значение предельного статического напряжения сдвига и определяют зависимость вязкости геля от скорости сдвига. Синерезис геля за 3 суток составляет 11.2%. Результаты исследований раствора и геля приведены в таблицах 1, 2 и фиг. 1, 2.

Пример 4. 60.0 г уротропина растворяют в 240.0 г пресной воды, после полного растворения в раствор добавляют 140.0 г карбамида и потом добавляют 500.0 г 1%-ного раствора метилцеллюлозы марки МС 2000 S. Затем при перемешивании добавляют 60.0 г полиоксихлорида алюминия Аква-Аурат-30. После тщательного перемешивания получают 1000.0 г состава, содержащего 0.5% мас. метилцеллюлозы, 14.0% мас. карбамида, 6.0% мас. соли алюминия, 6.0% мас. уротропина и 73.5% мас. воды. Полученный состав выдерживают при 24°C до образования геля. Время гелеобразования состава - 4 часа. Затем проводят измерения вязкости и упругости полученного геля. Определяют значение предельного статического напряжения сдвига и зависимость вязкости геля от скорости сдвига. Синерезис геля за 3 суток составляет 23.7%. Результаты исследований раствора и геля приведены в таблицах 1, 2 и фиг. 1, 2.

Пример 5. К 195.0 г пресной воды добавляют 50.0 г уротропина, при перемешивании в смесь добавляют 140.0 г карбамида, потом 200.0 г глицерина и 375.0 г 2%-ного раствора метилцеллюлозы марки МС 2000 S. Затем при перемешивании добавляют 40.0 г AlCl3 (безводного). После тщательного перемешивания получают 1000.0 г состава, содержащего 0.75% мас. метилцеллюлозы, 14.0% мас. карбамида, 4.0% мас. соли алюминия, 5.0% мас. уротропина, 20.0% мас. глицерина и 56.25% мас. воды. Физико-химические характеристики раствора приведены в таблице 1. Полученный состав выдерживают при 24°C до образования геля. Время гелеобразования состава - 5.5-6 часов. Затем проводят измерения вязкости и упругости полученного геля. Определяют значение предельного статического напряжения сдвига и зависимость вязкости геля от скорости сдвига. Старения геля в виде отделяющейся жидкости в течение 3 суток не наблюдается. Результаты исследований геля приведены в таблице 2.

Пример 6. 80.0 г уротропина растворяют в 170.0 г -пресной воды, после растворения в раствор добавляют 300.0 г карбамида и потом добавляют 100.0 г глицерина и 250.0 г 2%-ного раствора метилцеллюлозы марки МС 2000 S. Затем при перемешивании добавляют 100.0 г полиоксихлорида алюминия Аква-Аурат-30. После тщательного перемешивания получают 1000.0 г состава, содержащего 0.5% мас. метилцеллюлозы, 30.0% мас. карбамида, 10.0% мас. соли алюминия, 8.0% мас. уротропина, 10.0% мас. глицерина и 41.5% мас. воды. Полученный состав выдерживают при 24°С до образования геля. Время гелеобразования состава - 3-3.5 часа. Затем проводят измерения вязкости и упругости полученного геля. Определяют значение предельного статического напряжения сдвига и зависимость вязкости геля от скорости сдвига. Синерезис геля за 3 суток составляет 13.8%. Результаты исследований раствора и геля приведены в таблицах 1,2.

Пример 7. К 215.0 г пресной воды добавляют 60.0 г уротропина, после полного растворения в раствор добавляют 200.0 г карбамида, 200.0 г глицерина и потом 250.0 г 2%-ного раствора метилцеллюлозы марки МС 2000 S. Затем при перемешивании добавляют 75.0 г алюминия азотнокислого Аl(NО3)3·9Н2O. После тщательного перемешивания получают 1000.0 г состава, содержащего 0.5% мас. метилцеллюлозы, 20.0% мас. карбамида, 7.5% мас. соли алюминия, 6.0% мас. уротропина, 20.0% мас. глицерина и 46.0% мас. воды. Физико-химические характеристики раствора приведены в таблице 1. Полученный состав выдерживают при 24°C до образования геля. Время гелеобразования состава - 12 часов. Затем проводят измерения вязкости и упругости полученного геля. Определяют значение предельного статического напряжения сдвига и зависимость вязкости геля от скорости сдвига. Старения геля в виде отделяющейся жидкости в течение 3 суток не наблюдается. Результаты исследований геля приведены в таблице 2.

Пример 8. 60.0 г уротропина растворяют в 167.5 г пресной воды, после растворения в раствор добавляют 150.0 г карбамида, 300.0 г глицерина и затем добавляют 250.0 г 2%-ного раствора метилцеллюлозы марки МС 2000 S. Затем при перемешивании добавляют 72.5 г хлорида алюминия AlCl3·6H2O. После тщательного перемешивания получают 1000.0 г состава, содержащего 0.5% мас. метилцеллюлозы, 15.0% мас. карбамида, 7.25% мас. соли алюминия, 6.0% мас. уротропина, 30.0% мас. глицерина и 41.25% мас. воды. Полученный состав выдерживают при 24°C до образования геля. Время гелеобразования состава - 4 часа. Затем проводят измерения вязкости и упругости полученного геля. Определяют значение предельного статического напряжения сдвига и зависимость вязкости геля от скорости сдвига. Старения геля в виде отделяющейся жидкости в течение 3 суток не наблюдается. Результаты исследований раствора и геля приведены в таблицах 1, 2.

Пример 9. К 30.0 г пресной воды добавляют 30.0 г уротропина, после перемешивания в смесь добавляют 100.0 г карбамида. 300.0 г глицерина и затем 500.0 г 2%-ного раствора метилцеллюлозы марки МС 2000 S. Затем при перемешивании добавляют 40.0 г полиоксихлорида алюминия Аква-Аурат-30. После тщательного перемешивания получают 1000.0 г состава, содержащего 1.0% мас. метилцеллюлозы, 10.0% мас. карбамида, 4.0% мас. соли алюминия, 3.0% мас. уротропина, 30.0% мас. глицерина и 52.0% мас. воды. Полученный состав выдерживают при 24°C до образования геля. Время гелеобразования состава - 10-11 часов. Затем проводят измерения вязкости и упругости полученного геля. Определяют значение предельного статического напряжения сдвига и зависимость вязкости геля от скорости сдвига. Старения геля в виде отделяющейся жидкости в течение 3 суток не наблюдается. Результаты исследований раствора и геля приведены в таблицах 1, 2.

Пример 10. 50.0 г уротропина добавляют к 50.0 г пресной воды, после перемешивания в смесь добавляют 100.0 г карбамида и затем добавляют 750.0 г 2%-ного раствора метилцеллюлозы марки МС 2000 S. Затем при перемешивании добавляют 50.0 г полиоксихлорида алюминия Аква-Аурат-30. После тщательного перемешивания получают 1000.0 г состава, содержащего 1.5% мас. метилцеллюлозы, 10.0% мас. карбамида, 5.0% мас. соли алюминия, 5.0% мас. уротропина и 78.5% мас. воды. Полученный состав выдерживают при 24°C до образования геля. Время гелеобразования состава - 4-5 часов. Затем проводят измерения вязкости и упругости полученного геля. Определяют значение предельного статического напряжения сдвига и зависимость вязкости геля от скорости сдвига. Старения геля в виде отделяющейся жидкости в течение 3 суток не наблюдается. Результаты исследований приведены в таблицах 1,2.

Пример 11. К 140.0 г пресной воды добавляют 20.0 г уротропина, после полного растворения в раствор добавляют 20.0 г карбамида, 300.0 г глицерина и потом 500.0 г 2%-ного раствора метилцеллюлозы марки МС 2000 S. Затем при перемешивании добавляют 20.0 г полиоксихлорида алюминия Аква-Аурат-30. После тщательного перемешивания получают 1000.0 г состава, содержащего 1.0% мас. метилцеллюлозы, 2.0% мас. карбамида, 2.0% мас. соли алюминия, 2.0% мас. уротропина, 30.0% мас. глицерина и 63.0% мас. воды. Физико-химические характеристики раствора приведены в таблице 1. Полученный состав выдерживают при 24°C до образования геля. Время гелеобразования состава - 16 часов. Затем проводят измерения вязкости и упругости полученного геля.

Определяют значение предельного астатического напряжения сдвига и определяют зависимость вязкости геля от скорости сдвига. Старения геля в виде отделяющейся жидкости в течение 3 суток не наблюдается. Результаты исследований геля приведены в таблице 2.

В таблице 1 представлены результаты исследований физико-химических свойств растворов предлагаемого состава. Вязкость растворов можно варьировать от 25.0 до 190.0 мПа·с, значения плотности от 1.08 до 1.17 кг/м3. Добавление глицерина позволяет снизить температуру замерзания растворов состава с минус 14 до минус 29°C.

Из результатов, представленных в таблице 2 и на фиг. 1, 2, следует, что гели, полученные из растворов предлагаемого состава при температуре 24°C, имеют улучшенные структурно-механические свойства. Гели обладают пространственной структурой, способной сопротивляться сдвигающему напряжению, пока величина его не превысит значение критического (предельного) статического напряжения сдвига. Значения предельного статического напряжения сдвига для гелей предлагаемого состава выше, чем у прототипа, минимально на 30%, максимально в 7 раз.

Скорость вытеснения геля из блокированной зоны в пластовых условиях зависит от вязкости геля. Значения вязкости гелей, полученных из предлагаемого состава, выше, чем у прототипа, минимально на 25%, максимально в 11 раз. Вязкость геля после разрушения структуры при скорости сдвига 243 с-1 увеличивается в 3.3-13.5 раз по сравнению с прототипом.

Значения модуля упругости гелей, полученных из растворов прототипа и предлагаемого состава, измеренных сразу после гелеобразования, находятся на одном уровне. Но со временем упругость геля прототипа снижается в 4 раза, значения модуля упругости гелей предлагаемого состава через 7-8 суток увеличивается в 1.6-3 раза.

Добавление 1% метилцеллюлозы в предлагаемый состав позволяет снизить синерезис в 12 раз, при добавлении глицерина в состав жидкость из полученного геля не отделяется.

Таким образом, предлагаемый состав позволяет получить в пластовых условиях при низких пластовых температурах (ниже 60°C) гели, обладающие пространственной структурой, способные сопротивляться сдвигающему напряжению. Высокие значения предельного статического напряжения сдвига позволяют использовать противофильтрационные экраны при более высоких перепадах давления на блокированном участке пласта.

1. Состав для повышения нефтеотдачи пластов, содержащий карбамид, соль алюминия, уротропин и воду, отличающийся тем, что дополнительно содержит метилцеллюлозу и глицерин в следующем соотношении компонентов, мас.%:

Карбамид 2.0-25.0
Соль алюминия 2.0-10.0
Метилцеллюлоза 0.5-1.5
Уротропин 2.0-8.0
Глицерин 0-30.0
Вода Остальное

2. Состав для повышения нефтеотдачи пластов по п. 1, отличающийся тем, что в качестве соли алюминия состав содержит хлористый или азотнокислый алюминий безводные или гидратированные или их частично гидролизованные формы.

3. Способ приготовления состава по п. 1, включающий растворение уротропина в воде, добавление карбамида, перемешивание, добавление в раствор глицерина и предварительно приготовленного 1,0-2,0%-ного раствора метилцеллюлозы, перемешивание до полного растворения, добавление указанной соли алюминия с перемешиванием до полного растворения.



 

Похожие патенты:

Группа изобретений относится к ингибированию набухания глин. Технический результат - повышение эффективности ингибирования набухания глин с одновременным снижением опасности для человека и окружающей среды.

Изобретение относится к области строительства подземных хранилищ сжатого газа и жидких углеводородов и может быть использовано при цементировании заколонного пространства технологических скважин.
Изобретение относится к способу ингибирования образования отложений в водной системе, например отложений, содержащих барий, и может быть использовано при добыче нефти и для обработки воды.

Изобретение относится к нефтегазодобывающей промышленности, а именно к строительству скважин. Технический результат заключается в придании материалу технологически необходимых в условиях катастрофических поглощений, при наличии в пласте пор и трещин раскрытостью до 1 мм, кольматирующих свойств, прочности и силы сцепления с породой (адгезии), при одновременном придании свойства разрушения при кислотном воздействии в течение часа не менее 80% сформированного цементного камня и полного его разрушения в течение 2-3 ч.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам изоляции водоносных или обводненных пластов. Технический результат изобретения заключается в повышении нефтеотдачи и снижении отбора воды из добывающих нефтяных скважин.

Изобретение относится к области строительства, в частности к способам глушения скважин. Технический результат - повышение эффективности глушения скважин при сохранении фильтрационно-емкостных свойств коллектора.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано в производстве буровых реагентов. Технический результат - улучшение разжижающих свойств реагента в минерализованных буровых растворах, повышение термостабильности реагента до 190°C.

Изобретение относится к растворимому в воде простому эфиру целлюлозы, который содержит: (i) один или несколько заместителей, выбранных из группы, которую составляют метил, гидроксиэтил и гидроксипропил, (ii) один или несколько неионных гидрофобных заместителей с ациклическими или циклическими, насыщенными или ненасыщенными, разветвленными или линейными углеводородными группами, содержащими по меньшей мере 8 атомов углерода, и (iii) один или несколько катионных, третичных аминных или анионных заместителей, причем среднее число моль одного или нескольких гидрофобных заместителей на 1 моль ангидроглюкозных звеньев составляет от 0,007 до 0,025, при этом среднемассовая молекулярная масса простого эфира целлюлозы составляет по меньшей мере 750000, и при этом простой эфир целлюлозы имеет остаточную динамическую вязкость %η80/25, составляющую по меньшей мере 30%, где %η80/25=[динамическая вязкость раствора при 80°C/динамическая вязкость раствора при 25°C]×100, причем, динамическая вязкость раствора при 25°C и 80°C измерена в 1% водном растворе.

Изобретение относится к нефтегазодобывающей промышленности, а именно к тампонажным материалам для изоляции и ограничения водопритока в скважины путем восстановления нарушений герметичности в конструкции скважин, ликвидации заколонных и межколонных перетоков, изоляции обводнившихся пластов и пропластков, и может быть использовано в ремонтно-изоляционных работах в нефтяных, газовых и газоконденсатных скважинах.
Изобретение относится к составам для обработки буровых скважин во время восстановительных работ и предназначено для использования в нефтяных, газовых и газоконденсатных скважинах при температуре до 160°C.

Изобретение относится к области нефтедобывающей промышленности, в частности к способам разработки нефтяного пласта путем полимерного заводнения. В способе разработки нефтяного пласта, включающем закачку в пласт оторочки водного раствора частично гидролизованного полиакриламида - ПАА, указанный раствор дополнительно содержит смолу древесную омыленную - СДО при следующем соотношении компонентов, мас.%: ПАА 0,03-0,15, СДО 0,001-0,005, вода минерализацией до 240 г/дм3 остальное. Технический результат - повышение эффективности обработки. 1 табл.

Изобретение относится к способу цементирования в подземном пласте, содержащем газ и нефть. Указанный способ включает введение цементной композиции в подземный пласт, причем цементная композиция содержит цемент, воду и затравочные кристаллы гидратированного силиката кальция (C-S-H), цементная композиция, состоящая, в основном, из цемента, воды и затравочных кристаллов C-S-H, представляющих собой мезоскопические частицы, наночастицы или их сочетание, развивает сопротивление сжатию, составляющее, по меньшей мере, 1200 фунт/кв. дюйм (8,3 МПа) при исследовании в течение 24 часов при температуре 60°F (15,6°C) и давлении 3000 фунт/кв. дюйм (20,7 МПа); и выдерживание цементной композиции для затвердевания. Согласно еще одному варианту осуществления, затравочные кристаллы C-S-H представляют собой мезоскопические частицы, наночастицы или их сочетание, причем затравочные кристаллы C-S-H присутствуют в концентрации, составляющей от приблизительно 1% до приблизительно 5% по отношению к массе цемента. 3 н. и 17 з.п. ф-лы, 5 табл., 1 ил.

Изобретение относится к нефтяной промышленности, в частности к составам для предотвращения образования асфальтосмолопарафиновых отложений и коррозии скважинного оборудования при добыче нефти, работающего в высокотемпературных условиях. Ингибитор коррозии и асфальтосмолопарафиновых отложений содержит активную часть, присадку и растворитель. В качестве активной части используют эмульгатор обратных водонефтяных эмульсий - Ялан Э-2 марки Б2 (конц.), в качестве присадки используют четвертичные аммониевые основания, неионогенное поверхностно-активное вещество и низкомолекулярную кислоту (С1-С4), а в качестве растворителя используют смесь спиртовых и углеводородных соединений при следующем соотношении компонентов, мас.%: Ялан Э-2 марки Б2 (конц.) - 10-60, присадка - 1-15, растворитель - остальное, при следующем соотношении компонентов в присадке, мас.%: четвертичное аммониевое основание - 55-100, неионогенное поверхностно-активное вещество - 0-35, низкомолекулярная кислота (С1-С4) - 0-10. Результатом является повышение коррозионной устойчивости скважинного оборудования, работающего в высокотемпературных условиях. 1 з.п. ф-лы, 3 табл., 4 пр.

Группа изобретений относится к способу инкапсулирования ускорителя полимеризации и водным гелирующим системам, содержащим инкапсулированный ускоритель полимеризации с водорастворимыми или диспергируемыми мономерами. Способ включает стадии получения обратной эмульсии, содержащей, в масляной фазе, водный раствор или дисперсию (W1), содержащую указанный ускоритель полимеризации. Причем масляная фаза является (или, по крайней мере, включает) термоотверждаемой смесью изоцианата и гидроксилированного полиалкилдиена или многоатомного спирта. Далее выливают указанную обратную эмульсию в водную фазу (W2) для получения многофазной эмульсии вода/масло/вода, содержащей капли ускорителей в качестве внутренней водной фазы. Затем нагревают указанную многофазную эмульсию при температуре от 50 до 95°C для отверждения упомянутой выше термоотверждаемой смеси в полиуретане и получения капель ускорителя, заключенного в оболочки из полиуретана, диспергированных в воде. Техническим результатом является повышение эффективности герметизации подземных сред, или укрепления почв, или герметизации подземных структур. 3 н. и 14 з.п. ф-лы, 7 табл., 4 пр.

Группа изобретений относится к бурению нефтяных и газовых скважин. Технический результат - высокие технологические характеристики реагента для бурения, высокая эффективность и экономичность его получения. В способе получения реагента крахмалосодержащего модифицированного для бурения, предусматривающем обработку крахмалосодержащего сырья, реагент получают в результате одно- или многократной экструзионной обработки крахмалосодержащего компонента с/без дополнительного компонента при 100-200°C (наиболее предпочтительная температура 110-150°C), частоте вращения шнеков 50-100 об/мин, диаметре фильеры - 1-6 мм с последующим дроблением и просеиванием или реагент получают в результате смешивания экструдатов, выработанных при различных указанных выше технологических режимах экструзии, друг с другом или с нативным крахмалом, и/или с добавлением 1-5 мас. % декстрина или смеси декстринов, выбранных из группы: амилодекстрин и/или эритродекстрин, и/или ахроодекстрин, и/или мальтодекстрин. Реагент крахмалосодержащий модифицированный для бурения, содержащий крахмалосодержащий компонент, получен указанным выше способом и представляет собой однородный порошкообразный материал с размером частиц до 0,67 мм, влажностью 10-12%, полностью растворимый в пресной воде при 20°C, динамической вязкостью 5%-го водного раствора реагента не менее 10 Па·с (600 об/мин OFITE) и концентрацией ионов водорода в данном растворе не менее 6 pH-ед., обеспечивающий фильтрацию модельного соленасыщенного глинистого раствора (0,1 МПа) с концентрацией реагента 5-15 кг/м3 не более 5-8 см3/30 мин и условную вязкость этого раствора с концентрацией реагента 15 кг/м3 не более 50 с. 2 н.п. ф-лы, 1 ил., 2 табл., 5 пр.

Изобретение по существу относится к композициям меченого ингибитора отложений и способам ингибирования отложений. В частности, настоящее изобретение относится к имидазолсодержащим меченым полимерным ингибиторам отложений, предназначенным для использования при обработке воды и/или нефтяных месторождений. Описан способ определения концентрации сополимера, ингибирующего отложения, для ингибирования образования отложений, включающий введение эффективного количества сополимера, ингибирующего отложения, в среду, измерение сигнала флуоресценции, соответствующего имидазольному фрагменту, и определение концентрации сополимера, ингибирующего отложения, на основании сигнала флуоресценции. Имидазолсодержащие сополимеры обеспечивают свойства ингибировать отложения и наряду с прочим позволяют осуществлять мониторинг уровней ингибитора отложений во время добычи нефти или применять в горном деле. 2 н. и 12 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к способу регенерации кинетического ингибитора гидратообразования, используемого как единственный тип ингибитора гидратообразования в системе регенерации ингибитора гидратообразования. Способ включает следующие стадии: i) подача потока, содержащего смесь воды и кинетического ингибитора гидратообразования, во флэш-сепаратор (2) из линии подачи; ii) выпаривание воды во флэш-сепараторе (2) с помощью тепла, поданного во внешний циркуляционный контур (3, 5, 7) с внешним теплообменником (6), или с помощью тепла, поданного с помощью внутреннего теплообменника (6), или с помощью нагревательных спиралей, расположенных внутри флэш-сепаратора (2), и сброс испарившейся воды из флэш-сепаратора (2) в виде пара (8); iii) концентрирование кинетического ингибитора гидратообразования во флэш-сепараторе (2) и в циркуляционном контуре (3, 5, 7), в результате чего кинетический ингибитор гидратообразования может использоваться повторно. Также изобретение относится к системе и применению способа и системы для предотвращения гидратообразования во время транспортировки углеводородов в присутствии воды. Использование предлагаемого изобретения позволяет повторно использовать кинетический ингибитор гидратообразования. 3 н. и 4 з.п. ф-лы, 4 ил.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам герметизации нарушений эксплуатационной колонны, ликвидации негерметичности цементного кольца в малопроницаемых пластах и ограничения водопритока в скважине. Технический результат изобретения заключается в повышении эффективности способа ремонтно-изоляционных работ в скважине за счет повышения качества ремонтных работ. Способ ремонтно-изоляционных работ в скважине включает закачку в зону изоляции водоизоляционной композиции, состоящей из гидрозоля диоксида кремния плотностью 1196-1220 кг/м и раствора хлорида натрия плотностью 1012-1030 кг/м, которые смешивают на поверхности и закачивают в интервал нарушения при следующих соотношениях компонентов, об.ч.: гидрозоль диоксида кремния 200-400, гелеобразователь 100, при удельной приемистости изолируемого интервала более 0,8 м3/(ч·МПа) осуществляют последовательную закачку водоизоляционной композиции, буфера из пресной воды и пластовой минерализованной воды плотностью 1180-1190 кг/м3 при следующих соотношениях компонентов, об.ч.: гидрозоль диоксида кремния 200-400, гелеобразователь 100, пластовая минерализованная вода 100. 2 табл.

Изобретение относится к нефтегазовой отрасли и конкретно к заканчиванию скважин на месторождениях и подземных хранилищах газа. Технический результат - повышение эффективности заканчивания скважины за счет обеспечения герметичности кольцевого пространства и сохранения естественной проницаемости призабойной зоны продуктивного пласта. По способу осуществляют бурение скважины со вскрытием продуктивного пласта. Разделяют ствол скважины минимум на три интервала и определяют среднее значение температуры в каждом интервале. При полученных средних значениях температуры определяют статическое напряжение сдвига тампонажного раствора. Рассчитывают величину снижения забойного давления, обусловленную зависанием столба тампонажного раствора на стенках скважины по аналитическому выражению. Перед спуском эксплуатационной колонны заполняют ствол скважины в интервале продуктивного пласта жидкостью нижнего гидрозатвора, в качестве которой используют заданный состав при определенном соотношении ингредиентов. Перед заданным составом и после него закачивают разделительную жидкость на основе ксантанового биополимера. Спуск эксплуатационной колонны осуществляют до кровли продуктивного пласта. В качестве промывочной жидкости используют буровой раствор, который закачивают в турбулентном режиме. В качестве жидкости верхнего гидрозатвора используют другой заданный состав при определенном соотношении ингредиентов. Помещают его над тампонажным раствором до устья скважины. Продавку тампонажного раствора осуществляют в турбулентном режиме до достижения максимально допустимого давления на продуктивный пласт, затем - в субламинарном режиме. Противодавление в период ожидания затвердевания цемента создают с момента равенства забойного давления пластовому до момента начала схватывания тампонажного раствора на забое скважины, повышая устьевое давление в соответствии с аналитическим выражением. Затем противодавление удерживают до конца ожидания затвердевания цемента. Забойное давление определяют как разницу между статическим давлением столба жидкостей, находящихся в кольцевом пространстве на момент окончания продавки, и величиной снижения забойного давления, обусловленной зависанием столба тампонажного раствора на стенках скважины. 1 пр., 3 табл.
Изобретение относится к нефтедобывающей промышленности, в частности к способам регулирования охвата нефтяных пластов заводнением, и может найти применение при разработке неоднородной по проницаемости и нефтенасыщенности нефтяной залежи или при прогрессирующей обводненности добываемой жидкости. Применение коагулянта, полученного из титансодержащей руды лейкоксен, в виде его 1-30%-ной водной суспензии для обработки обводненного нефтяного пласта путем закачки ее в указанный нефтяной пласт. Изобретение развито в зависимых пунктах формулы. Технический результат - увеличение фильтрационных сопротивлений в высокопроводящих каналах пористой среды, что приводит к изменению гидродинамических потоков и перераспределению закачиваемых вод, выравниванию неоднородности пласта по проницаемости, исключению из разработки обводненных высокопроницаемых зон, за счет чего - увеличению охвата пластов заводнением и нефтеотдачи. 2 з.п. ф-лы, 1 пр.
Наверх