Двухкаскадный измельчитель материала

Изобретение относится к дробильно-обогатительному оборудованию для измельчения полезных ископаемых и может быть использовано, в частности, в угольной, рудной, металлургической промышленности, в промышленности строительных материалов. Измельчитель содержит раму, верхний и дополнительный корпуса, загрузочный патрубок, верхний вал, корпус подшипника, подшипниковые узлы, верхнюю и дополнительную чаши ротора с перегородками, электродвигатель, клиноременную передачу, шкивы, гибкий соединительный канал. Корпус подшипника соединен со смежным, промежуточным корпусами и фиксатором. Внутри смежного корпуса смонтирована течка. Дополнительный вал соединен с нижним концом вала электродвигателя с помощью клиноременной передачи, при этом боковые поверхности верхней и дополнительной чаши ротора выполнены параболоидными, а колосники в нижней части дополнительного корпуса имеет форму эллипса. В измельчителе обеспечивается возможность регулирования скоростных режимов, а также уменьшение объема застойных зон, что позволяет повысить производительность измельчителя и снизить энергозатраты во время его работы. 4 ил.

 

Заявленное техническое решение относится к дробильно-обогатительному оборудованию для измельчения полезных ископаемых, а также может быть использовано в различных отраслях промышленности, в частности в угольной, рудной, металлургической промышленности и в промышленности строительных материалов.

Из предшествующего развития уровня техники известно техническое решение для динамического самоизмельчения материала RU 2064287 C1, В02С 13/14, т 20.07. 1994, содержащее вертикальный цилиндрический корпус, соосно с ним расположенный вал, установленный в подшипниковых опорах, в нижней части вал соединен с приводом, в верхней части - с чашеобразным ротором, имеющим форму полного перевернутого полого усеченного конуса.

Недостатком этого конструкторского решения являются низкая производительность и низкие энергозатраты из-за неудовлетворительной циркуляции и невозможности регулирования угловых скоростей нижнего и верхнего ротора.

За прототип принято техническое решение, оформленное как патент на полезную модель №122910 «Двухкаскадная мельница динамического самоизмельчения», опубл. 20.12.2012. Бюл. №35.

К недостаткам этого технического решения является относительно низкая производительность и высокие энергозатраты из-за образования застойных зон и невозможности обеспечить интенсификацию процесса путем регулирования угловых скоростей чаш ротора.

Задачей заявляемого технического решения является повышение производительности, снижение энергозатрат за счет снижения объема застойных зон в корпусах устройства путем выполнения боковых поверхностей чаш ротора в форме, приближающейся к траектории движения частиц в корпусах устройства интенсификации процесса измельчения путем регулирования угловых скоростей чаш роторов.

Поставленная задача решается следующим образом.

Двухкаскадный измельчитель материла, включающий раму, верхний и дополнительный корпус, загрузочный патрубок, верхний вал, корпус подшипника, подшипниковые узлы, верхнюю и дополнительную чаши ротора с перегородками, электродвигатель, клиноременную передачу, шкивы, гибкий соединительный канал отличается тем, что корпус подшипника соединен со смежным, промежуточным корпусом и фиксатором, а внутри смежного корпуса смонтирована течка, при этом дополнительный вал соединен с нижним концом вала электродвигателя с помощью клиноременной передачи, а боковые поверхности верхней и дополнительной чаши ротора выполнены параболоидными, а колосники в нижний части дополнительного корпуса имеет форму эллипса.

Предлагаемое устройство поясняется фиг. 1, 2, 3 и 4, на которых изображен двухкаскадный измельчитель материала.

Двухкаскадный измельчитель материала состоит из верхнего 1, дополнительного 2, смежного 19, промежуточного 14 корпусов и электродвигателя 4, смонтированных на раме 3.

Нижним основанием дополнительный корпус 2 присоединен с помощью болтовых соединений к раме 3. Верхним основанием дополнительный корпус 2 с помощью болтовых соединений присоединен к промежуточному корпусу 14, корпусу подшипников 16, фиксатору 13 и смежному корпусу 19. Фиксатор 13 удерживает от чрезмерного провисания гибкий соединительный канал 12, обеспечивающий непрерывное перетекание по нему измельченного материала в 1-м каскаде во 2-й каскад двухкаскадного измельчителя материала (фиг. 1).

К смежному корпусу 19 с помощью болтовых соединений прикреплена течка 18. В свою очередь, смежный корпус 19 с помощью болтовых соединений присоединен к верхнему корпусу 1, на котором смонтирован загрузочный патрубок 24.

В правой части рамы 3 с помощью болтовых соединений смонтирован электродвигатель 4, имеющий два выходных конца вала, на которых с помощью шпоночных соединений смонтированы ведущие шкивы 5 и 6 привода верхней 21 и дополнительной 7 чаши ротора (фиг. 2, 3).

В корпусе подшипников 16 с помощью нижнего 15 и верхнего 17 подшипниковых узлов смонтированы верхний 23 и дополнительный 10 вал, на которых с помощью шпоночных соединений смонтированы ведомый шкив привода верхней 20 и дополнительной 11 чаши ротора.

На дополнительном валу 10 с помощью шпоночного соединения смонтирована дополнительная чаша ротора 7, на боковой поверхности которого выполнены выпускные отверстия 8, а на верхнем валу 23 с помощью шпоночного соединения смонтирована верхняя чаша ротора 21, на боковой поверхности которого выполнены выпускные отверстия 22, для выпуска из него материала, измельченного до определенной крупности в 1-м каскаде.

Нижний конец дополнительного вала 10 смонтирован в дополнительном подшипниковом узле 27 нижней части дополнительного корпуса 2 двухкаскадного измельчителя материала.

Боковые поверхности верхней 21 и дополнительной 7 чаши ротора выполнены параболоидной формы. Выполнение боковых поверхностей обеих чаш роторов параболоидной формы способствует тому, что частицы материала, двигаясь по траектории, близкой к такой поверхности, заполняют весь объем верхнего 1 и дополнительного 2 корпуса, что будет способствовать уменьшению объема застойных зон материала в этих корпусах. При этом частицы начнут более интенсивно взаимодействовать друг с другом, в результате чего будет возрастать производительность и снижаться энергозатраты двухкаскадного измельчителя материала.

Нижняя часть дополнительного корпуса 2 с помощью колосников 30 эллипсной формы разделена на четыре равные части (фиг. 4). Это позволит обеспечить беспрепятственное перетекание частиц, измельченных во 2-м каскаде, через зазоры 31 за боковую параболоидную поверхность дополнительной чаши ротора 7 и выпуск их в приемную емкость 9.

Регулирование угловых скоростей верхней 21 и дополнительной 7 чаши ротора осуществляется с помощью шкивов 5, 6, 11 и 20 клиноременных передач. Возможность установления необходимых скоростных режимов верхней 21 и дополнительной 7 чаши ротора будет способствовать регулированию рабочих процессов измельчения в верхнем 1 и дополнительном 2 корпусе, что позволит интенсифицировать процесс измельчения в 1-м и 2-м каскаде и повысить производительность и снизить энергозатраты.

Кинематические передачи приводов дополнительной 7 и верхней 21 чаши ротора могут быть любого типа: клиноременные как на схеме (фиг. 2, 3), так и других типов (например, цепные, винтовые и зубчатые).

Внутренние полости верхней 21 и дополнительной 7 чаши ротора равномерно разделены на шесть равных частей с помощью верхних 25 и дополнительных 26 перегородок.

Выпуск достигшего необходимой степени измельчения материала, произведенный во 2-м каскаде, осуществляется через выпускные отверстия 8, выполненные в дополнительной чаше роторе 7, и аккумулируются в приемной емкости 9, установленной под рамой 3.

Работа двухкаскадного измельчителя материала осуществляется следующим образом.

Первоначально в верхний корпус 1 через загрузочный патрубок 24 порционно или непрерывно подается исходный материал. Далее производится включение электродвигателя 4 и через клиноременные передачи приводят во вращение верхнюю 21 и дополнительную 7 чашу ротора.

В начальный период вращения верхней чаши ротора 21 куски материала, загруженные через загрузочный патрубок 24 и находящиеся над ней, начинают перемещаться к ее периферии под действием центробежной силы, одновременно прижимаясь к верхним перегородкам 25.

Попав в активную зону 1-го каскада, эти куски измельчаются за счет ударов, скалывания и истирания их между собой. Частицы материала крупнее размера выходных отверстий 22 в верхней чаше ротора 21, совершают движение в рабочей зоне верхнего корпуса 1 по восходящей тороидальной линии и далее вместе с исходным материалом опускаются в ее (активную) рабочую зону.

Одна часть частиц материала, соразмерная с размерами боковых отверстий 22, выполненных в боковой плоскости верхней чаши ротора 21, выводится за счет центробежной силы через эти отверстия, и попадают в течку 18 и далее под действием силы тяжести эти предварительно измельченные частицы перетекают через гибкий соединительный канал 12 в дополнительный корпус 2. Попав в дополнительный корпус 2 и располагаясь над дополнительной чашей ротора 7, эти частицы подвергаются воздействию дополнительных перегородок 26.

В дополнительном корпусе 2 (2-м каскаде) предварительно измельченные частицы материала 1-го каскада аналогично, как в верхнем корпусе 1, начинают перемещаться к его периферии под действием центробежных сил, одновременно прижимаясь к дополнительным перегородкам 26. В дополнительном корпусе 2 предварительно измельченные частицы материала, попав в активную зону, продолжают измельчаться за счет ударов, скалывания и истирания. Частицы материала крупнее размера выходных отверстий 8 в боковой поверхности дополнительной чаши ротора 7, совершают движение в рабочей зоне дополнительного корпуса 2 по восходящей тороидальной линии. При этом частицы материала, имеющие размеры меньше, чем в боковых отверстиях 8 дополнительной чаши ротора 7, переваливаясь через колосники 30, выводятся через зазор 31 в нижней части дополнительного корпуса 1 и аккумулируются емкости готового продукта 9 (фиг. 1, 4).

Технико-экономическим результатом предлагаемого устройства являются повышение производительности и снижение энергозатрат за счет интенсификации процесса путем возможности регулирования скоростных режимов верхней и дополнительной чаши ротора и выполнения их боковых поверхностей параболической формы, обеспечивающей уменьшение объема застойных зон в нижнем и верхнем корпусе двухкаскадного измельчителя материала.

Двухкаскадный измельчитель материла, включающий раму, верхний и дополнительный корпуса, загрузочный патрубок, верхний вал, корпус подшипника, подшипниковые узлы, верхнюю и дополнительную чаши ротора с перегородками, электродвигатель, клиноременную передачу, шкивы, гибкий соединительный канал, отличающийся тем, что корпус подшипника соединен со смежным, промежуточным корпусами и фиксатором, а внутри смежного корпуса смонтирована течка, при этом дополнительный вал соединен с нижним концом вала электродвигателя с помощью клиноременной передачи, боковые поверхности верхней и дополнительной чаши ротора выполнены параболоидными, а колосники в нижней части дополнительного корпуса имеет форму эллипса.



 

Похожие патенты:

Изобретение относится к дробильно-обогатительному оборудованию для измельчения полезных ископаемых и может быть использовано, в частности, в угольной, рудной, металлургической промышленности, а также в промышленности строительных материалов.

Вихревой измельчитель относится к роторно-вихревым мельницам тонкого помола для каскадного измельчения твердых материалов. Измельчитель содержит вихревую помольную камеру (3) с глухим дном и диафрагмированной крышкой (10), раскручивающую камеру (2) и устройство для закрутки несущей среды и первоначального ускорения частиц.

Мельница // 2558205
Мельница относится к дробильно-обогатительному оборудованию и предназначена для производства материалов в строительной, горной, химической и металлургической отраслях, дорожном строительстве и при переработке отходов.

Мельница предназначена для ударно-центробежного измельчения рудных и нерудных материалов в строительной, горнодобывающей, химической, металлургической промышленности.

Изобретение относится к способам измельчения фуражного зерна и смешивания продуктов помола и может быть использовано в сельском хозяйстве, в частности на животноводческих фермах и комбикормовых цехах.

Изобретение относится к устройствам для измельчения фуражного зерна и смешивания продуктов помола и может быть использовано в сельском хозяйстве, в частности на животноводческих фермах и комбикормовых цехах.

Измельчитель для сверхтонкого помола до получения наночастиц, например, доломита, может быть использован в строительной, горно-перерабатывающей и пищевой отраслях промышленности.

Способ и мельница для измельчения могут быть использованы в энергетической, строительной, горнорудной, металлургической и химической отраслях. Мельница содержит цилиндрический корпус 1 с верхней крышкой 2 и нижним внутренним кольцевым выступом 3 с окнами 4.

Устройство предназначено для переработки фуражного зерна на комбикорма и может быть использовано в индивидуальных и фермерских хозяйствах. Устройство содержит станину (1), привод (5), сито (8) и отражатель (9).

Изобретение предназначено для измельчения сыпучих материалов в сельскохозяйственной, комбикормовой, химической, строительной, горнорудной и других отраслях промышленности.

Изобретение относится к дробильно-обогатительному оборудованию для измельчения полезных ископаемых и может быть использовано, в частности, в угольной, рудной, металлургической промышленности, а также в промышленности строительных материалов. Самотормозящая мельница содержит барабан, опирающийся на чашеобразный ротор через нижний подшипниковый узел, электродвигатель, соединенный с чашеобразным ротором посредством нижней полумуфты, загрузочную воронку, отбойную пружину, тормозную накладку. Тормозная накладка смонтирована на конце штока гидроцилиндра, внутри которого установлена отбойная пружина, служащая для возврата штока в исходное положение. Поршневая часть гидроцилиндра посредством сливного трубопровода, имеющего обратный клапан, соединена с емкостью для рабочей жидкости, а посредством нагнетательного трубопровода, также имеющего обратный клапан, соединена с выпускным отверстием центробежного насоса. Входное отверстие центробежного насоса посредством всасывающего трубопровода с фильтром соединено с емкостью для рабочей жидкости, причем вал турбинного колеса центробежного насоса посредством верхней полумуфты соединен с ведомым шкивом клиноременной передачи. Ведущий шкив клиноременной передачи смонтирован на ведущем валу с шестерней, находящейся в зацеплении с закрепленным на барабане зубчатым колесом. Самотормозящая мельница характеризуется высокой надежностью и безопасностью при эксплуатации и обслуживании за счет отсутствия в конструкции вращающихся деталей и сопрягаемых механических узлов. 1 ил.

Изобретение относится к устройству для механического дробления конгломератов. Устройство содержит разделительную камеру с загрузочным отверстием 14 на первом конце и разгрузочным отверстием 10 на втором конце, где разделительная камера содержит по меньшей мере две секции 7, 8, 9, расположенные последовательно в осевом направлении и окруженные стенкой 2 разделительной камеры в форме цилиндра или усеченного конуса. В каждой секции 7, 8, 9 расположен по меньшей мере один ротор 4, 5, 6 с кожухом 17, 18, 19 ротора и ударными инструментами 20, 21, 22, 23, 24, 25. Ударные инструменты проходят в радиальном направлении от кожуха 17, 18, 19 ротора в разделительную камеру. Радиус кожухов 17, 18, 19 самих роторов 4, 5, 6 в последовательных секциях 7, 8, 9 увеличивается от первого конца ко второму концу. Разница между радиусом соответствующего кожуха 4, 5, 6 ротора и радиусом стенки 2 разделительной камеры уменьшается от первого конца ко второму концу. При этом направление вращения ротора 6 в секции 9, обращенной ко второму концу, может быть противоположно направлению вращения ротора 5 в секции 8, расположенной перед ней в направлении первого конца, а скорости вращения роторов 4, 5, 6 в секциях 7, 8, 9 увеличиваются от первого конца ко второму концу. В устройстве обеспечивается дробление конгломератов материалов, обладающих различными плотностями и/или консистенциями. 17 з.п. ф-лы, 6 ил.

Изобретение предназначено для измельчения различных материалов в строительной, химической, горной и других отраслях промышленности. Вихревая мельница содержит ротор (3), статор (2) и мелющие элементы (14). На обращенных друг к другу поверхностях ротора и/или статора образованы выемки (29). Ротор собран из колец (8, 9) с проставками между кольцами (10, 11). Обеспечивается эффективный помол за счет создания необходимого вихреобразования кольцами с проставками. 7 з.п. ф-лы, 10 ил.

Изобретение относится к сельскохозяйственному машиностроению, в частности к машинам для измельчения зерна и других сыпучих материалов. Дробилка для зерна содержит вертикальный корпус, крышку (13) с загрузочным окном (14), выгрузное окно (3), ротор (7) с пластинчатыми молотками (8) и ситовую обечайку. Распределитель (15) дробилки состоит из конуса (17) и обечайки. Обечайка закреплена на конусе с помощью пластин (19) с образованием секторов (20). Распределитель установлен под загрузочным окном соосно ротору и с возможностью вертикального перемещения. На наружной поверхности конуса по его образующей выполнены канавки в количестве, равном числу секторов. Обеспечивается равномерное измельчение. 3 ил.

Изобретение относится к устройствам для сухого и мокрого измельчения кусковых, зерновых, порошковых материалов и может быть использовано для приготовления их смесей. Устройство для смешивания и измельчения содержит рабочую емкость, привод вращения рабочей емкости, в крышке которой с возможностью вращения установлена ось с, по меньшей мере, одним кронштейном с, по крайней мере, одной лопаткой. Лопатка имеет режущую кромку, эквидистантную внутренней поверхности рабочей емкости, изогнутую переднюю поверхность со сквозными пазами, ширина которых меньше наименьшего размера мелющих тел, при этом радиальное и осевое положение лопаток может регулироваться. Днище рабочей емкости выполнено полым. Полость днища соединена с отверстием в валу, при этом в днище выполнены сквозные отверстия, соединяющие полость днища с внутренним объемом рабочей емкости. Внутренняя поверхность днища выполнена вогнутой до сопряжения с внутренней поверхностью стенок рабочей емкости, при этом образующая внутренней поверхности стенок рабочей емкости имеет криволинейную вогнутую форму до сопряжения с прямолинейной частью образующей или до сопряжения с днищем. Днище, имеющее центральный выступ, выполнено съемным и закреплено с возможностью образования полости между рабочей емкостью и днищем. Центральная часть днища и/или центральный выступ снабжены радиальными выступами, при этом центральный выступ днища снабжен сквозными отверстиями, соединяющими внутренний объем рабочей емкости с полостью днища. Внутренняя поверхность крышки выполнена вогнутой до сопряжения с внутренней поверхностью стенок рабочей емкости. По крайней мере, один кронштейн для крепления лопаток выполнен в виде сплошного плоского или вогнутого диска, а край режущей кромки лопатки, обращенный к днищу, расположен выше и/или совпадает с местом сопряжения днища с цилиндрической частью внутренней поверхности рабочей емкости. Ширина лопатки равна ширине цилиндрической части внутренней поверхности рабочей емкости и/или больше или равна двум максимальным размерам мелющих тел, если цилиндрическая часть рабочей емкости отсутствует. Устройство позволяет снизить энергозатраты, сократить длительность цикла обработки и повысить уровень дисперсности (тонины помола) измельчаемого материала. 16 з.п. ф-лы, 14 ил.

Изобретение относится к устройствам для дробления и измельчения материалов и может быть использовано в устройствах для механического измельчения конгломератов материалов, состоящих из материалов различной плотности и/или консистенции. Измельчающее устройство содержит камеру 14 измельчения, имеющую сторону подачи и сторону выпуска и охваченную стенкой 42. Стенка 42 камеры измельчения 41 может быть выполнена, в частности, круглой, цилиндрической и/или конической, расширяющейся книзу. Стенка 42 имеет по меньшей мере две части, которые расположены последовательно в осевом направлении и в каждой из которых соосно с камерой измельчения расположен по меньшей мере один ротор 26, 28, 30. Каждый из роторов 26, 28, 30 имеет вал ротора и ударные инструменты 38, проходящие, по меньшей мере в ходе работы, по существу радиально в камеру измельчения. Со стороны подачи над камерой 14 измельчения расположен загрузочный конус 12. Над загрузочным конусом 12 расположена входная воронка 11, причем между входной воронкой и загрузочным конусом сформирована входная область регулируемого размера d. Роторы 26, 28, 30 имеют противоположное направление вращения по меньшей мере в двух расположенных последовательно частях. С камерой измельчения соединено устройство воздушной тяги для переноса созданной в камере измельчения смеси из частиц и воздуха, имеющее по меньшей мере один ротор 31 вентилятора, расположенный соосно с осью камеры измельчения и имеющий свой собственный вал 33, приводимый в движение собственным приводом 25. В измельчающем устройстве обеспечивается возможность столкновения конгломератов материалов с ударными инструментами на высоких скоростях с возможностью управления разделением материала путем эффективного управления потоком материала, в частности потоком очень мелких частиц. 12 з.п. ф-лы, 2 ил.

Изобретение относится к сельскохозяйственному машиностроению. Измельчитель влажных растительных продуктов включает корпус и размещенный в нем электродвигатель. На оси электродвигателя закреплен диск в виде перфорированной конической тарелки, во внутренней полости которой соосно с ней установлен воронкообразный патрубок. Диск имеет крыльчатку с радиально размещенными лопастями, образующими секторальные каналы. В торцевой части секторальные каналы имеют треугольный профиль. Крыльчатка расположена во внутренней полости воронкообразного патрубка. Крыльчатку обрамляет с зазором рифленая дека. Лопасти крыльчатки с их торцевой стороны имеют треугольный профиль и снабжены упругими элементами с образованием “щеточного” пакета. Измельчитель обеспечивает повышение интенсивности процесса измельчения. 4 ил.
Наверх