Способ позиционирования подвижного рельсового транспортного средства на железнодорожном пути

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте. В способе предварительно задают систему реперных объектов, в качестве которых используют объекты инфраструктуры, в режиме реального времени одновременно определяют координаты транспортного средства и осуществляют лазерное сканирование местности, в автоматическом режиме обрабатывают результаты сканирования и формируют модель текущего положения объектов в виде облака точек, в соответствии с координатами позиционируют транспортное средство на цифровой карте местности с заданной системой реперных объектов. Причем в зоне позиционирования подвижного транспортного средства определяют реперные объекты, их текущее пространственное положение в виде облаков точек совмещают с их положением на проектной трехмерной векторной карте местности путем минимизации координатной невязки, истинное текущее географическое положение подвижного рельсового транспортного средства вычисляют относительно реперных объектов. Достигается повышение точности позиционирования. 1 ил.

 

Изобретение относится к системам, обеспечивающим высокоточное позиционирование рельсовых транспортных средств, и может быть использовано на железнодорожном транспорте для точного определения местонахождения рабочей техники в режиме реального времени.

Известен способ высокоточного позиционирования для гражданских потребителей путем развертывания локальных дифференциальных подсистем, которые имеют радиус зоны действия не более 200 км, и, как правило, включают одну контрольно-корректирующую станцию, вырабатывающую дифференциальные поправки и данные о целостности, и средства передачи данных, в качестве которых используются средства УКВ-радиосвязи (Ю.А.Соловьев. Спутниковая навигация и ее приложения, М., Эко-тренд, 2003, с. 51, с. 85).

Недостатком известного способа является недостаточная точность позиционирования 1-Зм в динамическом режиме, необходимость развертывания сети корректирующих станций, наличие «мертвых зон» приема.

Известен способ высокоточного позиционирования, реализованный высокоточной координатной системой, включающей дифференциальную подсистему геодезической навигационной спутниковой системы, высокоточную реперную систему и координатную модель железнодорожного пути (И.Н. Розенберг, В.Я. Цветков, С.И. Матвеев, С.К. Дулин, Научно-техническое издание «Интегрированная система управления железной дорогой» под ред. В.И. Якунин, М.: Дизайн, Информация, Картография, 2008, с. 87-94).

В известном способе все координатные расчеты осуществляют в глобальной геоцентрической системе координат. Эта система не имеет картографических искажений, присущих обычным и цифровым картам. Она позволяет реализовать принцип единства измерений. Система оснащена также средствами пересчета координат в государственную систему координат СК-95 в форме прямоугольных, эллипсоидных и плоских координат в проекции Гаусса-Крюгера и в специальной геодезической проекции, не имеющей практически значимых картографических искажений.

Однако достигаемая этим способом точность недостаточна для позиционирования рабочей техникой в реальном времени в ходе выполнения работ, например, по выправке пути, поскольку основные преимущества данного способа проявляются в режиме постобработки.

Техническим результатом предлагаемого изобретения является повышение точности определения местоположения рельсового транспортного средства на железнодорожном пути при его движении в режиме реального времени.

Технический результат достигается тем, что в способе высокоточного позиционирования подвижного рельсового транспортного средства на железнодорожном пути предварительно задают систему реперных объектов, в качестве которых используют элементы объектов инфраструктуры, выполненные в виде многогранников, в режиме реального времени одновременно определяют географические координаты подвижного рельсового транспортного средства с помощью спутниковой навигационной системы и осуществляют лазерное сканирование местности в пределах полосы отвода железнодорожных путей, в автоматическом режиме обрабатывают результаты сканирования и формируют модель текущего пространственного положения объектов инфраструктуры в пределах полосы отвода железнодорожных путей в виде облака точек, в соответствии с географическими координатами позиционируют подвижное рельсовое транспортное средство на цифровой трехмерной векторной карте местности, характеризующей проектную трехмерную векторную модель инфраструктуры железнодорожного транспорта с заданной системой реперных объектов, в зоне позиционирования подвижного транспортного средства определяют реперные объекты, их текущее пространственное положение в виде облаков точек совмещают с их положением на проектной трехмерной векторной карте местности путем минимизации координатной невязки, истинное текущее географическое положение подвижного рельсового транспортного средства вычисляют относительно реперных объектов.

Предлагаемый способ реализует система высокоточного позиционирования подвижного рельсового транспортного средства на железнодорожных путях, структурная схема которого представлена на чертеже.

Система высокоточного позиционирования рельсового транспортного средства на железнодорожном пути содержит установленные на рельсовом транспортном средстве 1 блок 2 приема и обработки сигналов спутниковой навигационной системы, измерительный блок 3, блок 4 хранения данных карты местности, последовательно соединенные блок 5 позиционирования транспортного средства на карте местности, блок 6 распознавания образов и блок 7 вычисления, а также блок 8 хранения данных реперных объектов.

При этом выходы измерительного блока 3 и блока 8 хранения данных реперных объектов подключены, соответственно, ко второму и третьему входам блока 6 распознавания образов, а входы/выходы блока 4 хранения данных карты местности соединены с входом/выходом блока 5 позиционирования транспортного средства на карте местности.

Блок 4 хранения данных карты местности содержит карту местности с высокоточной трехмерной векторной проектной моделью инфраструктуры железнодорожного транспорта.

Блок 9 хранения данных реперных объектов содержит характерные признаки положения объектов инфраструктуры, используемых в системе реперных объектов, в соответствии с проектной трехмерной векторной моделью инфраструктуры железнодорожного транспорта.

Измерительный блок 3 выполнен в виде мобильного лазерного сканера и совмещен с блоком 2 приема и обработки сигналов спутниковой навигационной системы.

Система высокоточного позиционирования подвижного объекта на железнодорожных путях функционирует следующим образом.

Блок 2 приема сигналов спутниковой навигационной системы в режиме реального времени принимает данные о текущей координате положения подвижного объекта и передает их в блок 5 позиционирования объекта на карте местности.

Одновременно измерительный блок 3 осуществляет лазерное сканирование местности в пределах полосы отвода железнодорожных путей с последующей обработкой результатов сканирования и формирует модель текущего пространственного положения объектов инфраструктуры в пределах полосы отвода железнодорожных путей в виде облака точек, данные о котором направляет в блок 6 распознавания образов.

Блок 5 запрашивает данные карты местности с высокоточной трехмерной векторной проектной моделью инфраструктуры железнодорожного транспорта с заданной объемной моделью реперных объектов, на которой позиционирует местоположение подвижного транспортного средства в пределах одного пролета между смежными реперными объектами на трехмерной карте местности путем совмещения координат спутниковой навигационной системы с координатами трехмерной карты местности и определяет реперные объекты на карте местности в зоне позиционирования подвижного транспортного средства, тем самым ограничивая область поиска реперных объектов. Это особенно актуально в малонаселенной местности, где велика вероятность совпадения фрагментов пути (при использовании только трехмерной карты местности) на некоторых участках трассы.

Результаты позиционирования подвижного транспортного средства относительно реперных объектов, расположенных в зоне позиционирования, блок 5 передает в блок 6 распознавания образов.

В блоке 6 осуществляются поиск облаков точек, соответствующих выявленным реперным объектам. Для чего блок 6 определяет нормали с последующим построением плоскостей по группам точек с одинаковым вектором для более точной идентификации реперных объектов. Блок 6 распознает образы реперных объектов в зоне позиционирования подвижного транспортного средства, совмещает их текущее пространственное положение в виде облаков точек с их положением на проектной трехмерной векторной карте местности путем минимизации координатной невязки. Результаты распознавания образов реперных объектов блок 6 передает в блок 7 вычисления.

Реперные объекты, в качестве которых используют элементы объектов инфраструктуры, выполненные в виде многогранников, имеют плоские поверхности с выраженными краями.

При распознавании образов реперных объектов используют локальный метод выделения краев изображений.

Локальный метод выделения краев изображений основан на проверке статистических гипотез о характере случайной последовательности, в качестве которой можно рассматривать строки и столбцы матрицы трехмерного изображения земляного полотна. Форма идеального края представляет собой кусочно-линейную функцию, состоящую из линейных участков. В том случае, если «остроконечность» краев сглажена за счет изменений с течением времени, указанное сглаживание можно получить из идеальной модели края с помощью оператора свертки, ядро которого описывается гауссовой функцией

При этом репер в результате предварительной обработки может быть задан в виде кусочно-линейной аппроксимации, которая получается, если воспользоваться триангуляцией. В этом случае анализируемый профиль f можно задать последовательностью значений f(xk) в точках xk, k=1, …, N, причем следует выбрать равномерное распределение точек xk на оси x, т.е. xi=xi-1+Δh, i=2, …, N. Другая альтернатива заключается в обобщении дискриминантной функции для непрерывного случая. Пусть f - это наблюдаемый профиль. Тогда дискриминантная функция может быть выбрана следующим образом:

В качестве окрестности точки х, по которой вычисляется дискриминантная функция, выбирается отрезок [x-s, x+s]. Данная дискриминантная функция является обобщением дискриминантной функции, ранее рассмотренной, так как фактически при расчете дискриминантной функции аппроксимируют анализируемый профиль на участке [xi-m, xi+m] по методу наименьших квадратов, подбирая параметры функций f(x|a1,a2,c,xi)=c+al(x-xi)+a2φ(x-xi) и f(x|а,b)=b+ах. При расчете дискриминантной функции (1) решение оптимизационных задач также связано с решением систем линейных уравнений. В данном случае значения а1, а2 и с находятся из системы:

Данная система после несложных преобразований приводится к виду:

Поскольку функция

является четной, то Поэтому

Аналогичным образом находим а и b из системы уравнений

Отсюда находим, что и

После оценивания положений всех точек переключения {x1, …, xk} идеальная функция, определяющая геометрию репера, может быть задана в виде:

где

Считаем положения точек переключения известными, а для оценки параметров c, a1, …, ak, воспользуемся методом наименьших квадратов в интегральной форме. Пусть f - наблюдаемый профиль на отрезке [x0, xk+1].

Тогда нахождение оценок параметров c, a1, …, ak сводится к решению следующей оптимизационной задачи:

Нетрудно определить, что нахождение точки минимума связано с решением следующей системы линейных уравнений:

В блоке 7 вычисляют истинное текущее географическое положение подвижного рельсового транспортного средства относительно реперных объектов.

Предлагаемый метод позволяет обеспечить высокую точность позиционирования при существенно более разряженной реперной системе за счет использования ранее построенной 3-D модели участка пути, привязывая указанную модель к объектам инфраструктуры, таких как опоры электросети, пикеты, платформы.

Способ высокоточного позиционирования подвижного рельсового транспортного средства на железнодорожном пути, заключающийся в том, что предварительно задают систему реперных объектов, в качестве которых используют элементы объектов инфраструктуры, выполненные в виде многогранников, в режиме реального времени одновременно определяют географические координаты подвижного рельсового транспортного средства с помощью спутниковой навигационной системы и осуществляют лазерное сканирование местности в пределах полосы отвода железнодорожных путей, в автоматическом режиме обрабатывают результаты сканирования и формируют модель текущего пространственного положения объектов инфраструктуры в пределах полосы отвода железнодорожных путей в виде облака точек, в соответствии с географическими координатами позиционируют подвижное рельсовое транспортное средство на цифровой трехмерной векторной карте местности, характеризующей проектную трехмерную векторную модель инфраструктуры железнодорожного транспорта с заданной системой реперных объектов, зоне позиционирования подвижного транспортного средства определяют реперные объекты, их текущее пространственное положение в виде облаков точек совмещают с их положением на проектной трехмерной векторной карте местности путем минимизации координатной невязки, истинное текущее географическое положение подвижного рельсового транспортного средства вычисляют относительно реперных объектов.



 

Похожие патенты:

Изобретение относится к области спутниковой навигации и может быть использовано в качестве оценки достоверности высокоточного навигационного определения. Технический результат состоит в повышении достоверности высокоточных навигационных определений и уменьшении времени оповещения потребителя о нарушении целостности навигации.

Изобретение относится к бортовым системам навигации (БСН) искусственных спутников Земли (ИСЗ) на низких (с высотой до 500-600 км) орбитах. БСН содержит устройство управления системой и соединенные с ним устройство преобразования навигационных сигналов в навигационные параметры, блок преобразования навигационных параметров в параметры движения центра масс (ЦМ) ИСЗ и блок прогнозирования параметров движения ЦМ.

Изобретение относится к области радионавигации. Техническим результатом является усовершенствование определения коррекций часов, которые не требуют точных часов, на любом сетевом приемнике.

Изобретение относится к технике навигации. Технический результат состоит в повышении точности определения координат.

Изобретение относится к технике связи и может использоваться в беспроводных системах связи. Технический результат состоит в повышении надежности передачи.

Изобретение относится к радиотехнике и может использоваться для определения местоположения объектов. Технический результат состоит в повышении точности определения местоположения.

Изобретение относится к средствам навигации и может быть использовано в транспортных средствах для определения местоположения транспортного средства. Достигаемый технический результат изобретения - обеспечение определения координат навигационного приемника с частичной компенсацией погрешностей.

Изобретение относится к области радионавигации. Техническим результатом является определение курсового угла транспортного средства или оборудования, соединенного с транспортным средством.

Изобретение относится к технике связи и может использоваться в глобальной навигационной спутниковой системе (GNSS). Технический результат состоит в повышении точности определения местоположения объектов.

Изобретение относится к космической отрасли, а именно к средствам и способам оперативного мониторинга состояния ионосферы с использованием космических аппаратов (КА), и может использоваться, например, для оперативной диагностики ионосферных возмущений с целью принятия необходимых комплексных мер по повышению безопасности хозяйственной и научной деятельностей, сопряженных с применением наземных, морских, авиационных и космических средств.

Изобретение относится к области радионавигационных систем позиционирования подвижных объектов, таких как животные. Техническим результатом является защита антенны устройства определения местонахождения животного от внешних воздействий за счет ее размещения внутри гибкого корпуса ошейника. Для этого устройство для определения местонахождения животного содержит средство связи с удаленным электронным устройством владельца или дрессировщика животного, с расположенным на нем электрическим разъемом, доступным снаружи для подключения к электросхеме средства связи, ошейник, один конец которого соединен с возможностью отсоединения со средством связи, и антенну GPS, встроенную в ошейник таким образом, что она расположена на удалении от средства связи. При этом устройство для определения местонахождения животного включает в себя электрический проводник, соединенный с антенной GPS, одна часть которого встроена в ошейник, а другая часть выходит из ошейника вблизи одного из концов ошейника и является гибкой. Кроме того, устройство для определения местонахождения животного содержит второй электрический разъем, электрически соединенный с незакрытым концом гибкой части электрического проводника, что позволяет электрически соединять друг с другом оба электрических разъема устройства определения местонахождения животного. 3 н. и 8 з.п. ф-лы, 18 ил.

Изобретение относится к области радиотехники и может быть использовано в составе средств радиоэлектронной борьбы, решающих задачи защиты территории от носителей аппаратуры потребителей (АП) спутниковых радионавигационных систем (СРНС). Достигаемый технический результат - возможность организации радиоэлектронного подавления АП СРНС на больших территориях, уменьшение затрат на реализацию радиоэлектронного подавления и повышение живучести системы в условиях применения оружия, наводящегося на излучение. Технический результат достигается за счет того, что электромагнитное поле (ЭМП) маскирующей радиопомехи создают в барьерной зоне (БЗ), плотность потока мощности (ППМ) маскирующих радиопомех устанавливают из условия гарантированного срыва слежения за параметрами навигационного сигнала (НС) спутников, дополнительно в пределах БЗ создают радиопомехи, имитирующие НС спутников, с ППМ, достаточной для захвата соответствующих им ложных НС следящими контурами АП, носители которой расположены в БЗ, а внутри защищаемой территории создают ЭМП радиопомех, имитирующих НС спутников, с ППМ, не превышающей максимальное возможное значение ППМ истинных НС спутников в пределах защищаемой территории. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области радиотехники и может быть использовано для навигации подвижных объектов в режиме реального времени. Технический результат состоит в повышении точности и надежности определения местоположения подвижных объектов в режиме реального времени. Для этого в системе точной навигации подвижных объектов с использованием данных наземной инфраструктуры ГЛОНАСС, включающей спутники глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO), диспетчерскую станцию, содержащую геоинформационную систему, базовую станцию, подвижные объекты, оснащенные телеметрическими терминалами, на которых установлено телекоммуникационное оборудование, обеспечивающее соединение базовой станции с подвижными объектами посредством широкополосного радиодоступа, блок обработки совместной информации, поступающей с базовой станции и подвижного объекта, в качестве базовой станции используется сгенерированная сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС виртуальная базовая станция, расположенная на расстоянии 4 км 300 метров от соответствующего подвижного объекта, в качестве телеметрического терминала в системе используется устройство точной навигации, созданное на базе одночастотного двухсистемного кодо-фазового чипа, принимающего сигналы глобальных навигационных спутниковых систем, подключенного к малогабаритному атомному стандарту частоты, введены региональные модели ионосферы и тропосферы, созданные в режиме реального времени, генерируемые сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС. 1 ил.

Изобретение относится к беспроводной системе передачи локальных сообщений и предназначено для обеспечения централизованного управления передатчиками, что позволяет сместить сложность аппаратно-программного обеспечения с множества передатчиков на центральное оборудование. Беспроводная система передачи локальных сообщений содержит передатчик и приемник, причем передатчик передает локальное сообщение на приемник, причем приемник является навигационным приемником, выполненным для приема и обработки навигационных сообщений со спутников глобальной системы спутниковой навигации на заданной несущей частоте, каждый из спутников передает навигационные сообщения с индивидуальным для спутника PRN-кодом, передатчик выполнен для передачи локального сообщения в сигнале локального сообщения на заданной несущей частоте с локальным PRN-кодом, который не используется спутником глобальной системы спутниковой навигации, и приемник, кроме того, выполнен для приема локального PRN-кода и обработки сигнала локального сообщения. 3 н. и 6 з.п. ф-лы, 2 ил., 6 табл.

Изобретение относится к области спутниковой навигации и может быть использовано для определения ионосферной задержки сигнала глобальных спутниковых навигационных систем с помощью двухчастотной навигационной аппаратуры потребителя. Технический результат состоит в повышении точности определения задержки сигнала в ионосфере за счет исключения кодовых измерений и применения измерений фазовой псевдодальности на двух несущих частотах. Для этого в способе определение ионосферной задержки производится путем решения системы уравнений, составленной по разностям приращений фазовых псевдодальностей на двух несущих частотах. 2 ил.

Изобретение относится к способам навигации по Спутниковым Радионавигационным Системам (СРНС) и может быть использовано для идентификации параметров навигационных спутников и повышения точности определения координат навигационного приемника. Достигаемый технический результат изобретения - повышение точности определения местоположения навигационного приемника за счет исключения ошибок взаимной синхронизации часов навигационных спутников и навигационного приемника. Указанный результат достигается за счет того, что в группе из двух навигационных спутников, находящихся в зоне прямой видимости, реализуются одновременные передача навигационных сообщений от каждого спутника к каждому, и их прием каждым спутником от каждого, определение межспутниковых псевдодальностей, и их передача на другой спутник, с последующим решением на каждом спутнике системы двух линейных алгебраических уравнений, в результате которого определяются истинные дальности между спутниками и погрешности взаимной синхронизации их часов, после чего погрешности взаимной синхронизации часов спутников передаются в навигационных сообщениях и компенсируются в навигационном приемнике при определении ортодромических координат навигационного приемника на основе решения алгебраического уравнения четвертой степени, сформированного по разности измеренных псевдодальностей объекта между двумя спутниками и параметрам ортодромической траектории объекта. 1 ил.

Изобретение относится к области радиотехники, а именно к спутниковым навигационным системам (СНС), и может быть использовано для определения целостности информации от СНС. Достигаемый технический результат - повышение достоверности целостности информации непосредственно на объекте потребителя. Указанный результат достигается за счет того, что способ включает измерение данных, поступающих с навигационных спутников, определение местоположения и скоростей потребителя, сравнение с допустимыми пороговыми значениями непосредственно выходных параметров СНС. Контроль выходных параметров СНС производят на двух уровнях, на первом уровне "грубый контроль" определяют широту, долготу и высоту с заданной точностью, при этом пороги по координатам определяют, исходя из области, ограниченной максимально возможной дальностью и высотой полета, а пороги по скорости контролируют по модулю скорости, которая должна находиться в пределах эксплуатационного диапазона. На втором уровне производят контроль на скользящем интервале наблюдений, где осуществляют контроль измерений скорости и вычисление вариации модуля скорости, а также контроль измерения координат и вычисление вариации приращения пути. В случае превышения вариацией модуля скорости или вариацией приращения пути заданного порогового значения формируется признак неисправности Pr=1. Контроль выдачи одних и тех же значений параметров от СНС осуществляют до "n" совпадений, при достижении которого формируется признак неисправности СНС - Pr=1. Устройство для осуществления способа содержит приемники спутниковых сигналов СНС, инерциальную навигационную систему, блок контроля координат первого уровня, блок контроля параметров скорости первого уровня, четыре коммутатора, блок контроля приращений координат второго уровня, блок контроля вариации модуля скорости второго уровня и блок коррекции. 2 н.п. ф-лы, 4 ил.

Изобретение относится к способам навигации по спутниковым радионавигационным системам (СРНС) и может быть использовано для идентификации параметров навигационных спутников и повышения точности определения координат навигационного приемника. Достигаемый технический результат - повышение точности определения местоположения навигационного приемника. Достигаемый технический результат - исключение ошибок взаимной синхронизации часов навигационных спутников и навигационного приемника. Указанный результат достигается за счет компенсации возникающих погрешностей при определении координат навигационного приемника. 1 ил.

Изобретение относится к области радионавигации. Техническим результатом является обеспечение улучшенной корректирующей информации для навигационных приемников (120) посредством разрешения целочисленных неоднозначностей в измерениях дальности, выполняемых опорными станциями, с использованием ограничений целочисленной неоднозначности двойной разности. Состояние множества глобальных навигационных спутников (110-1, 110-2, 110-N) вычисляется на основе принятых спутниковых навигационных измерений. Идентифицируются базовые линии, причем каждая соответствует паре опорных станций (140-1, 140-2, 140-M). Для каждой идентифицированной базовой линии вычисляют плавающие и целочисленные значения для целочисленной неоднозначности двойной разности. Идентифицируются целочисленные неоднозначности двойной разности, которые удовлетворяют набору заданных условий, и вычисленное состояние множества глобальных навигационных спутников уточняется в соответствии с целочисленным ограничением, применяемым к каждой целочисленной неоднозначности двойной разности, которая удовлетворяет набору заданных условий. Корректирующая информация вычисляется из уточненного вычисленного состояния множества глобальных навигационных спутников. 3 н. и 25 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к области дифференциальных навигационных систем и применимо для высокоточной навигации, геодезии, ориентации объектов в пространстве по сигналам глобальных навигационных спутниковых систем (ГНСС - ГЛОНАСС, GPS, Galileo, Bei Dou и другие), в которых осуществляется измерение псевдодальности до навигационных спутников по фазе несущих колебаний. В дифференциальных системах точное определение взаимного положения объектов производится по разностям псевдофазовых измерений, получаемых в разнесенных на местности навигационных приемниках. Достигаемый технический результат изобретения - повышение точности и надежности определения взаимного положения объектов при сокращении временных затрат. 2 ил.
Наверх