Ротор электромеханического преобразователя энергии с постоянными магнитами (варианты)

Изобретение относится к энергомашиностроению и может быть использовано в электрических генераторах с постоянными магнитами. Технический результат: повышение синусоидальности кривой магнитной индукции в воздушном зазоре и снижение омических потерь в электрической машине от высших гармоник, а также снижение амплитуды высших гармоник. Ротор электромеханического преобразователя энергии содержит вал, ярмо, постоянные магниты, бандажную оболочку, выполненную из множества тонких колец, отделенных друг от друга изоляционным материалом. Постоянные магниты выполнены в форме двояковыпуклой линзы. При этом форма ярма профилирует форму постоянных магнитов, причем безразмерное отношение радиуса внутренней выпуклости линзы к радиусу внешней выпуклости линзы не менее пяти сотых и не более двадцати пяти сотых. 3 н.п. ф-лы, 6 ил.

 

Изобретение относится к энергомашиностроению и может быть использовано в электрических генераторах с постоянными магнитами.

Известен ротор электрической машины с возбуждением от постоянных магнитов [патент РФ №123254 U1, H02K 21/12, 20.12.2012], постоянные магниты установлены в пазы магнитопровода ротора в непосредственной близости к наружной поверхности ротора.

Недостатками данной конструкции являются несиносуидальность магнитного потока в воздушном зазоре, высокая величина третьей и пятой гармоник в кривой ЭДС и повышенные потери в обмотке генератора, обусловленные этими гармониками, а также значительные потери энергии в бандажной оболочке ротора, обусловленные зубцовыми гармониками.

Известен ротор магнитоэлектрической машины, преимущественно синхронного генератора с возбуждением от постоянных магнитов [патент РФ №2308139 C2, H02K 1/27, 10.10.2007], который содержит жестко скрепленную с опорным валом кольцевую обойму магнитопровода с упорным фланцем. На внутренней боковой стенке кольцевой обоймы смонтирован кольцевой магнитный вкладыш, образованный постоянными магнитами возбуждения с чередующимися в окружном направлении магнитными полюсами. Внутренняя боковая стенка кольцевой обоймы магнитопровода выполнена с кольцевой проточкой. Кольцевой магнитный вкладыш выполнен из группы одинаковых монолитных кольцевых магнитов с чередующимися в окружном направлении магнитными полюсами, размещенными в упомянутой кольцевой проточке на внутренней боковой стенке кольцевой обоймы магнитопровода и сопряженными между собой по своим торцам и с боковой стенкой указанной кольцевой проточки. Одноименные чередующиеся в окружном направлении магнитные полюсы в смежных монолитных кольцевых магнитах расположены соразмерно друг другу в одних радиальных плоскостях.

Недостатками данной конструкции являются несиносуидальность магнитного потока в воздушном зазоре, высокая величина третьей и пятой гармоник в кривой ЭДС и повышенные потери в обмотке генератора, обусловленные этими гармониками, а также значительные потери энергии в бандажной оболочке ротора, обусловленные зубцовыми гармониками.

Известно устройство, реализующее способ установки постоянных магнитов в роторе электрической машины [патент РФ №2230420 C1, H02K 15/00, H02K 15/03, 10.06.2004], содержащее статор, запрессованный в корпус, ротор, установленный на валу, постоянные магниты, установленные в роторе, в соответствии с их магнитными характеристиками (магнитной индукции на поверхности магнита или магнитной индукцией в воздушном зазоре).

Недостатками данной конструкции являются несиносуидальность магнитного потока в воздушном зазоре, высокая величина третьей и пятой гармоник в кривой ЭДС и повышенные потери в обмотке генератора, обусловленные этими гармониками, а также значительные потери энергии в бандажной оболочке ротора, обусловленные зубцовыми гармониками.

Известен ротор на постоянных магнитах [патент РФ №2406209 C2, H02K 1/27, 10.12.2010], в котором постоянные магниты во внутренней части ротора расположены параллельно оси вращения ротора, и в области радиально внешних продольных кромок постоянных магнитов на внешнем периметре ротора выполнены открытые наружу пазы, которые соответственно проходят наклонно или с изгибом к продольным кромкам смежных постоянных магнитов в направлении периметра или, по меньшей мере, один раз пересекают; пазы на внешней стороне ротора в направлении периметра имеют меньшую ширину, чем в лежащей радиально ближе к центру области паза, и форма поперечного сечения паза по длине ротора постоянна.

Недостатками данной конструкции являются несиносуидальность магнитного потока в воздушном зазоре, высокая величина 3 и 5 гармоник в кривой ЭДС и повышенные потери в обмотке генератора, обусловленные этими гармониками, а также значительные потери энергии в бандажной оболочке ротора, обусловленные зубцовыми гармониками.

Известен ротор электрической машины с постоянными магнитами [патент РФ 2309514 C2, H02K 15/02, 27.10.2007], который содержит приклеенные постоянные магниты из редкоземельных металлов, залитые компаундом и герметично защищенные от воздействия рабочей среды посредством сварки обоймы с торцевыми дисками. С целью упрощения технологии изготовления, в промежутке между постоянными магнитами и одним из торцевых дисков, установлен дополнительный диск с осевыми отверстиями для заливки компаунда и заходной фаской для облегчения напрессовки обоймы. За счет применения дополнительного диска исключаются технологические операции заливки компаунда в форму и пригоночной механической обработки по компаунду.

Недостатками данной конструкции являются несиносуидальность магнитного потока в воздушном зазоре, высокая величина 3 и 5 гармоник в кривой ЭДС и повышенные потери в обмотке генератора, обусловленные этими гармониками, а также значительные потери энергии в бандажной оболочке ротора, обусловленные зубцовыми гармониками.

Известен ротор электрической машины с постоянными магнитами [патент РФ №2231896 C2, H02K 21/16, H02K 21/14, 27.06.2004], который содержит вал, магнитомягкое ярмо, плоские постоянные магниты, цилиндрические постоянные магниты, полюсные сердечники с полюсными наконечниками, короткозамкнутую обмотку. Согласно изобретению ярмо выполнено в виде правильной призмы с радиальными пазами, в которые установлены плоские и цилиндрические постоянные магниты, цилиндрические полюсные сердечники с полюсными наконечниками и кольцевая короткозамкнутая обмотка.

Недостатками данной конструкции являются несиносуидальность магнитного потока в воздушном зазоре, высокая величина 3 и 5 гармоник в кривой ЭДС и повышенные потери в обмотке генератора, обусловленные этими гармониками, а также значительные потери энергии в бандажной оболочке ротора, обусловленные зубцовыми гармониками.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является ротор высокоскоростного электромеханического преобразователя энергии постоянными магнитами с малыми потерями в железе ротора [патент US 2309514 C2, H02K 1/28, 16.04.2009], содержащий вал, ярмо вала, постоянные магниты цилиндрической формы и бандажную оболочку ротора, выполненную из множества тонких колец, отделенных друг от друга изоляционным материалом.

Недостатками данной конструкции являются несиносуидальность магнитного потока в воздушном зазоре, высокая величина 3 и 5 гармоник в кривой ЭДС и повышенные потери в обмотке генератора, обусловленные этими гармониками.

Задача изобретения - повышение энергетических показателей электромеханического преобразователя с постоянными магнитами, благодаря применению постоянных магнитов в виде определенной геометрической формы, минимизация механических нагрузок на бандажную оболочку ротора при максимальной величине магнитной индукции в воздушном зазоре, благодаря использованию оптимальных геометрических соотношений высококоэрцитивных постоянных магнитов.

Техническим результатом является повышение синусоидальности кривой магнитной индукции в воздушном зазоре и снижение омических потерь в электрической машине от высших гармоник, а также снижение амплитуды высших гармоник.

Поставленная задача решается и указанный технический результат достигается по первому варианту тем, что в роторе электромеханического преобразователя энергии, содержащем вал, ярмо, постоянные магниты, бандажную оболочку, выполненную из множества тонких колец, отделенных друг от друга изоляционным материалом, согласно изобретению, постоянные магниты выполнены в форме двояковыпуклой линзы, при этом форма ярма профилирует форму постоянных магнитов, причем безразмерное отношение радиуса внутренней выпуклости линзы к радиусу внешней выпуклости линзы не менее пяти сотых и не более двадцати пяти сотых.

Поставленная задача решается и указанный технический результат достигается по второму варианту тем, что в роторе электромеханического преобразователя энергии, содержащем вал, ярмо, постоянные магниты, бандажную оболочку, выполненную из множества тонких колец, отделенных друг от друга изоляционным материалом, согласно изобретению, постоянные магниты выполнены в форме фигуры, образуемой полукругом и равнобедренным треугольником, при этом форма ярма профилирует форму постоянных магнитов, причем безразмерное отношение медианы треугольника к радиусу полукруга не менее пяти сотых и не более двадцати пяти сотых.

Поставленная задача решается и указанный технический результат достигается по третьему варианту тем, что в роторе электромеханического преобразователя энергии, содержащем вал, ярмо, постоянные магниты, бандажную оболочку, выполненную из множества тонких колец, отделенных друг от друга изоляционным материалом, согласно изобретению, постоянные магниты выполнены в форме фигуры, образуемой полукругом и равнобедренной трапецией, при этом форма ярма профилирует форму постоянных магнитов, причем безразмерное отношение высоты трапеции к радиусу полукруга не менее пяти сотых и не более двадцати пяти сотых.

Существо изобретения поясняется чертежами. На фиг. 1 изображен продольный разрез электромеханического преобразователя энергии с постоянными магнитами по первому варианту. На фиг. 2 изображен поперечный разрез электромеханического преобразователя энергии с постоянными магнитами по первому варианту. На фиг. 3 изображен продольный разрез электромеханического преобразователя энергии с постоянными магнитами по второму варианту. На фиг. 4 изображен поперечный разрез электромеханического преобразователя энергии с постоянными магнитами по второму варианту. На фиг. 5 изображен продольный разрез электромеханического преобразователя энергии с постоянными магнитами по третьему варианту. На фиг. 6 изображен поперечный разрез электромеханического преобразователя энергии с постоянными магнитами по третьему варианту.

Предложенное устройство по первому варианту содержит (фиг. 1, фиг. 2) вал 1, с напрессованным на него ярмом 2, профилирующим форму постоянных магнитов, постоянные магниты 3, выполненные в форме двояковыпуклой линзы, намагниченные в радиальном направлении N-S и установленные на ярме 2, постоянные магниты 4, выполненные в форме двояковыпуклой линзы, намагниченные в радиальном направлении S-N и установленные на ярме 2, бандажную оболочку 5, напрессованную на постоянные магниты 3, намагниченные в радиальном направлении N-S и установленные на ярме 2 и на постоянные магниты 4, намагниченные в радиальном направлении S-N. Бандажная оболочка 5 состоит из множества тонких колец 6, отделенных друг от друга изоляционным материалом 7.

Предложенное устройство по второму варианту содержит (фиг. 3, фиг. 4) вал 1, с напрессованным на него ярмом 2, профилирующим форму постоянных магнитов, постоянные магниты 3, выполненные в форме фигуры, образованной полукругом и равнобедренным треугольником, намагниченные в радиальном направлении N-S и установленные на ярме 2, постоянные магниты 4, выполненные в форме фигуры, образованной полукругом и равнобедренным треугольником, намагниченные в радиальном направлении S-N и установленные на ярме 2, бандажную оболочку 5, напрессованную на постоянные магниты 3, намагниченные в радиальном направлении N-S и установленные на ярме 2 и на постоянные магниты 4, намагниченные в радиальном направлении S-N. Бандажная оболочка 5 состоит из множества тонких колец 6, отделенных друг от друга изоляционным материалом 7.

Предложенное устройство по третьему варианту содержит (фиг. 5, фиг. 6) вал 1, с напрессованным на него ярмом 2, профилирующим форму постоянных магнитов, постоянные магниты 3, выполненные в форме фигуры, образованной полукругом и равнобокой трапецией, намагниченные в радиальном направлении N-S и установленные на ярме 2, постоянные магниты 4, выполненные в форме фигуры образованной полукругом и равнобокой трапецией, намагниченные в радиальном направлении S-N и установленные на ярме 2, бандажную оболочку 5, напрессованную на постоянные магниты 3, намагниченные в радиальном направлении N-S и установленные на ярме 2 и на постоянные магниты 4, намагниченные в радиальном направлении S-N. Бандажная оболочка 5 состоит из множества тонких колец 6, отделенных друг от друга изоляционным материалом 7.

Предложенное устройство по первому варианту работает следующим образом: при вращении ротора высокоскоростного магнитоэлектрического генератора двояковыпуклые постоянные магниты 3, намагниченные в радиальном направлении N-S и установленные на ярме 2, и двояковыпуклые постоянные магниты 4, намагниченные в радиальном направлении S-N, и также установленные на ярме 2, ввиду своей формы позволяют создавать синусоидальное распределение магнитного потока в воздушном зазоре. Так как поверхность ярма 2 профилирует форму постоянных магнитов 3, 4, увеличивается площадь взаимодействия между ярмом 2 и постоянными магнитами 3, 4. Это снижает механические нагрузки на бандажную оболочку ротора 5, состоящую из множества тонких колец 6, отделенных друг от друга изоляционным материалом 7. Кроме того, отношением радиуса внутренней выпуклости линзы к радиусу внешней выпуклости линзы не менее пяти сотых и не более двадцати пяти сотых, достигается оптимальная конструкция ротора с точки зрения гармонического состава создаваемого магнитного поля и механической прочности ротора.

Предложенное устройство по второму варианту работает следующим образом: при вращении ротора высокоскоростного магнитоэлектрического генератора постоянные магниты 3, выполненные в форме фигуры образованной полукругом и равнобедренным треугольником, намагниченные в радиальном направлении N-S и установленные на ярме 2 и постоянные магниты 4, выполненные в форме фигуры, образованной полукругом и равнобедренным треугольником, намагниченные в радиальном направлении S-N и также установленные на ярме 2, ввиду своей формы позволяют создавать синусоидальное распределение магнитного потока в воздушном зазоре, кроме того, благодаря тому, что поверхность ярма 2 профилирует форму постоянных магнитов 3, 4, увеличивается площадь взаимодействия между ярмом 2 и постоянными магнитами 3, 4, что снижает механические нагрузки на бандажную оболочку ротора 5, состоящую из множества тонких колец 6, отделенных друг от друга изоляционным материалом 7. Кроме того, отношением медианы равнобедренного треугольника к радиусу полукруга не менее пяти сотых и не более двадцати пяти сотых, достигается оптимальная конструкция ротора с точки зрения гармонического состава создаваемого магнитного поля и механической прочности ротора.

Предложенное устройство по третьему варианту работает следующим образом: при вращении ротора высокоскоростного магнитоэлектрического генератора постоянные магниты 3, выполненные в форме фигуры, образованной полукругом и равнобокой трапецией, намагниченные в радиальном направлении N-S и установленные на ярме 2, и постоянные магниты 4, выполненные в форме фигуры, образованной полукругом и равнобокой трапецией, намагниченные в радиальном направлении S-N и также установленные на ярме 2, ввиду своей формы позволяют создавать синусоидальное распределение магнитного потока в воздушном зазоре. Так как поверхность ярма 2 профилирует форму постоянных магнитов 3, 4, увеличивается площадь взаимодействия между ярмом 2 и постоянными магнитами 3, 4, что снижает механические нагрузки на бандажную оболочку ротора 5, состоящую из множества тонких колец 6, отделенных друг от друга изоляционным материалом 7. Кроме того, отношением высоты равнобокой трапеции к радиусу полукруга не менее пяти сотых и не более двадцати пяти сотых, достигается оптимальная конструкция ротора с точки зрения гармонического состава создаваемого магнитного поля и механической прочности ротора.

Таким образом, повышаются энергетические показатели электромеханического преобразователя с постоянными магнитами и минимизируются механические нагрузки на бандажную оболочку ротора при максимальной величине магнитной индукции в воздушном зазоре, благодаря использованию оптимальных геометрических соотношений высококоэрцитивных постоянных магнитов.

Итак, заявляемое изобретение позволяет повысить синусоидальность кривой магнитной индукции в воздушном зазоре и снизить омические потери в электрической машине от высших гармоник, а также снизить амплитуды высших гармоник.

1. Ротор электромеханического преобразователя энергии, содержащий вал, ярмо, постоянные магниты, бандажную оболочку, выполненную из множества тонких колец, отделенных друг от друга изоляционным материалом, отличающийся тем, что постоянные магниты выполнены в форме двояковыпуклой линзы, при этом форма ярма профилирует форму постоянных магнитов, причем безразмерное отношение радиуса внутренней выпуклости линзы к радиусу внешней выпуклости линзы не менее пяти сотых и не более двадцати пяти сотых.

2. Ротор электромеханического преобразователя энергии, содержащий вал, ярмо, постоянные магниты, бандажную оболочку, выполненную из множества тонких колец, отделенных друг от друга изоляционным материалом, отличающийся тем, что постоянные магниты выполнены в форме фигуры, образуемой полукругом и равнобедренным треугольником, при этом форма ярма профилирует форму постоянных магнитов, причем безразмерное отношение медианы треугольника к радиусу полукруга не менее пяти сотых и не более двадцати пяти сотых.

3. Ротор электромеханического преобразователя энергии, содержащий вал, ярмо, постоянные магниты, бандажную оболочку, выполненную из множества тонких колец, отделенных друг от друга изоляционным материалом, отличающийся тем, что постоянные магниты выполнены в форме фигуры, образуемой полукругом и равнобедренной трапецией, при этом форма ярма профилирует форму постоянных магнитов, причем безразмерное отношение высоты трапеции к радиусу полукруга не менее пяти сотых и не более двадцати пяти сотых.



 

Похожие патенты:

Изобретение касается электрической машины с жидкостным охлаждением. Технический результат - повышение эффективности охлаждения.

Настоящее изобретение касается сдвоенного двигателя. Технический результат - повышение технологичности сдвоенного двигателя.

Изобретение относится к области производства электрической энергии. Технический результат заключается в повышении КПД генератора.

Изобретение касается электрической машины и устройства её охлаждения. Технический результат заключается в повышении эффективности охлаждения вала.

Изобретение относится к области электротехники. Технический результат - повышение надёжности ротора.

Изобретение относится к электротехнике и может использоваться в качестве привода электрогенераторов, а также любых технических средств, применяемых в народном хозяйстве.

Изобретение относится к области электротехники и может быть использовано в приводных и генераторных установках. Техническим результатом является повышение эффективности электромеханического преобразования энергии в вентильно-индукторной электрической машине за счет снижения магнитных потерь в магнитопроводе.

Изобретение относится к электротехнике, в частности к роторам электрических машин, содержащим постоянные магниты. Технический результат - повышение КПД электрической машины.

Изобретение относится к области боеприпасов. Торпедный дисковый вентильный электродвигатель содержит последовательно сочлененные дисковые вентильные электрические двигательные модули, выполненные в виде неподвижного статора с закрепленными по окружности П-образными сердечниками и роторов с магнитными вставками.

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат состоит в повышении надежности, энергоэффективности и минимизация тепловыделений, повышении кпд Диэлектрический остов статора выполнен в виде рубашки охлаждения с аксиальными трубками.

Изобретение относится к ротору для электрической машины. Технический результат - повышение эффективности охлаждения ротора. Ротор (301) для электрической машины (201) содержит полюсный сердечник (303), который имеет охлаждаемый, намагничиваемый роторный участок (313) из сверхпроводящего материала. При этом роторный участок (313) имеет ротационно-симметричную геометрию. Полюсный сердечник (303) выполнен в виде цилиндра, а роторный участок (313) расположен в окружном направлении на наружной поверхности (309) цилиндра. При этом цилиндр выполнен в виде полого цилиндра (305) для ввода охлаждающей текучей среды во внутреннее пространство (307) полого цилиндра (305). 2 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к ротору для электродвигателя со встроенными постоянными магнитами, который используется, например, для электрических транспортных средств, гибридных транспортных средств и станков. Технический результат - повышение выходного крутящего момента в диапазоне высоких оборотов. Ротор для двигателя со встроенными постоянными магнитами содержит железный сердечник ротора, который сформирован путем наслоения стальных листов основы с плотностью магнитного потока B8000 1,65 Тл или более, измеренной при напряженности магнитного поля 8000 А/м, и коэрцитивной силой 100 А/м или более. Ротор содержит также множество отверстий для вставки постоянных магнитов, которые сформированы с разнесением относительно друг друга на железном сердечнике ротора в круговом направлении железного сердечника ротора. Постоянные магниты размещены в отверстиях для вставки постоянных магнитов. 2 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к области электротехники и может быть использовано в электрических приводах транспортных средств. Техническим результатом является обеспечение высокого отношения частот вращения при постоянной мощности. В электродвигателе с постоянными магнитами с ослаблением поля ротор имеет неподвижный железный сердечник и подвижные сегменты железного сердечника. Когда подвижные сегменты железного сердечника находятся в первом положении, таком как в контакте с неподвижным железным сердечником, напряженность поля высокая. Когда подвижные сегменты железного сердечника находятся во втором положении, в котором подвижные сегменты железного сердечника отодвинуты от неподвижного железного сердечника, напряженность поля низкая. В результате имеется возможность использования электродвигателя для применений, в которых желателен широкий диапазон скоростей вращения. Изобретение применимо как к электродвигателям с постоянными магнитами, так и к генераторам. Кроме того, статорное кольцо снабжено неподвижным участком и по меньшей мере одним подвижным сегментом статора. 3 н. и 17 з.п. ф-лы, 19 ил.

Изобретение относится к электротехнике, в частности к роторам электрических машин, содержащим постоянные магниты. Технический результат - повышение КПД электрической машины. Ротор электрической машины содержит магнитопровод и постоянные магниты, расположенные парами внутри магнитопровода в непосредственной близости к его наружной поверхности по окружности. Магниты пары образуют полюса ротора. Магнитопровод выполнен с перемычками между его наружной поверхностью и магнитами и между соседними парами магнитов, образующих полюса ротора. При этом магнитопровод содержит прорези, выполненные в перемычках между соседними парами магнитов, прорези, выполненные перпендикулярно торцевым частям полюсов магнитов, направленных в сторону оси вращения ротора, и выполнен с зазорами по отношению к торцевым частям магнитов, направленных в сторону прорезей, выполненных в перемычках магнитопровода между соседними парами магнитов. 1 ил.

Изобретение относится к электротехнике. Технический результат - повышение надёжности. Электромашина содержит корпус, в котором размещен шихтованный сердечник статора с обмоткой. Внутри статора зафиксирована втулка, в которой размещен ротор, содержащий индуктор c полюсами, постоянными магнитами, немагнитными клиньями и валом. Корпус выполнен с возможностью подвода охлаждающего агента к ротору и статору. Статор выполнен с возможностью независимого охлаждения. Втулка выполнена из немагнитного неэлектропроводного материала и снабжена продольными выступами, выполненными полыми, а в пазах размещены прямоугольные планки, выполненные из высокотемпературного сверхпроводящего материала с пазовыми каналами, сообщенными с радиальными хладоподводящими отверстиями. В корпусе соосно с сердечником статора установлены цилиндрические втулки, выполненные в виде стаканов из изоляционного материала, скрепленные своими торцами с торцами крайних пакетов сердечника статора. Цилиндрические втулки, выполненные на сторонах торцевых щитов, использованы как обоймы радиально-упорных пассивных магнитных подшипников, а цилиндрические стаканы, выполненные на внешних торцах ротора, использованы как их цапфы. Магнитная система индуктора выполнена по схеме Хальбаха. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области двигателестроения и может быть использовано при освоении космического пространства. Технический результат - обеспечение управления траекторией космического аппарата. Способ заключается в следующем. Вначале производят зарядку электрического конденсатора, затем прерывают электрическую связь между его обкладками. После этого разводят обкладки конденсатора на определенное удаление друг от друга и придают им движение по траектории, вблизи которой располагают практически не имеющие внешнего магнитного поля намотки проводника с током на кольцевые сердечники, тем самым осуществляя взаимодействие магнитного поля движущихся обкладок и этих намоток. При этом добиваются постоянного действия в заданном направлении какой-либо одной из проекций суммы всех сил, возникающих на витках намоток, на оси трехмерной системы координат с помощью изменения направления токов в намотках в тех случаях, когда в процессе указанных взаимодействий эта проекция меняет свое направления в сторону, противоположную заданной. 3 ил.

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано при проектировании электрогенераторов и электродвигателей с высокой частотой вращения. Технический результат: увеличение индукции на полюсах, снижение моментов инерции ротора, снижение динамических нагрузок на подшипники электромашины. Ротор электромашины содержит полый вал из немагнитного материала и надетый на него магнитный индуктор цилиндрической формы, содержащий постоянные магниты, полюса из материала с высокой магнитной проницаемостью и немагнитные металлические клинья. Полый вал сформирован из дисков равного сопротивления с одинаковым внешним диаметром, выполненных из немагнитного материала, жестко скрепленных торцевыми поверхностями друг с другом. Индуктор содержит планки, ориентированные вдоль продольной оси ротора, выполненные из постоянных магнитов, намагниченных так, что между магнитами, намагниченными в радиальном направлении, размещены магниты, намагниченные в тангенциальном направлении, с возможностью образования магнитной схемы Хальбаха. Радиально намагниченные магниты уперты в обращенные к ним внутренние поверхности полюсов, а тангенциально намагниченные магниты уперты в обращенные к ним внутренние поверхности клиньев. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано при проектировании электрогенераторов и электродвигателей с высокой частотой вращения. Технический результат: повышение прочности ротора, снижение моментов инерции ротора, снижение динамических нагрузок на подшипники электромашины. Ротор электромашины содержит полый вал из немагнитного материала и надетый на него магнитный индуктор цилиндрической формы, содержащий постоянные магниты, полюса из материала с высокой магнитной проницаемостью и немагнитные металлические клинья. Полый вал сформирован из дисков равного сопротивления с одинаковым внешним диаметром, выполненных из немагнитного материала, жестко скрепленных торцевыми поверхностями друг с другом. Индуктор содержит магнитные планки, ориентированные вдоль продольной оси ротора, выполненные из постоянных магнитов, намагниченных в тангенциальном направлении, чередующихся с полюсами, выполненными как планки. Магнитные планки зафиксированы немагнитными клиньями, выполненными в виде желобчатых планок, размещенных над магнитными планками. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано при проектировании электрогенераторов и электродвигателей с высокой частотой вращения. Технический результат - повышение прочности ротора электромашины при высоких окружных скоростях, снижение массы, массовых моментов инерции ротора, снижение динамических нагрузок на подшипники электромашины. Ротор электромашины содержит полый вал из немагнитного материала и надетый на него магнитный индуктор цилиндрической формы, содержащий постоянные магниты, чередующиеся с полюсами из материала с высокой магнитной проницаемостью. Полый вал сформирован из дисков равного сопротивления с одинаковым внешним диаметром, выполненных из материала с высокой магнитной проницаемостью, жестко скрепленных торцевыми поверхностями друг с другом. Индуктор содержит магнитные планки, ориентированные вдоль продольной оси ротора, выполненные из постоянных магнитов, намагниченных в радиальном направлении, чередующихся со вставками из немагнитного материала, выполненными как планки. Полюса выполнены в виде желобчатых планок, размещенных над магнитными планками. 1 з.п. ф-лы, 2 ил.

Изобретение относится к герметизированным узлам статора, предназначенным для применения в двигателях с электрическим приводом, таких как двигатель компрессора с электроприводом. Технический результат - снижение потерь на вихревые токи. Герметизированный узел статора включает статор, содержащий сердечник и концевую зону, и керамический цилиндр, ограничивающий поверхность сердечника статора. Концевая зона статора расположена смежно с сердечником статора и содержит лобовые части обмотки статора. При этом в концевой зоне статора расположена ограничительная стенка статора. Керамический цилиндр и ограничительная стенка статора ограничивают внутреннее пространство, предназначенное для установки ротора, причем указанная стенка статора имеет внутреннюю поверхность, обращенную к зоне расположения лобовых частей обмотки статора, и наружную поверхность, обращенную к внутреннему пространству, ограниченному указанной стенкой статора и указанным керамическим цилиндром. При этом по меньшей мере часть указанной внутренней поверхности имеет защитный слой, содержащий проводящий металл, а указанная стенка статора содержит коррозионно-стойкий металл. 3 н. и 20 з.п. ф-лы, 6 ил.
Наверх