Способ утилизации на аммофос отработанной фосфорной кислоты после антикоррозионной обработки черных металлов

Изобретение относится к сельскому хозяйству. Способ утилизации на аммофос отработанной фосфорной кислоты после антикоррозионной обработки черных металлов путем аммонизации, причем обработку осуществляют аммиачной водой до рН 4,5, от полученной смеси отделяют осадок гидроксидов металлов, а из раствора после упаривания до плотности 1,293 г/см3 кристаллизуют аммонийфосфат при охлаждении до 20°C. Изобретение позволяет безопасно утилизировать отработанный раствор праймер-преобразователя, получить качественное комплексное минеральное удобрение аммофос. 1 табл., 1 пр.

 

Изобретение относится к технологии получения комплексных минеральных удобрений и может быть использовано для получения аммофоса.

Известно использование праймер-преобразователя коррозии углеродистых сталей, содержащего раствор ортофосфорной кислоты не менее 18% (RU №2167176, опубл. 20.05.2001). В литре рабочего раствора, в соответствии с формулой изобретения, содержится не менее, а именно: 180-240 г ортофосфорной кислоты. Утилизация отработанного раствора праймер-преобразователя с содержанием фосфорной кислоты менее 18% возможна путем переработки в комплексное минеральное удобрение аммофос.

Из уровня техники известен способ получения аммофоса путем введения серосодержащей добавки в фосфорную кислоту с последующей аммонизацией газообразным аммиаком (а.с. №947148, опубл. 30.07.1982, бюл. №28).

Недостатками этого способа являются присутствие инертного наполнителя в виде серосодержащей добавки и применение газообразного аммиака, являющегося сильнодействующим ядовитым веществом.

Наиболее близким к заявленному техническому решению является способ получения аммофоса путем нейтрализации экстракционной фосфорной кислоты газообразным аммиаком [Дохолова А.Н., Кармышов В.Ф., Сидорова Л.В. Производство и применение аммофоса. - М., Химия, 1977].

Недостатком способа - прототипа является применение газообразного аммиака, являющегося сильнодействующим ядовитым веществом.

Задачей, на решение которой направлено заявляемое изобретение, является утилизация отработанного раствора праймер-преобразователя с содержанием фосфорной кислоты 18% и менее путем переработки в комплексное минеральное удобрение аммофос.

Данная задача решается за счет того, что заявленный способ утилизации на аммофос отработанной фосфорной кислоты после антикоррозионной обработки черных металлов путем аммонизации включает обработку аммиачной водой до рН 4,5. От полученной смеси отделяют осадок гидроксидов металлов, а из раствора после упаривания до плотности 1,293 г/см3 кристаллизуют аммонийфосфат при охлаждении до 20°C.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является безопасность способа утилизации отработанного раствора праймер-преобразователя, получение качественного комплексного минерального удобрения аммофос.

Поставленная задача решается реализацией следующих этапов:

- Первый этап. Обработка аммиачной водой до рН 4,5 для обеспечения образования моноаммонийфосфата [Позин М.Е. Технология минеральных солей, Химия, Л.: 1974, с. 1087] по уравнению

H3PO4+NH4OH→(NH4)H2PO4

По этой реакции фосфорная кислота смешивается с аммиачной водой, преобразуясь в моноаммонийфосфат.

Выделяющийся при обработке аммиачной водой осадок гидроксидов металлов, присутствовавших в отработанном праймер-преобразователе, ввиду их малой растворимости (например, растворимость гидроксида двухвалентного железа Fe(OH)2 составляет 4,5*10-5 г/100 г воды; растворимость гидроксида трехвалентного железа Fe(OH)3 составляет 2,03*10-8 г/100 г воды [Справочник химика, изд. 2, том 2, под. ред. Б.П. Никольского, ГХИ, 1963, С. 58-59]) хорошо отстаивается в сгустителях непрерывного действия [Позин М.Е. Технология минеральных солей, Химия, Л.: 1974, с. 1087].

- Второй этап. После фильтрования очищенный раствор моноаммонийфосфата выпаривают до концентрации 34-36,3% (плотность полученного раствора 1,293 г/см3, содержание моноаммонийфосфата NH4H2PO4=632 г/л) [Справочник химика, изд. 2, том 3, под. ред. Б.П. Никольского, ГХИ, 1965, С. 517].

- Третий этап. После охлаждения раствора до 20°С выпавший осадок центрифугируют, а маточный раствор возвращают на нейтрализацию или выпарку.

Полученный при указанных условиях аммофос практически не зависит от состава исходного отработанного праймер-преобразователя.

Сущность способа утилизации на аммофос отработанной фосфорной кислоты после антикоррозионной обработки черных металлов подтверждается примером.

Пример. К 10 л отработанного праймер-преобразователя, содержащего до 18% фосфорной кислоты (плотность 1,1 г/см3 [Справочник химика, изд. 2, том 3, под. ред. Б.П. Никольского, ГХИ, 1965, С. 517]), в составе которого находится 1,98 кг фосфорной кислоты H3PO4, добавляют аммиачную воду, доводя рН раствора до 4,5. Выделяющийся при этом осадок гидроксидов металлов в силу их малой растворимости отфильтровывается. Очищенный раствор моноаммонийфосфата выпаривают до концентрации 34-36,3% и охлаждают до 20°C. Выпавший осадок центрифугируют и высушивают. С учетом растворимости моноаммонийфосфата NH4H2PO4 при 20°C, равной 35,3 г/100 г воды [Справочник химика, изд. 2, том 3, под. ред. Б.П. Никольского, ГХИ, 1965, С. 210] из 1 л упаренного раствора выделяется (632-353)=279 г/л аммофоса, что составляет 44,15% за один цикл.

Способ утилизации на аммофос отработанной фосфорной кислоты после антикоррозионной обработки черных металлов путем аммонизации, отличающийся тем, что обработку осуществляют аммиачной водой до рН 4,5, от полученной смеси отделяют осадок гидроксидов металлов, а из раствора после упаривания до плотности 1,293 г/см3 кристаллизуют аммонийфосфат при охлаждении до 20°C.



 

Похожие патенты:

Изобретение относится к получению фосфатов аммония из фосфорсодержащих растворов. Способ получения включает стадии: обеспечения обогащенной фосфором жидкой фазы, не смешивающейся с водой (210); добавления безводного аммиака в обогащенную фосфором жидкую фазу (212); осаждения моноаммоний фосфата и/или диаммоний фосфата из указанной жидкой фазы (214); регулирования температуры жидкой фазы в ходе указанных стадий добавления и осаждения в заранее заданном интервале температур (216); извлечения осажденного моноаммоний фосфата и/или диаммоний фосфата из указанной жидкой фазы (218); промывки кристаллов извлеченного осажденного моноаммоний фосфата и/или диаммоний фосфата (220) и сушки промытых кристаллов (228).

Изобретение относится к сельскому хозяйству. Способ получения жидких комплексных удобрений включает нейтрализацию экстракционной фосфорной кислоты азотсодержащим реагентом, отделение осадка нерастворимых примесей из полученного раствора, введение раствора солей микроэлементов в присутствии комплексообразователя, причем в качестве азотсодержащего реагента используют карбамид в виде водного раствора, взятого в мольном отношении карбамид: H3PO4, равном (1,5-2,5):1; процесс нейтрализации ведут при температуре 95-99°С и плотности реакционной массы 1,22-1,28 г/см3 до достижения показателя рН реакционной среды 6,5-7,2 в присутствии кальцийсодержащего агента, взятого в мольном отношении кальций:фтор, равном 1:2, а отделение осадка нерастворимых примесей проводят при достижении рН реакционной среды 5,0-5,9.
Изобретение относится к сельскому хозяйству, а именно к твердой сыпучей композиции удобрений, способу ее производства и применению для подготовки концентрированных водных композиций удобрений.
Изобретение относится к технологии минеральных удобрений. .

Изобретение относится к способу получения сыпучих, неокисляющих и невзрывоопасных нитрофосфатных и/или азотно-фосфатно-калийных продуктов с высоким содержанием азота.
Изобретение относится к способу получения бесхлорных NPK-удобрений и может найти применение в химической промышленности. .
Изобретение относится к способу получения сложных гранулированных удобрений на основе аммиачной селитры и фосфорсодержащего компонента. .

Изобретение относится к способу получения диаммонийфосфата, обладающего антисептическими свойствами. .
Изобретение относится к способу получения сложных гранулированных удобрений на основе аммиачной селитры и фосфорсодержащего компонента. .

Изобретение относится к питательным композициям для биологических систем, таких как люди, животные, растения и микроорганизмы. Питательная композиция содержит по меньшей мере один смешанный фосфат металлов типа (M1 М2 М3 … Mx)3(PO4)2⋅аН2О, где 0≤а≤9, где (M1, М2, М3 … Mx) по меньшей мере 2 разных металлов смешанного фосфата металлов и они выбраны из группы, включающей Na, K, Mg, Са, Cr, Мо, W, Mn, Fe, Со, Ni, Cu, Zn и В, при условии, что по меньшей мере один из металлов в фосфате выбран из группы, включающей Mn, Fe, Со и Ni, где этот по меньшей мере один фосфат имеет пластинчатую морфологию первичных кристаллитов. При этом композицию получают путем приготовления водного раствора (I), который содержит по меньшей мере один или большее количество металлов Mn, Fe, Со и/или Ni в виде двухвалентных катионов, путем введения оксидных соединений металла(II), металла(III) и/или металла(IV) или смесей, или их соединений, содержащих смешанные состояния окисления, выбранных из группы, включающей гидроксиды, оксиды, оксигидроксиды, гидраты оксидов, карбонаты и гидроксикарбонаты по меньшей мере одного из металлов Mn, Fe, Со и/или Ni вместе с элементарными формами или сплавами по меньшей мере одного из металлов Mn, Fe, Со и/или Ni, в водную среду, содержащую фосфорную кислоту, и реакцию оксидных соединений металлов с элементарными формами или сплавами металлов с образованием двухвалентных ионов металлов. Далее осуществляют отделение всех твердых веществ, содержащихся в водном растворе фосфорной кислоты (I). Если смешанный фосфат металлов, в дополнение к металлам, введенным в водный раствор (I), содержит другие металлы, выбранные из группы, включающей (M1, М2, М3 … Mx), проводят дополнительное добавление к водному раствору (I) по меньшей мере одного соединения по меньшей мере одного из металлов (M1, М2, М3 … Мх) в виде водного раствора или в виде твердого вещества в форме соли. При этом по меньшей мере одно соединение предпочтительно выбрано из группы, включающей гидроксиды, оксиды, оксигидроксиды, гидраты оксидов, карбонаты, гидроксикарбонаты, карбоксилаты, сульфаты, хлориды или нитраты металлов. Далее осуществляют приготовление начального загрузочного раствора (II), обладающего значением рН от 5 до 8, полученного из водного раствора фосфорной кислоты путем нейтрализации водным раствором гидроксида щелочного металла или полученного из водного раствора одного или большего количества фосфатов щелочных металлов. Затем проводят дозирование водного раствора (I) в начальный загрузочный раствор (II) и одновременно дозирование в щелочной водный раствор гидроксида щелочного металла, так что значение рН полученной реакционной смеси поддерживается в диапазоне от 5 до 8. Далее осажденный фосфат типа (M1 М2 М3 … Мх)3(PO4)2⋅aH2O отделяют от раствора реакционной смеси. Изобретение позволяет получить питательную композицию, обладающую улучшенной биодоступностью. 4 н. и 10 з.п. ф-лы, 8 ил., 1 табл., 20 пр.

Изобретения относятся к сельскому хозяйству. Сложное азотно-фосфорно-калийное удобрение (NPK) содержит нитрат аммония, сульфат кальция безводный, дигидрофосфат калия, причем массовая доля общего азота от 13-15%, массовая доля общих фосфатов в пересчете на P2O5 от 9-10%, массовая доля калия в пересчете на K2O от 13-15%. Способ получения сложного удобрения NPK из твердой фосфатной соли, представляющей собой смесь фторапатита Ca5(PO4)3F и дикальций фосфата CaHPO4×nH2O, где n - от 0 до 2, а содержание фторапатита Ca5(PO4)3F от 27 до 99% включает: стадию разложения указанной твердой фосфатной соли серной кислотой полусухим методом, стадии добавления сульфата калия в качестве источника калия, нитрата аммония в качестве источника азота, стадию приготовления сларри NPK, а также стадию грануляции и сушки готового продукта. Изобретения позволяют обеспечить улучшение свойств NPK-удобрения, повысить прочность гранул, решить проблему, связанную с пластичностью гранулированных сложных удобрений, повысить водорастворимость фосфора, содержащегося в удобрении, на 98% и тем самым улучшить потребительские свойства NPK-удобрений. 2 н. и 10 з.п. ф-лы, 1 ил., 3 табл., 3 пр.

Изобретение относится к получению фосфатов аммония из фосфорсодержащих растворов и, в частности, к получению фосфатов аммония из подаваемой жидкости, содержащей фосфорную кислоту. Установка (100) для получения полностью растворимых, чистых и хорошо выраженных моно- или диаммонийфосфатов включает секцию (10) экстракции, секцию (20) отпарки и устройства (90) окончательной обработки. В секции экстракции осуществляют жидкость-жидкостную экстракцию фосфата между подаваемой жидкостью (1), содержащей фосфорную кислоту и по существу не содержащей ионов нитрата, и растворителем (5), который является не смешивающимся с водой или по меньшей мере по существу не смешивающимся с водой растворителем. В секции отпарки осуществляют жидкость-жидкостную экстракцию фосфата между растворителем, обогащенным фосфатом, и раствором реэкстракции. Растворитель, обедненный фосфатом, рециркулируют в секцию экстракции для дальнейшей экстракции фосфата. Раствор реэкстракции представляет собой водный раствор фосфата аммония, в котором по меньшей мере 80 мол.% фосфата аммония представляет собой моноаммонийфосфат и/или растворитель представляет собой не смешивающийся с водой спирт. Устройства окончательной обработки содержат источник (60) аммиака, устройство (70) добавления, охлаждающее устройство (50), устройство (40) для удаления осадка и систему (80) рециркуляции. 2 н. и 17 з.п. ф-лы, 8 ил.
Наверх