Компенсатор погружного электродвигателя

Изобретение относится к электротехнике, к конструкции компенсатора погружных электродвигателей, применяемых в насосных установках для добычи нефти. Компенсатор состоит из цилиндрического корпуса, имеющего основание и головку, присоединяемую к электродвигателю, и компенсирующего элемента, выполненного в виде плавающего поршня, размещенного внутри цилиндрического корпуса. Компенсирующий элемент снабжен металлическим сильфоном, верхняя часть которого закреплена на плавающем поршне, а нижняя часть закреплена на основании. Плавающий поршень снабжен ограничителем хода и выполнен в виде многогранника со скругленными вершинами, скользящими по цилиндрическому корпусу. Между цилиндрическим корпусом и гранями плавающего поршня образуются каналы, соединяющие полость между сильфоном и цилиндрическим корпусом с полостью над плавающим поршнем, которая соединена с полостью электродвигателя через каналы, выполненные в головке. Полость внутри сильфона соединена с затрубным пространством через каналы, выполненные в основании. Компенсатор может быть выполнен с несколькими компенсирующими элементами, последовательно установленными в цилиндрическом корпусе, при этом нижние части металлических сильфонов дополнительных компенсирующих элементов закрепляются на плавающих поршнях нижележащих компенсирующих элементов, а полости внутри сильфонов соединяются между собой через каналы, выполненные в плавающих поршнях. Технический результат заключается в повышении надежности, чувствительности и быстродействия. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к области электротехники, в частности к конструкции компенсатора погружных электродвигателей, применяемых в насосных установках для добычи нефти.

Из уровня техники известен компенсатор погружного электродвигателя, предназначенного для привода насосов для добычи нефти, состоящий из цилиндрического корпуса, внутри которого размещен компенсирующий элемент, выполненный в виде эластичной диафрагмы. Компенсирующий элемент разделяет полость внутри цилиндрического корпуса на две полости, одна из которых соединена с полостью погружного электродвигателя, заполненной маслом, а другая - с затрубным пространством, заполненным пластовой жидкостью (см. патент RU №2050669 С1, публ.20.12.95, H02K 5/10).

Недостаток данного компенсатора состоит в ограниченной термостойкости компенсирующего элемента, что не позволяет использовать его с погружными электродвигателями, применяемыми в насосных установках для добычи нефти из высокотемпературных скважин.

Из уровня техники также известен компенсатор погружного электродвигателя, предназначенного для привода насосов для добычи нефти, состоящий из цилиндрического корпуса, имеющего основание и головку, присоединяемую к электродвигателю. Внутри корпуса размещен компенсирующий элемент, выполненный в виде плавающего поршня, разделяющего полость внутри цилиндрического корпуса на полость над поршнем, которая соединена с полостью электродвигателя, через каналы, выполненные в головке, и полость под поршнем, которая соединена с затрубным пространством через каналы, выполненные в основании (см. заявку US №20100172773 А1, публ. 08.07.10, F04B 17/03, H02K 5/132).

Данная конструкция компенсатора выбрана в качестве прототипа как наиболее близкая по своей технической сути к заявленной конструкции компенсатора погружного электродвигателя, предназначенного для привода насосов для добычи нефти.

Недостатком известной конструкции компенсатора является его невысокая надежность. Это обусловлено тем, что поверхность скольжения плавающего поршня контактирует с пластовой жидкостью, которая содержит абразивные частицы, поэтому уплотнение между цилиндрическим корпусом и плавающим поршнем не может гарантировать надежное разделение пластовой жидкости и масла, заполняющего электродвигатель, особенно при абразивном износе поверхности скольжения плавающего поршня. Кроме того, в силу своих конструктивных особенностей (необходимость хорошего уплотнения между цилиндрическим корпусом и плавающим поршнем затрудняет перемещение последнего) известный компенсатор не обладает достаточной чувствительностью и быстродействием, что не позволяет незамедлительно компенсировать изменение объема масла и поддерживать постоянное давление внутри погружного электродвигателя.

Технический результат, достигаемый при осуществлении заявленного изобретения, заключается в повышении надежности, чувствительности и быстродействия компенсатора погружного электродвигателя, предназначенного для привода насосов для добычи нефти из высокотемпературных скважин.

Указанный технический результат достигается за счет того, что у компенсатора погружного электродвигателя, состоящего из цилиндрического корпуса, имеющего основание и головку, присоединяемую к электродвигателю, и компенсирующего элемента, выполненного в виде плавающего поршня, размещенного внутри цилиндрического корпуса и разделяющего его полость на полость над поршнем, которая соединена с полостью электродвигателя через каналы, выполненные в головке, и полость под поршнем, которая соединена с затрубным пространством через каналы, выполненные в основании, компенсирующий элемент снабжен металлическим сильфоном, верхняя часть которого закреплена на плавающем поршне, а нижняя часть закреплена на основании, при этом полость внутри сильфона соединена с затрубным пространством, а полость между сильфоном и цилиндрическим корпусом соединена с полостью над плавающим поршнем.

В частных случаях реализации изобретения, компенсатор имеет следующие конструктивные особенности:

- Плавающий поршень выполнен в виде многогранника со скругленными вершинами, скользящими по цилиндрическому корпусу, при этом между цилиндрическим корпусом и гранями плавающего поршня образуются каналы, соединяющие полость между сильфоном и цилиндрическим корпусом с полостью над плавающим поршнем;

- Плавающий поршень снабжен ограничителем хода.

Внутри цилиндрического корпуса последовательно размещены несколько компенсирующих элементов, при этом нижние части металлических сильфонов дополнительных компенсирующих элементов закреплены на плавающих поршнях нижележащих компенсирующих элементов, а полости внутри сильфонов соединены между собой через каналы, выполненные в плавающих поршнях.

Осуществление изобретения

На Фиг.1 показан продольный разрез компенсатора. На Фиг.2 показан поперечный разрез компенсатора. На Фиг.3 показан продольный разрез компенсатора с несколькими компенсирующими элементами.

Компенсатор (см. Фиг.1) состоит из цилиндрического корпуса 1, имеющего основание 2 и головку 3, присоединяемую к электродвигателю 4. Внутри цилиндрического корпуса 1 размещен компенсирующий элемент, который состоит из плавающего поршня 5 и металлического сильфона 9, верхняя часть которого закреплена на плавающем поршне 5, а нижняя часть закреплена на основании 2. Полость А над поршнем соединена с полостью Б электродвигателя через каналы 6, выполненные в головке 3, а полость В внутри сильфона 9 соединена с затрубным пространством, через каналы 7, выполненные в основании 2. Плавающий поршень 5 выполнен (см. Фиг.2) в виде многогранника со скругленными вершинами 11, скользящими по цилиндрическому корпусу 1, при этом между цилиндрическим корпусом 1 и гранями 10 плавающего поршня 5 образуются каналы 12, соединяющие полость между сильфоном 9 и цилиндрическим корпусом 1 (на чертеже не обозначена) с полостью А над плавающем поршнем 5. Плавающий поршень 5 снабжен ограничителем хода 13. Для электродвигателей, имеющих большой объем заправляемого масла, могут изготавливаться компенсаторы, у которых (см. Фиг.3) внутри цилиндрического корпуса 1 последовательно размещены несколько компенсирующих элементов, при этом нижние части металлических сильфонов 9 дополнительных компенсирующих элементов закрепляются на плавающих поршнях нижележащих компенсирующих элементов, а полости внутри сильфонов соединяются между собой через каналы 7, выполненные в плавающих поршнях.

Компенсатор работает следующим образом.

Перед спуском насосной установки в скважину электродвигатель и компенсатор заправляются маслом. При этом в электродвигателе масло заполняет полость Б, а в компенсаторе - полость А и полость между сильфоном 9 и цилиндрическим корпусом 1. После спуска насосной установки в скважину полость В компенсатора заполняется пластовой жидкостью через каналы 7, выполненные в основании 2. Заправленное масло, нагреваясь в высокотемпературной скважине, увеличивается в объеме, который компенсируется перемещением поршня 5 вниз, при этом из полости Б электродвигателя масло перетекает в полость А компенсатора через каналы 6, выполненные в головке 3, а из полости В компенсатора, которая уменьшилась в объеме, пластовая жидкость перетекает в затрубное пространство через каналы 7, выполненные в основании 2. При работе электродвигателя происходит дополнительный нагрев масла, при этом дополнительное увеличение его объема компенсируется вышеописанным образом. В случае если температура масла, по каким-либо причинам, превысит максимально допустимое значение, перемещение поршня 5 вниз будет остановлено ограничителем хода 13, что предотвратит разрушение сильфона 9. При остановке электродвигателя масло остывает и его объем уменьшается, при этом поршень 5 перемещается вверх и масло из полости А компенсатора перетекает в полость Б электродвигателя через каналы 6, выполненные в головке 3, полость В компенсатора увеличивается в объеме и пластовая жидкость перетекает в нее из затрубного пространства через каналы 7, выполненные в основании 2. Компенсатор, имеющий несколько компенсирующих элементов, работает аналогичным образом.

Заявленная конструкция компенсатора обладает высокой надежностью даже при работе в высокотемпературных скважинах, поскольку не имеет конструктивных элементов из полимерных материалов. Гарантирует надежное разделение масла и пластовой жидкости за счет герметичного соединения деталей компенсирующего элемента. Обладает высокой чувствительностью и быстродействием, поскольку основной подвижный элемент (плавающий поршень) работает в масле, что обеспечивает минимальное сопротивление его перемещению.

1. Компенсатор погружного электродвигателя, состоящий из цилиндрического корпуса, имеющего основание и головку, присоединяемую к электродвигателю, и компенсирующего элемента, выполненного в виде плавающего поршня, размещенного внутри цилиндрического корпуса и разделяющего его полость на полость над поршнем, которая соединена с полостью электродвигателя через каналы, выполненные в головке, и полость под поршнем, которая соединена с затрубным пространством через каналы, выполненные в основании, отличающийся тем, что компенсирующий элемент снабжен металлическим сильфоном, верхняя часть которого закреплена на плавающем поршне, а нижняя часть закреплена на основании, при этом полость внутри сильфона соединена с затрубным пространством, а полость между сильфоном и цилиндрическим корпусом соединена с полостью над плавающим поршнем.

2. Компенсатор по п.1, отличающийся тем, что плавающий поршень выполнен в виде многогранника со скругленными вершинами, скользящими по цилиндрическому корпусу, при этом между цилиндрическим корпусом и гранями плавающего поршня образуются каналы, соединяющие полость между сильфоном и цилиндрическим корпусом с полостью над плавающим поршнем.

3. Компенсатор по п.1, отличающийся тем, что плавающий поршень снабжен ограничителем хода.

4. Компенсатор по п.2, отличающийся тем, что внутри цилиндрического корпуса последовательно размещены несколько компенсирующих элементов, при этом нижние части металлических сильфонов дополнительных компенсирующих элементов закреплены на плавающих поршнях нижележащих компенсирующих элементов, а полости внутри сильфонов соединены между собой через каналы, выполненные в плавающих поршнях.



 

Похожие патенты:

Изобретение относится к устройствам и способам уплотнения камеры с одновременным сохранением целостности указанной камеры при воздействии на нее термического напряжения.

Изобретение относится к электротехнике и может быть использовано для защиты от попадания пластовой жидкости в полость статора. Техническим результатом компенсатора является повышение надежности и срока службы.

Изобретение относится к области электромашиностроения и может быть использовано при сборке гидрозащит, входящих в состав погружных электродвигателей. Стенд для сборки гидрозащит погружных электродвигателей содержит станину с направляющими, передвижную регулируемую опору, приспособление для зажима собираемых деталей гидрозащиты и кран для слива масла.

Изобретение относится к средствам питания скважинной аппаратуры. Техническим результатом является повышение надежности и ресурса работы устройства, а также упрощение конструкции и его эксплуатации.

Изобретение относится к электротехнике и может быть использовано в линейных генераторах волноэнергетических станций. Технический результат состоит в повышении надежности и упрощении эксплуатации.

Изобретение относится к области электротехники и может быть использовано в двигателях, например, для нефтегазовой промышленности. Техническим результатом является уменьшение общих потерь в электрической машине.

Изобретение относится к области электротехники и может быть использовано в электронасосах с приводом на постоянных магнитах. Технический результат - предотвращение коррозии, вызываемой химической жидкостью, на компонентах герметичного электронасоса.

Изобретение относится к щелевой трубе (39) и способу изготовления такой трубы. Гидравлическая машина и приводной мотор могут быть помещены в корпус, если в электромоторе между ротором и статором осуществляется разделение посредством трубчатой конструктивной части - так называемой щелевой трубы (39).

Изобретение относится к области электротехники и может быть использовано, например, в шпиндельных узлах металлорежущих станков с высокой частотой вращения. Технический результат заключается в повышении несущей способности и жёсткости подшипниковых узлов, повышении эффективности охлаждения обмотки и сердечника статора, а также улучшении массогабаритных показателей и повышении надёжности.

Изобретение относится к усовершенствованию скважинных генераторов и в частности, к поддержке и ограничению перемещения катушек статора, размещённых в корпусе двигателя.

Изобретение относится к нефтяной промышленности и может быть использовано для создания привода погружного электронасоса для подъема жидкости из нефтедобывающей скважины. Технический результат заключается в обеспечении охлаждения косинусного конденсатора и повышении надежности токоввода. Погружной электродвигатель включает корпус, статор, ротор, узел токоввода и модуль с косинусным конденсатором. Электрический разъем косинусного конденсатора размещен в нижней части модуля. Изолированный силовой проводник размещен в пазах статора и соединен с электрическим разъемом косинусного конденсатора и узлом токоввода погружного электродвигателя. Внутреннее пространство косинусного конденсатора изолировано от масла, а внутреннее пространство погружного электродвигателя, заполненное маслом, сообщено с пространством вокруг модуля. В погружном электродвигателе в качестве модуля может быть использована гильза основания погружного электродвигателя. 1 з.п. ф-лы, 2 ил.

Изобретение относится к нефтяному машиностроению и может быть использовано в погружных маслозаполненных электродвигателях. Технический результат - улучшение теплообмена, уменьшение риска заклинивания вала электродвигателя из-за продуктов механического износа. Теплообменник содержит основание, верхний и нижний ниппели, маслонасос, фильтрующий элемент. В верхнем ниппеле выполнены вертикальный и горизонтальный каналы. В нижнем ниппеле выполнен вертикальный канал. Маслонасос установлен между верхним и нижним ниппелями и соединен через муфту с полым валом погружного маслозаполненного электродвигателя. Между верхним и нижним ниппелями дополнительно установлена трубка, соединяющая канал нижнего ниппеля с полым валом электродвигателя посредством горизонтального канала верхнего ниппеля. Между нижним ниппелем и основанием установлена центральная труба, и концентрично ей установлен теплообменный кожух. Вход маслонасоса соединен с маслозаполненной полостью электродвигателя посредством вертикального канала, выполненного в верхнем ниппеле. Выход маслонасоса соединен с верхней частью центральной трубы, в нижней части которой выполнены по меньшей мере два отверстия с установленным поверх них фильтрующим элементом. 1 ил.

Изобретение относится к электротехнике, к устройствам гидравлической защиты погружных маслозаполненных электродвигателей насосных агрегатов, используемых в нефтяной промышленности для подъема пластовой жидкости из скважин. Технический результат состоит в повышении надежности и быстродействия срабатывания и срока службы за счет предотвращения воздействия гидравлического удара. Компенсатор для гидравлической защиты содержит корпус, головку, опору с герметично установленной на ней диафрагмой и основание. Компенсатор размещен выше электродвигателя и выполнен с центральным каналом, через который протянуты три изолированных токопроводящих провода, закрепленные в колодках штепсельных наконечников, размещенных в головке и основании. Выше диафрагмы дополнительно установлен ниппель, в котором расположен обратный клапан, предназначенный для сброса давления. Основание и головка изготовлены с обеспечением возможности бесфланцевого соединения. 1 з.п. ф-лы, 2 ил.

Изобретение относится к нефтедобыче и предназначено для транспортировки среды на поверхность через ствол скважины. Технический результат – повышение надежности работы устройства. Устройство содержит привод, насос, вал, соединяющий привод с насосом, механический блок уплотнения. Этот блок содержит, в свою очередь, механическое уплотнение с уплотнительным кольцом, имеющим возможность вращения, и неподвижным уплотнительным кольцом. Механическое уплонение имеет возможность уплотнения вала. Имеется автономное средство подачи, которое обеспечивает механическое уплотнение барьерной средой. Автономное средство подачи, привод, насос, вал и механический блок уплотнения образуют компактный блок транспортировки, который является полностью погружным в стволе скважины. Автономное средство подачи содержит первую камеру для приема барьерной среды, вторую камеру. Это средство соединено с наружной стороной транспортного устройства для скважины так, что давление, соответствующее давлению среды, которая должна быть транспортирована, преобладает во второй камере. Первую камеру герметично отделяет от второй камеры сильфон. 9 з.п. ф-лы, 3 ил.

Варианты выполнения изобретения, в целом, относятся к изолированным магнитным узлам, способам продувки зазора между изолирующей обоймой магнитного узла и частью машины, к роторным машинам и установкам по переработке нефти и газа. Изолированный магнитный узел содержит по меньшей мере один полюсный наконечник (61) и изолирующую обойму (3), при этом по меньшей мере одна часть обоймы (3) расположена смежно с по меньшей мере одним полюсным наконечником (61). В обойме (3) выполнена по меньшей мере одна выемка (5), расположенная рядом с по меньшей мере одной частью обоймы (3), для создания потока текучей среды. По меньшей мере одна выемка (5) имеет форму, способствующую протеканию текучей среды, и, предпочтительно, имеет скошенную впускную часть и/или скошенную выпускную часть. Часть полюсных наконечников (61) имеет первый размер, а другая часть полюсных наконечников (61) имеет второй размер, который больше, чем указанный первый размер. Также заявлен способ продувки зазора между изолирующей обоймой (3) упомянутого магнитного узла и частью машины, включающий этапы: обеспечение наличия в изолирующей обойме (3) одной или более выемок (5), расположенных смежно с зазором; обеспечение наличия перепада давления в одной или более выемках (5); создание потока текучей среды в одной или более выемках (5). Как правило, магнитный узел представляет собой магнитный подшипник. Технический результат: улучшение показателей в плане продувки газа в зазоре, а также охлаждения магнитных узлов. 5 н. и 16 з.п. ф-лы, 8 ил.

Изобретение относится к электротехнике и может быть использовано в нефтедобывающей промышленности при создании погружных электродвигателей с повышенным коэффициентом мощности, имеющих в конструкции косинусный конденсатор, который подвергается давлению, передаваемому от скважинной жидкости. Конденсатор находится в основании, жестко соединенном с погружным двигателем. Технический результат состоит в повышении надежности защиты конденсатора, а следовательно, и повышении надежности погружного электродвигателя. Погружной электродвигатель состоит из статора, ротора, узла токоввода, системы гидрозащиты и присоединенного к нему устройства для защиты конденсатора от давления. Конденсатор находится внутри этого устройства. Устройство полностью герметично и защищает конденсатор от сдавливания. Подключение конденсатора происходит гибкими проводами или кабелями, проходящими через гермовводы, обеспечивающие герметизацию кабельных вводов. 1 ил.

Изобретение относится к электротехнике. Технический результат состоит в повышении надежности. Маслоуловитель состоит из сварного металлического корпуса, разъемным по горизонтальной оси, фланцы которого сопрягаются болтовым соединением. Маслоуловитель выполнен таким образом, что создает кольцевую камеру, доступ к которой расположен на внутреннем диаметре маслоуловителя. В нижней точке камеры выполнено цилиндрическое отверстие, которое расположено горизонтально, в стенке, которая примыкает к подшипнику турбогенератора. На внутреннем диаметре корпуса установлены уплотнительные «гребешки», закрепленные в нем чеканкой и потайными винтами. В нижней части корпуса между «гребешками» выполнены цилиндрические отверстия, которые соединяют внешнее пространство корпуса маслоуловителя с его камерой. Корпус выполнен с дополнительной камерой, аналогичной основной, расположенной на стороне маслоуловителя, противоположной от подшипника турбогенератора. В боковой стенке нижней части дополнительной камеры выполнено цилиндрическое отверстие, соединяющее ее с основной камерой. В нижней части основной камеры в противоположной стенке выполнено отверстие несколько большего диаметра, чем первое, в соотношении примерно 1:1,375. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области производства погружных скважинных электрических насосов и компрессоров. Устройство охлаждения и защиты от твердых частиц торцевого уплотнения погружного электродвигателя, соединенного соединительной муфтой с насосом, имеет на наружной цилиндрической поверхности муфты пескосбрасыватель, а в нижней части муфты - полый цилиндр. Цилиндр образует совместно с цилиндрической частью неподвижного кольца торцевого уплотнения зазор для удаления твердых частиц из зоны уплотнения. Пескосбрасыватель представляет диск с шестью лопастями, установленными с возможностью удаления твердых частиц из зоны торцевого уплотнения через отверстия в корпусе электродвигателя, находящиеся на уровне лопастей, и подачи свежей скважинной жидкости через отверстия в основании насоса, находящиеся выше лопастей. Лопасти имеют высоту 5 мм, толщину 3 мм и наклонены под углом 30° относительно продольной центральной оси муфты. Устройство снабжено погружным сепаратором мелкодисперсных механических примесей для фильтрации отдельных оставшихся абразивных частиц, установленным на входе погружного насоса. Изобретение направлено на увеличение времени службы электродвигателя за счет улучшения условий отвода твердых частиц и охлаждения торцевого уплотнения. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области нефтедобычи и может быть применено в установках для гидрозащиты погружных маслозаполненных электродвигателей электроцентробежных насосов для добычи пластовой жидкости из скважин. Устройство содержит вал, головку, упорный и радиальный подшипники, по крайней мере один компенсирующий модуль. Модуль включает два ниппеля, соединенных цилиндрическим корпусом, и компенсирующий элемент, разделяющий модуль на две полости. Модуль содержит два торцевых уплотнения, образующих полость изолирующей камеры и установленных по сдвоенной схеме с оппозитным расположением уплотняющих колец. Полость изолирующей камеры гидравлически связана через обратные клапаны с полостью модуля и затрубным пространством. Над изолирующей камерой размещен динамический лабиринт. Лабиринт включает динамическую втулку, герметично установленную на валу, и втулку лабиринта, неподвижно установленную с радиальным зазором по отношению к валу и динамической втулке. Лабиринт не имеет гидравлической связи с полостью изолирующей камеры и полостью компенсирующего модуля. Изобретение направлено на повышение надежности и ресурса работы устройства путем исключения контакта оппозитно установленных торцевых уплотнений с пластовой жидкостью. 2 н.п. ф-лы, 2 ил.

Изобретение относится к электротехнике. Технический результат состоит в обеспечении возможности электродвигателей любых типов и исполнения работать в различных средах, в любом пространственном положении. Самовентилируемый погружной электродвигатель отличается магнитным уплотнением вала, конструкцией колокола, в котором он расположен, и компенсатором давления, выполненным в виде цилиндра с кольцевой дифференциальной мембраной. В районе вентиляционных отверстий двигателя в колоколе выполнены соответственно всасывающие и нагнетательные вентиляционные отверстия с плотными захлопками с пневматическим приводом их закрытия и открытия от датчика затопления и от пневматических золотника и цилиндра. Мембрана компенсатора давления связана с плечом рычажного механизма, другое плечо которого одной стороной опирается на шток воздушного редуктора, подключенного к источнику сжатого воздуха, а противоположной стороной на шток клапана травления. Поступление жидкости в помещение, где размещается электродвигатель, приводит к разности внешнего давления и давления в полости колокола, что ведет к смещению мембраны, подаче или травлению воздуха из полости колокола, что восстанавливает равенство указанных давлений и предупреждает поступление воды в колокол и двигатель. 1 ил.
Наверх