Способ определения термомеханических характеристик материалов, обладающих эффектом памяти формы

Изобретение относится к неразрушающему контролю материалов с памятью формы, а именно сплавов на основе никелида титана, и может быть использовано во всех областях народного хозяйства для определения и контроля радиальных напряжений термомеханического возврата, необходимых для обеспечения работоспособности соединений при сборке конструкций с помощью муфт из материала с эффектом памяти формы. Сущность изобретения: испытанию подвергают полый цилиндрический образец круглого сечения с аустенитной структурой. Предварительно измеряют размеры диаметра его внутренней полости и высоты, затем охлаждают цилиндрический образец до температуры образования мартенситной структуры и в этом состоянии его подвергают деформированию путем раздачи его внутренней полости на стержне с диаметром на 2-8% больше диаметра внутренней полости, измеренной в первоначальном аустенитном состоянии. Затем образец со стержнем нагревают до температуры образования аустенитной структуры и после этого прикладывают усилия для разъединения стержня и образца и в момент начала страгивания стержня из внутренней полости образца фиксируют величину приложенного усилия. Напряжение термомеханического возврата определяют из соотношения. Технический результат: создание способа определения величины термомеханических напряжений возврата, возникающих в радиальном направлении в термомеханических соединениях, осуществляемых с помощью муфт, изготовленных из материала с эффектом памяти формы.

 

Изобретение относится к неразрушающему контролю материалов с памятью формы, а именно сплавов на основе никелида титана, и может быть использовано во всех областях народного хозяйства для определения и контроля радиальных напряжений термомеханического возврата, необходимых для обеспечения работоспособности соединений при сборке конструкций с помощью муфт из материала с эффектом памяти формы.

Известен способ определения прочности материалов, включающий предварительное нанесение удара по эталонной гладкой поверхности образца из исследуемого материала, нанесение удара в контролируемый участок исследуемого материала со скоростью, равной скорости нанесения удара по эталонной поверхности, измерение величины импульса силы удара, дополнительное нанесение удара в контролируемый участок поверхности со скоростью, отличной от заданной, измерение величины импульса силы этого удара, учитывание при определении прочности материала этих двух измеренных величин (SU, патент №1762219, G01N 29/00, 1990).

Недостатком данного способа является отсутствие возможности определения термомеханических характеристик в материалах с памятью формы.

Наиболее близким по технической сущности к предлагаемому изобретению является способ определения термомеханических характеристик материалов с памятью формы, включающий установку образца с подведенной к нему термопарой на опоры стола, подведение к нему датчика линейных перемещений, растягивание образца при температуре существования мартенситной фазы до заданной деформации, нагрев до температуры существования аустенитной фазы, регистрацию изменения длины образца и температуры образца с получением зависимости деформации образца от температуры, определение с помощью метода касательных температуры фазовых превращений и величины восстанавливаемой деформации (RU №2478928, G01N 3/18, 2011).

Недостатком данного способа является невозможность определения величины термомеханических напряжений возврата, возникающих в радиальном направлении в термомеханических соединениях, осуществляемых с помощью муфт, изготовленных из материала, обладающего эффектом памяти формы.

Техническим результатом заявляемого изобретения является создание способа определения величины термомеханических напряжений возврата, возникающих в радиальном направлении в термомеханических соединениях, осуществляемых с помощью муфт, изготовленных из материала с эффектом памяти формы.

Технический результат достигается за счет того, что в способе определения термомеханических напряжении возврата в материале с памятью формы, включающем измерение линейных размеров испытываемого образца, охлаждение его до перехода первоначальной аустенитной структуры в мартенситную, деформирование образца, перевод его структуры в аустенитное состояние путем нагрева, с последующим измерением термомеханических характеристик материала, согласно изобретению испытанию подвергают полый цилиндрический образец круглого сечения с аустенитной структурой, предварительно определив размеры его внутреннего диаметра и высоты, после этого образец охлаждают до температуры образования в нем мартенситной структуры, затем образец подвергают деформации путем раздачи его внутренней полости на стержне с диаметром на 2-8% больше диаметра внутренней полости образца, измеренной в первоначальном состоянии, затем образец со стержнем нагревают до температуры образования аустенитной структуры и после этого прикладывают усилия для разъединения стержня и образца и в момент начала страгивания стержня фиксируют величину приложенного усилия, а напряжение термомеханического возврата определяют из соотношения

где P - усилие страгивания образца со стержня;

k - коэффициент трения;

π=3,14;

d - диаметр стержня,

h - высота полости цилиндрического образца круглого сечения.

Деформация образца осуществляют путем раздачи его внутренней полости на стержне диаметром на 2-8% больше диаметра внутренней его полости, измеренной в первоначальном аустенитном состоянии, производят после охлаждения его в жидком азоте, когда образец приобретает мартенситную структуру, что необходимо для создания напряжения возврата, возникающего в термомеханических соединениях, за счет стремления материала, обладающего эффектом памяти, восстановить свою первоначальную форму при последующем нагревании, что позволяет определить величину радиальных напряжений возврата в термомеханических соединениях.

Деформации образца путем вдавливания во внутреннюю его полость стержня диаметром более чем на 8% больше диаметра цилиндрического образца, измеренного в первоначальном аустенитном состоянии, может привести к его саморазрушению за счет создания высоких радиальных напряжений термомеханического возврата в процессе восстановления его формы.

После деформации образец вместе со стержнем нагревают для перевода его мартенситной структуры в аустенитную и приступают к извлечению стержня из внутренней полости образца.

Приложение усилия для извлечения стержня из внутренней полости образца позволяет преодолеть силы трения покоя за счет возникающего напряжения термомеханического возврата с сохранением неизменяемой площади контакта внутренней поверхности образца с поверхностью стержня в момент существования аустенитной фазы материала образца.

Затем прикладывают к образцу или стержню усилие для разъединения стержня из внутренней полости образца и в момент страгивания стержня (образца) фиксируют величину усилия.

Величина усилия страгивания стержня из внутренней полости образца зависит от величины деформации этой полости и возрастает с увеличением степени деформации.

Определение усилия страгивания стержня из внутренней полости образца необходимо для определения радиального напряжения термомеханического возврата формы.

Конкретный пример реализации способа определения напряжения термомеханического возврата формы материалов, обладающих эффектом памяти формы

Полый цилиндрический образец круглого сечения из никелида титана, обладающего эффектом памяти формы, в качестве которого используют кольцо с полированной внутренней поверхностью с внутренним диаметром 0,01335 м, высотой h=0,005 м, находящийся в аустенитном состоянии, погружают в среду жидкого азота для перехода его в мартенситное состояние. В мартенситном состоянии образец подвергают деформированию за счет раздачи его внутреннего диаметра на стержне с полированной наружной поверхностью:

- с диаметром до 0,01442 м, что обеспечивает деформацию образца на 8%;

- с диаметром до 0,01415 м, что обеспечивает деформацию на 6%;

- с диаметром до 0,01362 м, что обеспечивает деформацию внутреннего диаметра образца на 2% по сравнению с первоначальными размерами в аустенитном состоянии.

Затем образец и стержень извлекают из жидкого азота и образец насаживают с силой на стержень. После этого за счет естественного подвода тепла образец и стержень нагреваются до комнатной температуры. При этом образец при нагревании переходит в первоначальное аустенитное состояние и стремится восстановить первоначальную форму, плотно прижимаясь к стержню, за счет напряжений термомеханического возврата формы.

После двухчасовой выдержки в нормальных условиях при комнатной температуре стержень с образцом устанавливают на опорный элемент с цилиндрическим отверстием, диаметр которого составляет 0,015 м, т.е. больше диаметра стержня. Далее к стержню прикладывают усилие, которое фиксируют в момент начала страгивания стержня из внутренней полости образца, а напряжение термомеханического возврата определяют из соотношения

где P - усилие страгивания образца со стержня, Н;

k - коэффициент трения;

π=3,14;

d - диаметр стержня, м;

h - высота полости цилиндрического образца круглого сечения, м.

Расчет конкретной величины термомеханического напряжения возврата формы приведен ниже, исходя из конкретных данных.

Напряжение термомеханического возврата формы σ при деформации полости образца на 2% составит:

при P=2200 Н (Н Ньютон), коэффициенте трения k=0,12, π=3,14, d=0,01362 м, h=0,005 м

Напряжение термомеханического возврата формы при деформации внутренней полости образца на 6% составит:

при P=10000 Н, коэффициенте трения k=0,12, π=3,14, d=0,01415 м, h=0,005 м

Напряжение термомеханического возврата формы σ при деформации полости образца на 8% составит:

при P=11000 Н, коэффициенте трения k=0,12, π=3,14, d=0,01442 м, h=0,005 м

Предлагаемым изобретением решается задача определения напряжения термомеханического возврата в соединении, создаваемом материалом, обладающим эффектом памяти формы, необходимого для обеспечения надежной работоспособности соединений в качестве входного контроля перед изготовлением термомеханических муфт с эффектом памяти формы.

Предлагаемый способ определения термомеханических характеристик материалов, обладающих эффектом памяти формы, позволяет повысить точность определения напряжений термомеханического возврата за счет создания схемы жесткой измерительной системы, моделирования напряжений, возникающих в радиальном направлении в термомеханических соединениях, и сохранения постоянного значения площади контакта внутренней поверхности образца с поверхностью стержня в момент нагрева до температуры существования аустенитной фазы материала образца. Предлагаемый способ прост в исполнении, экологичен и экономичен в реализации и применим для определения напряжения возврата в радиальном направлении в термомеханических соединениях с помощью муфт из материалов, обладающих эффектом памяти формы, для обеспечения их надежной работоспособности.

Способ определения термомеханических характеристик материала, обладающего эффектом памяти формы, преимущественно напряжения термомеханического возврата, заключающийся в том, что испытанию подвергают полый цилиндрический образец круглого сечения с аустенитной структурой, предварительно измеряют размеры диаметра его внутренней полости и высоты, затем охлаждают цилиндрический образец до температуры образования мартенситной структуры и в этом состоянии его подвергают деформированию путем раздачи его внутренней полости на стержне с диаметром на 2-8% больше диаметра внутренней полости, измеренной в первоначальном аустенитном состоянии, затем образец со стержнем нагревают до температуры образования аустенитной структуры и после этого прикладывают усилия для разъединения стержня и образца и в момент начала страгивания стержня из внутренней полости образца фиксируют величину приложенного усилия, а напряжение термомеханического возврата определяют из соотношения

где P - усилие страгивания стержня из образца;
k - коэффициент трения;
π=3,14;
d - диаметр стержня;
h - высота полости цилиндрического образца круглого сечения.



 

Похожие патенты:

Изобретение относится к испытательной технике, в частности к высокотемпературным испытаниям на прочность, и может быть использовано при исследовании свойств наплавленного металла, обладающего высокой твердостью, на установках тепловой микроскопии.

Изобретение относится к испытательному оборудованию, а конкретно к оборудованию для испытаний на статические силовые воздействия при повышенных температурах. Установка содержит силовую раму, тепловую камеру с нагревателем и крышкой, приспособление для установки в камере объекта испытаний (ОИ), механизм растягивающего нагружения, протоки охлаждения, регистрирующую аппаратуру, связанную с ПЭВМ.

Изобретение относится к механическим испытаниям, а конкретно к испытаниям токопроводящих материалов с целью получения диаграммы деформирования при одноосном растяжении и импульсном нагреве в вакууме или инертной среде.

Изобретение относится к способам определения термомеханических характеристик полимерных композиционных материалов, конкретно к способам определения температуры стеклования Tc, температуры α-перехода Tα температуры начала перехода из стеклообразного состояния в высокоэластичное Tнп и теплостойкости.

Изобретение относится к технике волоконно-оптической связи и может быть использовано для испытания стойкости оптического кабеля (ОК), предназначенного для прокладки в защитном полимерном трубопроводе (ЗПТ), к действию замерзающей воды в ЗПТ.

Изобретение относится к лабораторной испытательной технике, а именно к устройству для формирования и испытания образца тонких покрытий в нагрузочных устройствах, например, для испытания тонких керамических теплозащитных покрытий на механическую прочность растяжением.

Изобретение относится к методам определения механических характеристик диэлектрических материалов с учетом условий их применения. Сущность способа заключается в определении предела прочности при растяжении стандартных образцов при высокоинтенсивном индукционном нагреве промежуточного металлического нагревательного элемента, имеющего тепловой контакт с испытываемым образцом.

Изобретение относится к испытаниям механических свойств металлов и сплавов и может быть использовано для оценки критической температуры хрупкости металла элементов нефтегазового оборудования при эксплуатации в сероводородсодержащих средах, вызывающих охрупчивание металла.

Изобретение относится к средствам испытаний образцов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел.

Изобретение относится к испытательной технике и может быть использовано для испытания образцов материалов на прочность. Сущность: установка содержит основание (1), на котором установлены захваты (2, 3) для образца (4), нагружатель (5), связанный с захватами (2, 3), приспособление для нагрева в виде теплопроводного кольца (6) для закрепления на поверхности образца (4), фрикционный элемент (7), предназначенный для взаимодействия с наружной поверхностью кольца (6), приспособление для поджатия фрикционного элемента (7) к кольцу (6) с упругим элементом (8) и регулятором (9) деформации упругого элемента (8), приспособление для перемещения фрикционного элемента (7) относительно кольца (6) с платформой (10) и приводом (11) вращения с валом (12).

Изобретение относится к механическим испытаниям, а конкретно к испытаниям токсичных материалов на растяжение в условиях малоциклового нагружения в вакууме при повышенных температурах. Установка содержит вакуумируемую рабочую камеру с захватами для образца, механизм нагружения, представляющий собой рычаг с грузом, соединенный с одной стороны с захватом, а с другой с гидравлическим домкратом, снабженным управляемым клапаном, нагреватель образца, протоки охлаждения, выполненные, по крайней мере, в одном из захватов, регистрирующую аппаратуру, установленную непосредственно на рабочей части образца и на охлаждаемом захвате, сигналы с которой поступают на контрольно-измерительную аппаратуру, а с нее на ПЭВМ. Груз подвешен к рычагу через металлическую проволоку, на участке которой имеются зажимы, соединенные с клеммами аккумулятора, один из которых соединен через тиристор, управляемый через блок сравнения регистрирующей аппаратурой, установленной на образце. Технический результат: возможность получения диаграмм деформирования в условиях малоциклового нагружения со скоростями деформирования в диапазоне 10-2-10-4 с-1 с одновременной защитой персонала и окружающей среды от воздействия испытуемых токсичных материалов за счет имеющейся двойной герметизации образцов из токсичных материалов. 1 з.п. ф-лы, 1 ил.

Изобретение относится к механическим испытаниям объектов, а именно к устройствам для испытаний объектов на вибронагружение в различных средах при высоких температурах и давлениях. Установка содержит индукционный нагреватель, включающий водоохлаждаемую катушку в виде спирали, выполненной с возможностью соосного размещения объекта испытаний (ОИ) внутри нагревателя, опоры для ОИ, нагружающее устройство, устройство охлаждения, соединенное с протоками охлаждения тоководов нагревателя, контрольно-измерительную аппаратуру, соединенные последовательно пульт управления, соединенный с контрольно-измерительной аппаратурой, преобразователь частоты, батарею конденсаторов, последовательно-параллельно подключенную по крайней мере к одной паре соосно установленных водоохлаждаемых катушек индукционного нагревателя в виде спиралей. Нагружающее устройство выполнено в виде вибровозбудителя, а опоры для ОИ установлены на скользящем столе вибровозбудителя. Устройство охлаждения, пульт управления, преобразователь частоты, батарея конденсаторов могут быть расположены на дистанции от вибровозбудителя с размещенным на его скользящем столе ОИ внутри катушек индукционного нагревателя, а устройство охлаждения снабжено независимым пультом управления подачей охлаждающей воды. Технический результат от использования заявляемого изобретения заключается в обеспечении испытаний крупногабаритных цилиндрических объектов на комплексные термомеханические нагрузки, сокращение времени выхода на заданный температурный режим, снижение теплопотерь, массы и габаритов, повышение температуры испытаний до 1400°C и выше, в повышении КПД установки. 2 з.п. ф-лы, 1 ил.

Изобретение относится к средствам испытаний образцов материалов при сложном нагружении и может быть использовано совместно со стендами для физического моделирования геомеханических процессов на образцах горных пород и эквивалентных материалах. Термонагружатель к стенду для испытания образцов материалов, содержащий платформу, размещенные на ней фрикционный диск с приводом вращения, опорную площадку из теплопроводного материала и приспособление для взаимного поджатия диска и площадки, согласно изобретению он снабжен эластичной замкнутой емкостью из теплопроводного материала, закрепленной на опорной площадке и заполненной теплопроводной средой. Предлагаемый термонагружатель существенно повышает качество испытаний образцов материалов на стендах с термонагружением благодаря равномерному термическому воздействию как на ровные, так и неровные участки поверхности испытуемого объекта. 1 ил.

Изобретение относится к средствам испытаний образцов материалов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел. Термонагружатель к стенду для испытания образцов материалов, содержащий платформу, установленные на ней фрикционный элемент, привод с валом для вращения фрикционного элемента, опорную площадку в форме кольца из теплопроводного материала, контактирующую с фрикционным элементом и предназначенную для размещения в отверстии образца, приспособление для предотвращения вращения опорной площадки относительно платформы, согласно изобретению он снабжен дополнительными опорными площадками, установленными на приспособлении для предотвращения вращения опорной площадки с возможностью изменения положения опорных площадок вдоль оси вала, и дополнительными фрикционными элементами, при этом фрикционные элементы выполнены в виде упругих пластин, одним концом закрепленных на валу привода вращения, а другим концом поджатых за счет изгиба пластин к соответствующим опорным площадкам. Технический результат заключается в увеличении объема информации при испытаниях, поскольку обеспечивается как равномерное, так и неравномерное термическое нагружение стенок отверстия образца. 2 з.п. ф-лы, 2 ил.

Изобретение относится к технике испытания материалов, в частности к испытаниям полимерных материалов на растяжение-сжатие. Устройство содержит термокриокамеру, размещенные в ней подвижный и неподвижный захваты для образца, механизм деформации образца, выполненный в виде магнитогидродинамического насоса и сообщенных с ним двух гидродвигателей в виде сильфонов, один из которых сообщен с узлом крепления подвижного захвата, измерительное средство для замера усилий и деформаций. Узел крепления подвижного захвата включает в себя стержень с возможностью перемещения по направляющим цилиндрической формы, зафиксированным в пространстве с помощью стойки, один конец стержня сообщен с сильфоном, а другой - с подвижным захватом, при этом стержень проходит через рамку с установленным в ней ползуном, с возможностью передачи информации гибкой пластине для замера деформаций, один конец которой закреплен к рамке, а другой конец жестко закреплен к основанию камеры с помощью кронштейна. Технический результат: повышение точности измерения деформации испытуемого образца. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях для мониторинга прочности ответственного оборудования в процессе его эксплуатации, например паропроводов и корпусных элементов оборудования высокого давления. Сущность: периодически при останове оборудования известным способом проверяют наличие и уровень микроповрежденности наружной поверхности контролируемой детали. При достижении установленного опасного значения указанного уровня из неответственной части контролируемой детали изготавливают серию из нескольких одинаковых образцов круглого поперечного сечения. Каждый из указанных образцов испытывают на разрыв с нагревом образца для создания в нем при нагружении условий ползучести. Оценивают остаточный ресурс контролируемой детали путем математической обработки результатов указанных испытаний. Причем на каждый из указанных образцов наносят острый кольцевой надрез, моделирующий известным способом достигнутый уровень микроповрежденности на поверхности контролируемой детали, а заданное значение механического напряжения в указанном образце при его испытании поддерживают в гладкой части образца за пределами указанного кольцевого надреза. Технический результат: обеспечение возможности учета при испытании образцов уровня микроповрежденности контролируемой детали и проведения указанных испытаний при рабочих параметрах эксплуатации данной детали. 2 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к неразрушающему контролю материалов, обладающих эффектом памяти формы, и может быть использовано для контроля термомеханических характеристик в условиях пассивного деформирования материалов с эффектом памяти формы для определения и контроля температурных точек фазовых превращений, коэффициента термического и упругого восстановления, а также для контроля получаемых сплавов с памятью формы на соответствие заданным термомеханическим характеристикам, необходимым для обеспечения работоспособности термомеханических соединений при сборке с помощью термомеханических муфт из сплава с эффектом памяти формы. Сущность: осуществляют установку в приспособление для деформации кольцевого образца из материала с памятью формы в аустенитном состоянии с подведенными к нему термопарой и датчиком перемещений, определение наружного диаметра кольца образца, вертикальное нагружение кольцевого образца в аустенитном состоянии вдоль его диаметра, измерение упругой аустенитной деформации, охлаждение кольцевого образца с приложенной к нему вертикальной нагрузкой с одновременным измерением накопленной мартенситной деформации до завершения перехода материала с эффектом памяти формы кольцевого образца при прямом мартенситном превращении в мартенситное состояние до получения установившегося значения накопленной мартенситной деформации, определение полной деформации путем суммирования упругой аустенитной деформации и накопленной мартенситной деформации, нагрев кольцевого образца с приложенной к нему вертикальной нагрузкой с одновременным измерением термомеханической восстановленной деформации до завершения перехода материала с эффектом памяти формы кольцевого образца при обратном мартенситном превращении в аустенитное состояние до получения установившегося значения термомеханической восстановленной деформации, снятие приложенной вертикальной нагрузки с последующим измерением упругой восстановленной деформации и остаточной деформации, построение графика зависимости деформации от температуры, определение температур начала и окончания прямого и обратного мартенситных превращений с последующим определением среднеарифметических значений температур прямого и обратного мартенситных превращений, величины гистерезиса, относительных значений упругой аустенитной, накопленной мартенситной, полной, термомеханической восстановленной, упругой восстановленной и остаточной деформаций и термомеханических коэффициентов. Технический результат: повышение точности определения термомеханических характеристик за счет осуществления мартенситного сдвига в направлении вектора действующего напряжения в условиях пассивного деформирования с получением больших значений абсолютной деформации, реализации обратимости процесса формовосстановления, получения кривой (или диаграммы) полного цикла переходных процессов в виде гистерезисной петли, получения всех температурных точек фазовых превращений. 3 ил.

Изобретение относится к области исследования прочностных свойств материалов при высоких температурах в условиях индукционного нагрева в вакууме. Высокотемпературная установка содержит ВЧ индуктор, охватывающий испытуемый образец и жесткие верхний и нижний захваты, удерживающие его, а также контролирующую и регистрирующую аппаратуру. Установка снабжена вакуумной водоохлаждаемой камерой, по центру которой расположен вышеупомянутый ВЧ индуктор, окруженный разъемным тепловым экраном и здесь же, по центру, находятся два захвата, удерживающие образец, рабочая часть которого соответствует высоте ВЧ индуктора. Технический результат: повышение рабочей температуры на испытуемом образце до 4000°С в вакуумной камере. 1 ил.

Изобретение относится к области испытаний материалов, а конкретно к испытаниям металлических цилиндрических образцов методом деформирования (растяжения-сжатия или сжатия-растяжения), и может быть использовано для физического моделирования в лабораторных условиях процессов многократной пластической деформации металлов, происходящих в условиях промышленного производства и эксплуатации. Сущность: осуществляют термомеханическое циклическое нагружение цилиндрического образца, один цикл нагружения которого включает полуциклы растяжения и сжатия и промежуточный разгрузочный этап. Полуциклы растяжения и сжатия или сжатия и растяжения осуществляют с одинаковой скоростью нагружения и с получением одинаковой степени деформации образца, а промежуточный разгрузочный этап выполняют в течение времени, недостаточного для развития в металле образца процессов разупрочнения. Образец выполнен сплошным цилиндрическим с рабочей частью, имеющей понижение диаметра через переходные зоны. Соотношение длины и диаметра рабочей части образца составляет 1,0÷1,4. Технический результат: обеспечение многократного циклического воздействия растяжением-сжатием или сжатием-растяжением с сохранением исходной формы и размеров образца, исключение потери устойчивости деформации и локального разрушения образца, повышение точности контроля результатов испытаний. 2 н. и 3 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к испытательной технике, к установкам для испытания образцов материалов на прочность. Установка содержит основание, установленные на нем соосные захваты для образца, механический нагружатель, связанный с захватами, термический нагружатель, включающий вал, установленный параллельно захватам, привод вращения вала, шкив, установленный на валу, бесконечный элемент, охватывающий шкив без возможности скольжения, теплопроводное кольцо для закрепления на поверхности образца, охватываемое бесконечным элементом с возможностью фрикционного взаимодействия, и приспособление для регулируемого усилия натяжения бесконечного элемента. Установка снабжена дополнительным валом, установленным параллельно первому валу с противоположной стороны от оси захватов, приводом вращения дополнительного вала, дополнительным шкивом, установленным на дополнительном валу оппозитно первому шкиву, дополнительным бесконечным элементом, охватывающим дополнительный шкив без возможности скольжения, и дополнительным приспособлением для регулируемого усилия натяжения дополнительного бесконечного элемента. Дополнительный бесконечный элемент установлен с возможностью фрикционного взаимодействия с теплопроводным кольцом. Технический результат: возможность проводить испытания образцов при нагружении участков образца как при осевом и термическом нагружении, так и дополнительно при нагружении кручением и изгибом, что повышает объем информации при исследованиях свойств материалов. 1 ил.
Наверх