Способ контроля технического состояния подъёмного каната

Способ относится к горной промышленности, в частности к шахтным подъемным установкам, и предназначен для контроля технического состояния подъемного каната. Способ позволяет определить жесткость подъемного каната на растяжение путем измерения длины подъемного каната от точки схода подъемного каната с барабана подъемной машины до подвесного устройства подъемного сосуда при остановке порожнего подъемного сосуда под загрузку, веса груза, удлинения подъемного каната после загрузки подъемного сосуда и последующего расчета, по величине которой судят о техническом состоянии подъемного каната. Для обеспечения постоянства контроля технического состояния подъемного каната измерения и расчета производят при каждом цикле подъема груженого подъемного сосуда. Технический результат - обеспечение возможности постоянного контроля технического состояния подъемного каната. 1 з.п. ф-лы, 1 ил.

 

Способ относится к горной промышленности, в частности к шахтным подъемным установкам, и предназначен для контроля технического состояния подъемного каната.

Известен способ измерения износа стального каната, включающий продольное намагничивание участков навески контролируемого каната до состояния, близкого к насыщению, измерение текущих параметров магнитного поля в межполюсном пространстве у поверхности контролируемого каната с помощью датчиков контроля магнитного поля, сопоставление текущих значений сигналов датчиков контроля магнитного поля с эталонными значениями сигналов датчиков контроля магнитного поля, по результатам которого судят об относительной потере сечения каната, отличающийся тем, что после навешивания каната дополнительно измеряют величину его линейного удлинения Ly и сравнивают ее с расчетной величиной упругого удлинения Lp каната, а об относительной потере сечения каната, связанной с его износом, судят с момента наступления соотношения 0,98<Ly/Lp<1,02 с учетом относительной потери сечения на этот момент (см. патент России: RU 2281489 C2 по МПК G01N 27/82, G01В 7/12).

Недостатком данного способа является сложность и трудоемкость при определении характеристик подъемного каната.

Известен способ контроля технического состояния подъемного каната, заключающийся в определении характеристики упругих свойств каната - модуля упругости каната, находящегося на весу, по скорости распространения упругой волны в канате [см. Белый В.Д., Лесин К.К., Самарский А.Ф. Выбор, навеска, эксплуатация и контроль состояния шахтных канатов. - М.: Недра, 1967. - 228 с.]. Данный способ принят за прототип.

Недостатком данного способа контроля технического состояния подъемного каната является то, что модуль упругости подъемного каната является в общем случае переменной величиной и зависит от конструкции подъемного каната, степени его приработки, величины нагрузки и других факторов. Кроме того, использование данного способа характеризуется большой сложностью и трудоемкостью процесса измерений и обработки полученных данных, обеспечения постоянства контроля технического состояния подъемного каната, необходимостью крепления на подъемный канат специального металлического зажима и пьезодатчика.

Контроль технического состояния подъемного каната по характеристике упругих свойств подъемного каната - жесткости подъемного каната на растяжение - позволяет точнее судить о его техническом состоянии, в частности, для однослойных подъемных канатов с органическим сердечником величина жесткости подъемного каната на растяжение постоянна вплоть до нагрузок (0,45-0,55)Ра - для новых подъемных канатов и (0,60-0,68)Ра - для обтянутых подъемных канатов, где Ра - разрывное усилие подъемного каната (Hankus J. Mechanische Eigenschaften von Drahtseilen//Draht-Welt. 1989. Nr. 4. S. 9-17).

Признак прототипа, являющийся общим с заявленным способом - контроль технического состояния подъемного каната путем определения характеристики упругих свойств подъемного каната, когда подъемный сосуд находится на весу.

Задачей изобретения является повышение эффективности контроля состояния подъемного каната посредством определения жесткости подъемного каната на растяжение и обеспечения постоянства его контроля.

Поставленная задача решается за счет того, что в предлагаемом способе при расположении подъемного сосуда на весу определяется жесткость подъемного каната на растяжение путем измерений длины подъемного каната от точки схода подъемного каната с барабана подъемной машины до подвесного устройства подъемного сосуда при остановке порожнего подъемного сосуда под загрузку, веса груза, удлинения подъемного каната после загрузки подъемного сосуда и последующего расчета, по величине которой судят о техническом состоянии подъемного каната. Измерения и расчет производят при каждом цикле подъема груженого подъемного сосуда, что позволяет осуществлять постоянный контроль технического состояния подъемного каната.

Изобретение поясняется представленной на фиг.1 схемой реализации способа контроля технического состояния подъемного каната.

Порожний подъемный сосуд 1 на подъемном канате 2 при движении вниз под загрузку проходит уровень А (отметка прихода под загрузку), что регистрируется датчиком прихода подъемного сосуда под загрузку 3, и продолжает движение до остановки. При этом измеряют длину перемещения подъемного сосуда ιпор. После загрузки подъемного сосуда 1 грузом массой происходит удлинение подъемного каната 2 на величину Δι за счет увеличения концевой нагрузки подъемного каната на величину веса груза mгрg (g - ускорение свободного падения, g=9,81 м/с2). При подъеме груженого подъемного сосуда 1 до уровня А измеряют длину перемещения подъемного сосуда ιгр.

Длины перемещений ιпор и ιгр определяются путем измерения угла поворота барабана подъемной машины 4 датчиком угла поворота барабана подъемной машины 5 с учетом известных геометрических характеристик барабана подъемной машины. Удлинение подъемного каната после загрузки подъемного сосуда рассчитывают по формуле

Вес груза mгрg определяется одним из известных методов, например, по величине тока подъемного двигателя подъемной машины или с помощью весоизмерительной тензометрической системы, установленной на подвесном устройстве подъемного сосуда.

Жесткость подъемного каната на растяжение определяется по выражению

где Е - модуль упругости подъемного каната, F - площадь поперечного сечения проволок подъемного каната; L - длина подъемного каната от точки схода подъемного каната с барабана подъемной машины Б до подъемного сосуда 1 при остановке порожнего подъемного сосуда под загрузку и отсутствии упругого удлинения подъемного каната под действием собственного веса и веса порожнего подъемного сосуда; здесь

где L0 - длина подъемного каната от точки схода подъемного каната с барабана подъемной машины Б до уровня А. Величина L0 является постоянной для подъемной установки и зависит от ее геометрических характеристик; Δ1 - упругое удлинение подъемного каната под действием собственного веса и веса порожнего подъемного сосуда при остановке его под загрузку. Величина Δ1 сравнительно невелика (составляет не более 1% от длины L) и в инженерных расчетах может не учитываться.

В предлагаемой схеме реализации способа контроля технического состояния подъемного каната вычисляется жесткость подъемного каната на растяжение с помощью процессорного устройства 6 на основании информации, получаемой от датчика прихода подъемного сосуда под загрузку 3, от датчика угла поворота барабана подъемной машины 5 и измерения веса груза mгрg одним из известных методов.

Преимущество заявляемого способа состоит в том, что обеспечивается возможность постоянного контроля технического состояния подъемного каната путем определения жесткости подъемного каната на растяжение при каждом цикле подъема груженого подъемного сосуда.

1. Способ контроля технического состояния подъемного каната путем определения характеристики упругих свойств подъемного каната, когда подъемный сосуд находится на весу, отличающийся тем, что измеряют длину подъемного каната от точки схода подъемного каната с барабана подъемной машины до подвесного устройства подъемного сосуда при остановке порожнего подъемного сосуда под загрузку, вес груза и удлинение подъемного каната после загрузки подъемного сосуда, рассчитывают жесткость подъемного каната на растяжение, по величине которой судят о техническом состоянии подъемного каната.

2. Способ по п.1, отличающийся тем, что контроль технического состояния подъемного каната производят при каждом цикле подъема груженого подъемного сосуда.



 

Похожие патенты:

Изобретение относится к области механических испытаний металлов и сплавов, а именно к испытаниям на изгиб с растяжением, и может быть использовано при испытании различных конструкций, работающих в сложных условиях нагружения, при расчетах на прочность конструкций, работающих в условиях изгиба с растяжением.

Изобретение относится к средствам измерения относительной продольной деформации на поверхности материальных тел. Экстензометр содержит два референтных тела в виде заостренных инденторов, при этом один индентор жестко связан с корпусом прибора, другой установлен с возможностью перемещения, а также систему передачи этих перемещений.

Изобретение относится к области строительства, в частности к определению изменения длительной прочности бетона во времени эксплуатируемых под нагрузкой в условиях внешней агрессивной среды бетонных и железобетонных конструкций.

Изобретение относится к испытательной технике, а именно к устройствам для испытания образцов материалов на консольный изгиб, кручение, растяжение, сжатие, а также на сложное сопротивление и может быть применено в учебной лаборатории.

Изобретение предназначено для оценки деформативности соединений в изделиях из импрегнированной ткани, подвергаемых двухосному напряжению неразрушающими нагрузками с целью определения деформативных характеристик пневматической конструкции в целом.

Изобретение относится к области «Физики контактного взаимодействия» материальной среды в предельном состоянии. Сущность изобретения состоит в том, что предельное состояние исследуемой среды определяют по зависимости τ с р к = p с р к t g φ ° + с ,    где τ с р к и p с р к - значения тангенциального главного напряжения ( τ с р к = σ I = σ I I ) и давления, соответствующего главному напряжению растяжения-сжатия ( σ I I I = p с р к ) среды, в условиях компрессионного сжатия образца среды, а значения нормального давления и нормальных тангенциальных напряжений сдвига среды определяют как: 1) в условиях одноосного деформирования , - при выходе линий сдвига на боковую поверхность образца и - под подошвой штампа; 2) при деформировании поверхности полупространства , - при выходе линий сдвига на поверхность полупространства и - под подошвой штампа; 3) при деформации штампом дна вертикальной выработки , - при выходе линий сдвига из стенок выработки и - под подошвой штампа, где рб=(γстрh-cстр)ctgφстр (кг/см2) - бытовое гравитационное давление; 4) при деформации среды в замкнутом массиве , - при выходе линий сдвига в полость над штампом и - под подошвой штампа. Технический результат - обеспечение возможности определения нормального давления и нормальных тангенциальных напряжений сдвига среды в условиях одноосного деформирования, при деформировании поверхности полупространства, при деформации штампом дна вертикальной выработки, .при деформации штампом дна вертикальной выработки и при деформации штампом дна вертикальной выработки.

Решение относится к механическим испытаниям, предназначенным для определения характеристик металла, проявляемых в технологических операциях холодной обработки давлением.
Изобретение относится к способу изготовления плоских образцов из высокоэластичных полимеров и других материалов, способных испытывать большие деформации в результате нагрузки, для проведения экспериментов на двухосное растяжение.

Изобретение относится к испытательной технике и может быть использовано для испытания образцов строительных материалов на совместное действие усилий растяжения, среза и изгиба, и позволяет испытывать образцы материалов при различных комбинациях нагружения их усилиями растяжения, среза и изгиба в совокупности с разрывной машиной.

Изобретение относится к испытательной технике, к методам определения механических свойств материалов. Сущность: испытывают одновременно два объекта испытаний, причем на каждый объект действует нагрузка одной и той же величины.

Изобретение относится к области неразрушающего контроля материалов и изделий и может быть использовано в машиностроительной отрасли при сборке узлов и деталей корпусных изделий и оперативном контроле остаточной прочности крепежных элементов. Устройство состоит из стержня, вставленного в сквозное отверстие, выполненное параллельно оси шпильки или болта, либо в паз, прорезанный вдоль шпильки снаружи на глубину, обеспечивающую заглубление стержня в тело шпильки (болта) дальше внутреннего диаметра резьбы, причем один конец стержня закреплен относительно одного края отверстия или паза (возможен резьбовой конец, закрепленный законтренными гайками), а второй выступающий конец стержня изогнут под углом 90° и в исходном состоянии прилегает к торцу шпильки (болта). Оценка прочности шпильки (болта) выполняется по величине смещения незакрепленного конца стержня, являющегося индикатором растяжения, относительно торца шпильки (болта) на угол α, предельное значение которого устанавливают на основе растяжения шпильки (болта) до разрушения на разрывной машине, прикладывая через гайки шпильки (или головку болта и гайку) нагрузку при расстоянии между гайками на шпильке или расстоянии между головкой болта и гайкой, равном суммарной толщине соединяемых фланцев и величине зазора между ними в изделии. Технический результат: оперативный контроль остаточной прочности шпилек (болтов) во фланцевых соединениях трубопроводов и задвижек, позволяющий уменьшить вероятность возникновения техногенных катастроф и снизить расходы на их предотвращение и ликвидацию. 3 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике для определения контактной жесткости. Сущность: поверхности контактирующих деталей с определенными упругими константами материалов прижимают к друг другу с заданной силой F, нормальной к плоскости стыка, определяют остаточную h и упругую αy части полного сближения в контакте, по их сумме определяют величину полного сближения α в контакте, с последующим определением коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны. Предварительно измеряют пластическую твердость НД1 и НД2 каждой детали в зоне контакта, по которым определяют приведенную пластическую твердость НДпр контактирующих деталей, затем определяют суммарную остаточную часть сближения hΣ в центре контакта деталей, с учетом которой определяют суммарное упругое сближение αy,Σ в центре контакта деталей, с последующим определением суммарного полного сближения αΣ и коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны. Технический результат: создание нового универсального способа определения коэффициента нормальной жесткости первоначально точечного упругопластического контакта деталей, который справедлив при произвольном сочетании твердостей материалов контактирующих деталей. 3 табл.

Изобретение относится к области неразрушающих измерений давления на заданном горизонтальном уровне бетонных и кирпичных стен и фундаментов зданий и сооружений на стадии их эксплуатации. Сущность: на поверхность стены или фундамента наклеивают тензорезистор на уровне измеряемого давления вдоль направления главных сжимающих напряжений и измеряют начальное омическое сопротивление тензорезистора. В стене или фундаменте выше и ниже тензорезистора высверливают два отверстия диаметром в 3…4 раза больше ширины тензорезистора, на расстоянии в 3…4 раза больше ширины тензорезистора, глубиной 40…60 мм и измеряют ответное омическое сопротивление тензорезистора. Определяют относительную деформацию стены или фундамента и давление на заданном уровне стены или фундамента по формулам. Для мониторинга давления на стену или фундамент в каждое отверстие закладывают по два стальных полуцилиндра длиной, равной глубине отверстий, диаметром меньше диаметра отверстий на 2…3 мм. Между стальными полуцилиндрами забивают по стальному клину длиной, равной глубине отверстий, и толщиной 1…3 мм с одной стороны и 4…5 мм с другой стороны. Забиванием стальных клиньев доводят омическое сопротивление тензорезистора до величины, равной начальному омическому сопротивлению, затем фиксируют величину текущего омического сопротивления тензорезистора в любой момент времени и вычисляют изменение омического сопротивления тензорезистора, приращение деформации стены или фундамента и давление на стену или фундамент в любой момент времени. Технический результат: сохранение несущей способности стен и фундаментов; уменьшение концентрации напряжений в стенах и фундаментах; отсутствие необходимости нарушения электрической цепи тензорезисторов; возможность непрерывного мониторинга давления на стены и фундаменты; дистанционное управление измерениями. 4 ил.

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного металла обломка ранее испытанного образца-свидетеля для корпусов реакторов типа ВВЭР. На первом этапе изготавливают вставку. На втором этапе выбирают металл для изготовления обоймы, для этого определяют предел текучести облученного металла вставки и по диаграмме «предел текучести металла вставки - предел текучести металла обоймы» определяют предел текучести металла обоймы и из выбранного металла изготавливают элементы обоймы. С помощью электронно-лучевой или лазерной сварки выполняют приварку в определенной последовательности отдельных элементов обоймы к вставке. Вначале приваривают передний элемент обоймы, затем поочередно приваривают боковые элементы обоймы и после этого последним сварным швом приваривают задний элемент обоймы. При этом создают условия, чтобы температура в центре вставки облученного металла в процессе сварки не превышала температуру облучения. Затем прорезают задний элемент обоймы до вставки и потом после циклического нагружения и выращивания усталостной трещины до середины вставки. Последующее испытание сварного составного образца на трещиностойкость проводят по стандартной методике. Обеспечивается повышение достоверности результатов испытаний на трещиностойкость облученного металла путем испытания предлагаемого сварного составного образца типа СТ за счет снижения остаточных сварочных напряжений при сохранении свойств облученного металла. 1 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к исследованию прочностных свойств материалов и может быть использовано для определения вязкости разрушения металлов. Сущность: осуществляют статическое нагружение плоского образца с выращенной трещиной усталости и регистрацию длины трещины в момент перехода от стабильного медленного ее развития в нестабильное быстрое. Плоский образец последовательно по оси нагружения соединяют в одну силовую цепочку с идентичным ему плоским образцом и осуществляют регистрацию длины подросшей трещины в неразрушенном образце после разрушения одного из образцов. Технический результат: обеспечение возможности более точно оценить безопасную повреждаемость конструкций. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области механических испытаний материалов на прочность и устойчивость, в частности к испытаниям образцов из органического стекла в условиях чистого сдвига. Изготавливают круглый образец диаметром D с концентричным сквозным отверстием, диаметр d которого выбирают в соответствии с выражением d≤10D. В качестве держателя образца используют стальной элемент цилиндрической формы, диаметр которого равен диаметру сквозного отверстия, а высота элемента - больше толщины листа испытуемого материала. Стальной элемент вводят в сквозное отверстие образца. К выступающим торцевым поверхностям элемента прикладывают осевые сжимающие усилия и при визуальной регистрации момента потери устойчивости образца или момента разрушения образца производят замер диаметра С деформированного элемента. Результаты измерений используют для расчета максимальных касательных напряжений. Технический результат: возможность создать условия чистого сдвига на плоских образцах из органического стекла. 3 ил.

Изобретение относится к техническим устройствам для испытания грунтового основания фундамента штампом. Тензометрический секционный штамп содержит чувствительный элемент и измерительные приспособления для измерения контактного давления. Чувствительный элемент расположен между грунтовым основанием и жестким штампом, выполнен в виде упругой плиты постоянной толщины из материала с модулем упругости, меньшим в 10 и более раз модуля упругости материала штампа, и имеет размеры и форму штампа в плане и толщину, равную не более 1/10 ширины штампа. Штамп и упругая плита имеют соосные сквозные отверстия, каждое из которых служит геометрическим центром секции, выделенной физически или виртуально из упругой плиты, и в которых в теле жесткого штампа закрепляют или изготавливают полые цилиндры со стержнями, имеющими возможность свободно перемещаться относительно полых цилиндров, но закрепленными посредством анкеров, выполненных в форме дисков, на нижней грани упругой плиты, а перемещения стержней относительно полых цилиндров определяют измерительными приспособлениями. Технический результат: повышение эффективности тензометрического штампа за счет возможности измерения двумерного распределения контактного давления по подошве штампа, уменьшения сложности изготовления и эксплуатации, а также снижение его стоимости. 2 ил.

Изобретение относится к области определения прочностных свойств металлов и их сплавов путем приложения растягивающих нагрузок к образцам и может быть использовано в металлургии и машиностроении. Сущность: проводят температурно-деформационную обработку металла и осуществляют испытания на растяжение до разрушения. Производят определение сужения в шейке образца, вычисление предельных деформаций, воспроизведение испытаний на растяжение методом численного моделирования в программной среде, сопоставление результатов численного моделирования с результатами «реальных» испытаний на растяжение и определение предельного значения критерия разрушения производится при достижении предельной деформации. Технический результат: повышение достоверности определения предельных значений нормализованного критерия разрушения Cockcroft-Latham для любых процессов обработки металлов давлением. 2 ил.

Изобретение относится к производству строительных материалов. Способ включает подготовку пресс-порошка, прессование образца, фиксацию изменений деформаций при сжатии, построение компрессионных кривых и проведение испытания, причем прессование осуществляют одностадийно и непрерывно, с переменными значениями давления прессования и формовочной влажности пресс-порошка, при этом требуемое оптимальное соотношение влажности и давления прессования определяют положением оптимальной точки на компрессионной кривой, лежащей на ее пересечении с отрезком, перпендикулярным хорде, соединяющей начальное и конечное значения интервала давления прессования на кривой, и проходящим через точку пересечения касательных к кривой в области заданного интервала давления прессования. Достигается возможность нахождения оптимальных значений давления прессования и влажности пресс-порошков при минимальном количестве экспериментов. 1 пр., 2 табл., 4 ил.

Изобретение относится к области испытаний строительных изделий. Стенд содержит опорную трубу с центральным сквозным отверстием для соосного вертикального размещения в нем арматуры и с днищем для опирания нижнего конца арматуры. Верхний конец арматуры закреплен в бетонной призме или в уголковом элементе, которые установлены сверху на опорной трубе. Нижний конец арматуры закреплен в траверсе, выполненной в виде двух швеллеров. Траверса установлена горизонтально в симметричных боковых вырезах, выполненных в нижней части опорной трубы. Вертикальное усилие на арматуру осуществляется нагружающим устройством через грузовую металлическую трубу, которая установлена коаксиально опорной трубе. Заглушенным верхним концом грузовая металлическая труба опирается на крепление с верхним концом арматуры. Нижний конец грузовой трубы опирается на выступающие за опорную трубу концы траверсы. Толщина стенок грузовой металлической трубы составляет не менее 5 мм. Для динамического воздействия на арматуру в качестве нагружающего устройства использована копровая установка. При статическом воздействии на арматуру использован гидравлический пресс. Достигается получение точных параметров прочности анкеровки арматуры в бетоне, а также определение физико-механических параметров арматуры при растяжении как при статическом, так и при динамическом воздействиях. 4 з.п. ф-лы, 5 ил.
Наверх