Способ получения ингибитора сероводородной и углекислотной коррозии в минерализованных водных средах

Изобретение относится к области защиты металлов от коррозии в высокоминерализованных средах, содержащих сероводород и углекислый газ, с применением ингибиторов, и может быть использовано при добыче, подготовке, транспортировке и переработке нефти. Способ (варианты) включает взаимодействие оксиэтилированного спирта или оксиэтилированного моноалкилфенола с пятиокисью фосфора или хлорокисью фосфора при нагревании и последующее взаимодействие полученного продукта с аминным реагентом, причем при использовании пятиокиси фосфора оксиэтилированный спирт или оксиэтилированный моноалкилфенол и пятиокись фосфора берут при мольном соотношении 1:0,5 соответственно, при использовании хлорокиси фосфора дополнительно вводят воду и оксиэтилированный спирт или оксиэтилированный моноалкилфенол, хлорокись фосфора и воду берут при мольном соотношении 1:1:2 соответственно, а мольное соотношение полученного продукта и аминного реагента составляет 1:(0,5-2) соответственно. В вариантах способа получения в ингибитор дополнительно вводят четвертичные аммониевые соли в количестве 1,0-10,0 мас.% и ингибитор растворяют в алифатическом спирте и смеси алифатического спирта с водой или смеси алифатического спирта с ароматическим углеводородом до 20,0-70,0%-ной концентрации. Технический результат: повышение эффективности ингибитора коррозии и расширение сырьевой базы ингибиторов. 4 н. и 8 з.п. ф-лы, 2 табл., 25 пр.

 

Изобретение относится к области защиты металлов от коррозии в высокоминерализованных средах, содержащих сероводород и углекислый газ, с применением ингибиторов, и может быть использовано при добыче, подготовке, транспортировке и переработке нефти.

Известен ингибитор сероводородной коррозии, содержащий в мас.%: талловое масло 22-25, полиэтиленполиамин 4-6, продукт взаимодействия оксиэтилированного изононилфенола (с 10 оксиэтильными группами) и пятиокиси фосфора 3-6, растворитель - остальное (см. Патент РФ №2141541, МПК С23F 11/14, публ.1999 г.).

Данный ингибитор коррозии недостаточно эффективен в углекислотных средах вследствие плохой совместимости с нефтепромысловыми водами высокой плотности и не защищает от питтингообразования.

Известен способ получения ингибитора коррозии в минерализованных водных средах, включающий взаимодействие оксиэтилированного моноалкилфенола с диметилфосфитом или монометилфосфитом или треххлористым фосфором при нагревании, взятых в мольном соотношении 1:0,8-1,2 соответственно, последующим взаимодействием полученного продукта с амином при молярном соотношении полученного продукта и амина 1:0,8-1,2 (см. Патент РФ №2113543, МПК С23F 11/14, публ. 1998 г.).

Полученный известным способом ингибитор не эффективен в углекислотных средах.

Наиболее близким по технической сущности и достигаемому эффекту является способ получения ингибитора коррозии в минерализованных водных средах, включающий взаимодействие оксиэтилированного спирта или оксиэтилированного моноалкилфенола с диметилфосфитом или монометилфосфитом при нагревании, взятых при мольном соотношении 1:(0,8-1,2) соответственно, с последующим взаимодействием полученного продукта с амином - этилендиамином или диэтилентриамином или триэтилентетраамином или амидоамином жирной кислоты при мольном соотношении полученного продукта и амина 1:(0,2-0,5) соответственно. В варианте способа получения ингибитор растворяют в метиловом спирте или в смеси метилового спирта и ароматического растворителя до 20-80%-ной концентрации (см. Патент РФ №2436869, МКИ C23F 11/14, публ. 2011 г.).

Ингибитор, получаемый по известному способу, недостаточно эффективен в углекислотных средах.

Технической задачей предлагаемого изобретения является создание способа получения более эффективного ингибитора коррозии и расширение сырьевой базы ингибиторов.

Поставленная задача решается путем создания способа получения ингибитора сероводородной и углекислотной коррозии в минерализованных водных средах, включающий взаимодействие оксиэтилированного спирта с пятиокисью фосфора при нагревании и последующее взаимодействие полученного продукта с аминным реагентом, при этом оксиэтилированный спирт и пятиокись фосфора берут при мольном соотношении 1:0,5 соответственно, а мольное соотношение полученного продукта и аминного реагента составляет 1:(0,5-2) соответственно, а также способа получения ингибитора сероводородной и углекислотной коррозии в минерализованных водных средах, включающий взаимодействие оксиэтилированного моноалкилфенола с пятиокисью фосфора при нагревании и последующее взаимодействие полученного продукта с аминным реагентом, при этом оксиэтилированный моноалкилфенол и пятиокись фосфора берут при мольном соотношении 1:0,5 соответственно, а мольное соотношение полученного продукта и аминного реагента составляет 1:(0,5-2) соответственно, а также способа получения ингибитора сероводородной и углекислотной коррозии в минерализованных водных средах, включающий взаимодействие оксиэтилированного спирта с хлорокисью фосфора при нагревании и последующее взаимодействие полученного продукта с аминным реагентом, при этом при взаимодействии оксиэтилированного спирта с хлорокисью фосфора дополнительно вводят воду при мольном соотношении 1:1:2 соответственно, а мольное соотношение полученного продукта и аминного реагента составляет 1:(0,5-2) соответственно, а также способа получения ингибитора сероводородной и углекислотной коррозии в минерализованных водных средах, включающий взаимодействие оксиэтилированного моноалкилфенола с хлорокисью фосфора при нагревании и последующее взаимодействие полученного продукта с аминным реагентом, при этом при взаимодействии оксиэтилированного моноалкилфенола с хлорокисью фосфора дополнительно вводят воду при мольном соотношении 1:1:2 соответственно, а мольное соотношение полученного продукта и аминного реагента составляет 1:(0,5-2) соответственно, причем во всех вариантах получения в ингибитор дополнительно вводят четвертичные аммониевые соли в количестве 1,0-10,0 мас.%, а ингибитор растворяют в алифатическом спирте и смеси алифатического спирта с водой или смеси алифатического спирта с ароматическим углеводородом до 20,0-70,0%-ной концентрации.

В качестве оксиэтилированных спиртов используют, например: моноалкиловый эфир полиэтиленгликоля на основе первичных жирных спиртов общей формулы: CH3(CH2)nO(C2H4O)m Н, где: n=7-9, m=6, имеющий техническое название оксанол КД-6 по ТУ 2483-328-05763441-2, синтанол ДС-10 по ТУ 6-14-577-88, синтанол АЛМ-10 по ТУ 6-14-864-88. Пятиокись фосфора берут по ТУ 6-09-4173-85, хлорокись фосфора по ТУ 6-02-600-84. Использование пятиокиси фосфора и хлорокиси фосфора при получении ингибитора позволяет эффективно защищать от коррозии не только в сероводородсодержащих средах, но и в углекислотных средах по сравнению с известным способом. В качестве аминного реагента используют, например: алкилимидазолин получаемый взаимодействием карбоновых кислот жирного ряда с 1,2-этилендиамином или полиэтиленполиамином (ПЭПА), полиэтиленполиамин (ПЭПА) по ТУ 2413-214-00203312-2002, кокамин (продукт производства КНР), моноэтаноламин по ТУ 2423-002-78722668-2010. В качестве растворителя используют алифатические спирты, например: метиловый спирт по ГОСТ 2222-95, этиловый по ОСТ 38.02386-85, изопропиловый (ИПС) по ГОСТ 9805-84, бутиловый по ГОСТ 5208-81, изобутиловый спирт по ГОСТ 9536-79 или их смесь с водой или смесь алифатических спиртов с ароматическими углеводородами, например: нефрас Ар 120/200 или нефрас Ар 150/330 по ТУ 38.101809-90, сольвент нефтяной тяжелый (СНТ) по ТУ 38.101809-90, этилбензольной фракцией (ЭБФ) по ТУ 38.30225-81, бутилбензольной фракцией (ББФ) по ТУ 38.10297-78. В качестве четвертичных аммониевых солей используют, например: кокодиметилбензиламмониум хлорид (КДМБАХ), додецилдиметилбензиламмониум хлорид (ДДДМБАХ), децилдиметилбензиламмониум хлорид (ДДМБАХ) - продукты производства КНР.

Для получения ингибитора вначале проводят взаимодействие 1 моля оксиэтилированного спирта или оксиэтилированного моноалкилфенола с 0,5 моля пятиокиси фосфора смешением приведенных реагентов при нагревании реакционной смеси до 120-160°C и удаляют воду продувкой инертным газом в течение 3-4 часов или проводят взаимодействие 1 моля оксиэтилированного спирта или оксиэтилированного моноалкилфенола и 1 моля хлорокиси фосфора смешением приведенных реагентов при нагревании реакционной смеси до 80-90°C в течение 2-3 часов и далее добавляют в реакционную смесь воду и отдувают образующийся хлорводород при той же температуре инертным газом в течение 2 часов. Последующее взаимодействие полученных продуктов с аминным реагентом осуществляют при перемешивании при температуре 40-70°C. При необходимости в охлажденный ингибитор вводят при перемешивании четвертичные аммониевые соли и растворяют ингибитор в растворителе до однородного состояния.

Приводим конкретные примеры получения продукта взаимодействия. Результаты приведены в таблице 1.

Пример 1. К 394 г (1 моль) оксанола КД-6 вводят при перемешивании 72 г (0,5 моля) пятиокиси фосфора при нагревании реакционной смеси до 120-160°C с удалением воды продувкой инертным газом в течение 3-4 часов. Далее в полученный продукт добавляют при перемешивании 249 г (1 моль) алкилимидазолина при температуре 40-70°C (см. табл.1, пример 1).

Примеры 2-6 готовят аналогичным способом, используя различные виды оксиэтилированных спиртов и аминных реагентов.

Пример 7. К 484 г (1 моль) неонола АФ9-6 добавляют 72 г (0,5 моля) пятиокиси фосфора при нагревании реакционной смеси до 120-160°C и удаляют воду продувкой инертным газом в течение 3-4 часов. Далее в полученный продукт добавляют при перемешивании 210 г (1 моль) кокамина при температуре 40-70°C (см. табл. 1, пример 7).

Примеры 8-12 проводят аналогичным способом, изменяя виды оксиэтилированных алкилфенолов и аминных реагентов.

Примеры 13. К 394 г (1 моль) оксанола КД-6 вводят при перемешивании 153,5 г (1 моль) хлорокиси фосфора при нагревании реакционной смеси до 80-90°C в течение 2-3 часов. Далее в реакционную смесь добавляют 36 г (2 моля) воды и проводят отдувку образующегося хлорводорода при той же температуре инертным газом в течение 2 часов. Далее в полученный продукт добавляют при перемешивании 249 г (1 моль) алкилимидазолина при температуре 40-70°C (см. табл. 1, пример 13).

Примеры 14-24 проводят аналогичным способом, изменяя виды оксиэтилированных и аминных реагентов.

Пример 25 (прототип). К 394 г оксанола КД-6 добавляют 110 г диметилфосфита, нагревают смесь до 110-140°C в течение 3 часов. Для удаления метанола реакционную

смесь продувают азотом. Далее к охлажденной реакционной смеси добавляют 34,4 г диэтилентриамина и перемешивают до получения однородной смеси.

В полученные продукты взаимодействия при необходимости при перемешивании вводят четвертичные аммониевые соли в количестве 1,0-10,0 мас.% и растворяют ингибитор в растворителе до однородного состояния. Компонентный состав ингибиторов приведен в таблице 2.

Для доказательства критерия «промышленная применимость» приводим конкретные примеры эффективности заявляемого ингибитора в сероводородной и углекислотной высокоминерализованной водной среде при дозировке ингибитора 25 мг/дм3.

Защитный эффект ингибиторов согласно таблиц 1 и 2 определяют гравиметрическим методом в циркуляционных ячейках в ингибированном стандартном минерализованном сероводородсодержащем растворе по ГОСТ 9506-87, а также электрохимическом методом в минерализованном растворе, содержащем углекислый газ. В качестве агрессивной среды при гравиметрическом методе испытаний используют модель пластовой воды с плотностью 1,12 г/л при концентрации сероводорода 100 мг/л, при электрохимическом методе испытаний используют модель пластовой воды с плотностью 1,12 г/л, насыщенную CO2 до 1000 мг/л. Продолжительность испытаний 6 часов. Результаты испытаний приведены в таблице 2.

По данным, приведенным в таблице 2 видно, что заявляемый ингибитор коррозии обладает высоким защитным действием от коррозии в сероводородсодержащих и углекислотных высокоминерализованных водных средах. При сравнении защитного эффекта ингибиторов по заявляемому (см. пример 7) и известному способам (см. пример 2) при содержании ингибитора в количестве 30 мас.% в 70 мас.% метаноле, защитный эффект ингибитора, получаемого заявляемым способом, выше. Указанное содержание ингибиторов в растворителе является наиболее технологически обоснованным и менее затратным.

1. Способ получения ингибитора сероводородной и углекислотной коррозии в минерализованных водных средах, включающий взаимодействие оксиэтилированного спирта с фосфорсодержащим реагентом при нагревании и последующее взаимодействие полученного продукта с аминным реагентом, отличающийся тем, что в качестве фосфорсодержащего реагента используют пятиокись фосфора, при этом оксиэтилированный спирт и пятиокись фосфора берут при мольном соотношении 1:0,5 соответственно, а мольное соотношение полученного продукта и аминного реагента составляет 1:(0,5-2) соответственно.

2. Способ по п. 1, отличающийся тем, что в ингибитор дополнительно вводят четвертичные аммониевые соли в количестве 1,0-10,0 мас.%.

3. Способ по п. 1 или 2, отличающийся тем, что ингибитор растворяют в алифатическом спирте и смеси алифатического спирта с водой или смеси алифатического спирта с ароматическим углеводородом до 20,0-70,0%-ной концентрации.

4. Способ получения ингибитора сероводородной и углекислотной коррозии в минерализованных водных средах, включающий взаимодействие оксиэтилированного моноалкилфенола с фосфорсодержащим реагентом при нагревании и последующее взаимодействие полученного продукта с аминным реагентом, отличающийся тем, что в качестве фосфорсодержащего реагента используют пятиокись фосфора, при этом оксиэтилированный моноалкилфенол и пятиокись фосфора берут при мольном соотношении 1:0,5 соответственно, а мольное соотношение полученного продукта и аминного реагента составляет 1:(0,5-2) соответственно.

5. Способ по п. 4, отличающийся тем, что в ингибитор дополнительно вводят четвертичные аммониевые соли в количестве 1,0-10,0 мас.%.

6. Способ по п. 4 или 5, отличающийся тем, что ингибитор растворяют в алифатическом спирте и смеси алифатического спирта с водой или смеси алифатического спирта с ароматическим углеводородом до 20,0-70,0% -ной концентрации.

7. Способ получения ингибитора сероводородной и углекислотной коррозии в минерализованных водных средах, включающий взаимодействие оксиэтилированного спирта с фосфорсодержащим реагентом при нагревании и последующее взаимодействие полученного продукта с аминным реагентом, отличающийся тем, что в качестве фосфорсодержащего реагента используют хлорокись фосфора, при этом при взаимодействии оксиэтилированного спирта с хлорокисью фосфора дополнительно вводят воду при мольном соотношении 1:1:2 соответственно, а мольное соотношение полученного продукта и аминного реагента составляет 1:(0,5-2) соответственно.

8. Способ по п. 7, отличающийся тем, что в ингибитор дополнительно вводят четвертичные аммониевые соли в количестве 1,0-10,0 мас.%.

9. Способ по п. 7 или 8, отличающийся тем, что ингибитор растворяют в алифатическом спирте и смеси алифатического спирта с водой или смеси алифатического спирта с ароматическим углеводородом до 20,0-70,0% -ной концентрации.

10. Способ получения ингибитора сероводородной и углекислотной коррозии в минерализованных водных средах, включающий взаимодействие оксиэтилированного моноалкилфенола с фосфорсодержащим реагентом при нагревании и последующее взаимодействие полученного продукта с аминным реагентом, отличающийся тем, что в качестве фосфорсодержащего реагента используют хлорокись фосфора, при этом при взаимодействии оксиэтилированного моноалкилфенола с хлорокисью фосфора дополнительно вводят воду при мольном соотношении 1:1:2 соответственно, а мольное соотношение полученного продукта и аминного реагента составляет 1:(0,5-2) соответственно.

11. Способ по п. 10, отличающийся тем, что в ингибитор дополнительно вводят четвертичные аммониевые соли в количестве 1,0-10,0 мас.%.

12. Способ по п. 10 или 11, отличающийся тем, что ингибитор растворяют в алифатическом спирте и смеси алифатического спирта с водой или смеси алифатического спирта с ароматическим углеводородом до 20,0-70,0%-ной концентрации.



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности и может быть использовано для защиты металлов от сероводородной и углекислотной коррозии. Ингибитор содержит, мас.%: 2-алкилимидазолин 5,0-50,0, серосодержащий компонент 0,1-10,0, шестичленное циклическое органическое соединение 5,0-50,0, продукт взаимодействия полиамидов с уксусной кислотой 0,5-19,0, органический растворитель 4,0-83,0 и воду остальное.

Изобретение относится к области защиты металлических поверхностей от биобрастания, коррозии и солеотложения и может быть использовано для защиты систем оборотного водоснабжения энергетических и нефтехимических предприятий.

Изобретение относится к битумным эмульсиям и может быть использовано для антикоррозионной защиты стали и в дорожном строительстве. Катионная битумная эмульсия для антикоррозионной защиты стали, включающая битум, эмульгатор КАДЭМ-ВТ, кубовой остаток ректификации бензола, соляную кислоту, пеназолин К, дополнительно содержит синергическую смесь ингибиторов коррозии из 5,6,7,8-тетрахлорхинозолина, диэтил-S-(6-хлорбензоксазолинон-2-ил-3-метил)дитиофосфата, при следующем соотношении компонентов, мас.%: битум 55-60; эмульгатор КАДЭМ-ВТ 2,9-4,5; кубовой остаток ректификации бензола 10-11; соляная кислота 0,6-0,8; (диэтил-S-(6-хлорбензоксазолинон-2-ил-3-метил)дитиофосфат 0,3-0,4; 5,6,7,8-тетрахлорхинозолин 0,4-0,5; пеназолин К 0,4-0,9; вода остальное.
Изобретение относится к средствам защиты металлов от коррозии в минерализованных средах, содержащих сероводород и углекислый газ, и может быть использовано при добыче, подготовке, транспортировке и переработке нефти.
Изобретение относится к составам для ингибирования коррозии и солеотложений в теплообменном оборудовании систем технического водоснабжения бытового и промышленного назначения, выполненных из черных и цветных металлов, для приготовления смазочно-охлаждающих жидкостей (СОЖ) и моющих средств.

Изобретение относится к ингибиторам коррозии стали с кислородной деполяризацией и образования накипи на основе комплексов нитрилотрисметиленфосфоновой кислоты с цинком и предназначено, в частности, для защиты стальных частей технологического оборудования в нефтегазовой, химической, пищевой и других отраслях промышленности.

Изобретение относится к кристаллической форме тридекагидрата тетранатрия нитрилотрисметиленфосфонатоцинката и способу ее получения, которые могут использоваться в качестве ингибитора коррозии стали для защиты стальных частей технологического оборудования в нефтегазовой, химической, пищевой и других отраслях промышленности.
Изобретение относится к области защиты металлов от коррозии и может быть использовано для систем оборотного водоснабжения и теплоснабжения промышленных предприятий.
Изобретение относится к составам для предотвращения неорганических отложений и коррозии и может быть использовано в нефтяной промышленности, в частности в скважинах и на скважинном оборудовании.

Изобретение относится к защите стального оборудования, трубопроводов и систем водоснабжения от коррозии в водных средах. Способ включает контролирование содержания кислорода в водной среде в интервале от 0,1 до 6,0 мг/дм3 и введение в водную среду ингибитора - цинкового комплекса 1-гидроксиэтилидендифосфоновой кислоты.

Изобретение относится к области защиты металлов от коррозии в высокоминерализованных средах, содержащих сероводород и углекислый газ, с применением ингибиторов и может быть использовано при добыче, подготовке, транспортировке и переработке нефти. Ингибитор включает продукт взаимодействия 2-алкилимидазолина с производным фосфористой кислоты (ПВ-1) или продукт взаимодействия 2-алкилимидазолина с продуктом реакции оксиэтилированных алкилфенолов, или оксиэтилированных спиртов, или оксиэтилированных жирных кислот с производным фосфористой кислоты (ПВ-2) и растворитель при следующем соотношении компонентов, мас.%: ПВ-1 или ПВ-2 20,0-70,0 и растворитель - остальное. Технический результат: создание ингибитора коррозии, эффективно защищающего от сероводородной и углекислотной коррозии при высокой минерализации пластовых вод, с температурой застывания от -45°C до -55°C и расширение сырьевой базы ингибиторов. 2 н. и 4 з.п. ф-лы, 2 табл., 13 пр.

Изобретение относится к области защиты металлов от сероводородной коррозии и наводороживания в нефтяной и газовой промышленности и может быть использовано для защиты стального оборудования и трубопроводов в средах с высоким содержанием сероводорода. Ингибитор содержит азотсодержащую активную основу в виде смеси третичного амина с со смесью моноалкилфосфата и диалкилфосфата, деэмульгатор в виде смеси полиэтиленгликолей и полипропиленгликолей, пеногаситель на основе органомодифицированных силиконов и органических компонентов, а также растворитель в виде изобутанола. Сочетание компонентов в определенном соотношении обеспечивает повышение эффективности защитного действия ингибитора коррозии от общей коррозии и наводороживания в сероводородсодержащих средах при повышенных температурах, улучшение эксплуатационных свойств - обеспечение низких пенообразующих свойств в водных растворах этаноламинов и быстрый распад эмульсии углеводород-минерализованная вода. 7 табл.

Изобретение относится к способам предотвращения отложений минеральных солей, коррозии и может быть использовано в системах водоподготовки, где вода используется в качестве хладагента, теплоносителя, гидротранспорта. Способ предотвращения минеральных отложений и коррозии ведут путем введения в обрабатываемую среду органофосфоната. В качестве органофосфоната берут гексаметилендиаминтетраметиленфосфоновую кислоту (ГМДТФ) и ее металлосодержащие комплексонаты никеля и кобальта при мольном соотношении ГМДТФ: металлосодержащие комплексонаты никеля и кобальта 2,5:1 и мольном соотношении комплексонатов никеля и кобальта 0,75:0,25-0,25-0,75 соответственно. Технический результат - повышение эффективности ингибирования солеотложений и ингибирования коррозии в системах с высоким солесодержанием при повышенных температурах. 1 ил., 2 табл.

Изобретение относится к области защиты металлов от кислотной коррозии, в том числе с помощью контактных ингибиторов, в частности, для получения из водных растворов устойчивых пассивирующих слоев на поверхности черных и цветных металлов и может быть использовано для защиты металлических поверхностей, а также для подготовки поверхности к нанесению иных средств противокоррозионной защиты. Ингибирующая композиция содержит водные растворы комплексонатов никеля (+2) и хрома (+3) с фосфоновой кислотой, ортофосфаты никеля (+2), хрома (+3), ортофосфорную кислоту и соединения молибдена (+6), такие как молибдаты натрия и/или калия и/или молибденовую кислоту. Ингибирующая композиция обеспечивает антикоррозионную защиту технологического оборудования, эксплуатируемого в кислотной среде, обусловленной наличием ортофосфорной, серной и др. кислот, что значительно снижает затраты, упрощает и удешевляет технологические процессы, которые осуществляются в оборудовании из нержавеющих сталей в кислых средах. 2 з.п. ф-лы, 3 табл., 20 пр.

Изобретение относится к защите стальных деталей и стального оборудования от коррозии путем создания поверхностных защитных слоев и может найти применение, например, в металлургической промышленности, в машиностроении, в нефтегазовой отрасли, в теплотехнике и коммунальном хозяйстве. Способ защиты поверхности стали от коррозии включает предварительную обработку поверхности стальных деталей или стального оборудования водным раствором нитрилотрисметиленфосфонатоцинката натрия и последующую обработку раствором винилтриэтоксисилана в летучем органическом растворителе. Изобретение обеспечивает получение на поверхности стали гидрофобного защитного противокоррозионного слоя на основе стабильных в хранении и использовании реагентов. 7 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к области защиты металлов от коррозии с помощью ингибиторов и может быть использовано для защиты различного оборудования, изготовленного из меди и ее сплавов. Ингибитор коррозии содержит гетероциклическое органическое соединение класса азолов, при этом в качестве действующего вещества он содержит 5-замещенный аналог 3-амино-1,2,4-триазола формулы I: где R - заместитель, выбранный из метил-, этил-, пропил-, бутил-, пентил-, гексил-, гептил-, бензил-, метилмеркапто-, этилмеркапто-, пропилмеркапто-, бутилмеркапто-, пентилмеркапто-, гексилмеркапто-, гептилмеркапто-. Технический результат: эффективное снижение коррозии меди и ее сплавов. 3 ил., 3 пр.
Наверх