Способ повышения чувствительности электромагнитных датчиков пульсаций скорости преобразователей гидрофизических полей

Изобретение относится к измерительной технике и предназначено для измерения скорости потока электропроводящей жидкости, например морской воды. Способ повышения чувствительности электромагнитных датчиков пульсаций скорости преобразователей гидрофизических полей согласно изобретению включает нанесение платиновой черни на торцевые поверхности платиновых электродов, установленных в зазорах магнитной системы датчика, заподлицо с их внешней поверхностью, при этом перед нанесением платиновой черни электроизоляционный материал датчика покрывают дополнительным слоем электроизолирующего материала, инертного к соляной, азотной и платинохлористоводородной кислотам, при этом толщину дополнительного слоя выбирают исходя из возможности обеспечения блокировки диффузии примесей из компаунда в процессе платинирования электродов. Техническим результатом заявляемого изобретения является снижение электрического сопротивления между электродом и водной средой и, соответственно, уменьшения электрохимических шумов, возникающих из-за химических примесей, диффундирующих в осаждающуюся на электроды платиновую чернь, что обеспечивает повышение чувствительности электромагнитного датчика пульсаций скорости. 5 з.п. ф-лы, 1 ил.

 

Изобретение относится к измерительной технике и предназначено для измерения скорости потока электропроводящей жидкости, например морской воды.

Известен датчик скорости потока электропроводящей жидкости электромагнитного типа (патент РФ №2335774, опубл. 10.10.2008 г.), представляющий собой диэлектрический корпус, размещенный на металлическом основании из неферромагнитного сплава с расположенной внутри диэлектрического корпуса магнитной системой с измерительными электродами, торцевые поверхности которых конформны с обводом диэлектрического корпуса.

Тамже приведен способ повышения чувствительности датчика путем снижения электрического сопротивления между электродом и водной средой и соответственно уменьшения электрохимических шумов. С этой целью, торцевые поверхности платиновых электродов, контактирующие с водной средой, размещенные в зазоре магнитной системы датчика, покрывают платиновой чернью. При этом процесс платинирования и осаждения платиновой черни на торцевые поверхности электродов, заделанных в эпоксидный компаунд, выполняется известным способом, применяемым для платинирования отдельных электродов, с помощью электролиза в химически агрессивной среде электролита на основе платинохлористоводородной кислоты, с применением концентрированных азотной и соляных кислот.

В отличие от платинирования отдельных электродов, при платинировании торцевых поверхностей электродов датчика, заделанных в эпоксидный компаунд, под воздействием электролитов из компаунда выделяются химические примеси, которые диффундируют в осаждающуюся на электроды платиновую чернь, что приводит к недостаточному снижению электрического сопротивления границы электрод - среда и не позволяет достичь требуемого уровня собственных шумов датчика.

Техническим результатом заявляемого изобретения является снижение электрического сопротивления между электродом и водной средой и соответственно уменьшения электрохимических шумов, возникающих из-за химических примесей, диффундирующих в осаждающуюся на электроды платиновую чернь, что обеспечивает повышение чувствительности электромагнитного датчика пульсаций скорости преобразователей гидрофизических полей.

Для достижения указанного технического результата при осуществлении способа повышения чувствительности электромагнитных датчиков пульсаций скорости преобразователей гидрофизических полей, включающего нанесение платиновой черни на торцевые поверхности платиновых электродов, установленных в зазорах магнитной системы датчика, заподлицо с их внешней поверхностью, в соответствии с изобретением перед нанесением платиновой черни, электроизоляционный материал датчика покрывают дополнительным слоем электроизолирующего материала, инертного к соляной, азотной и платинохлористоводородной кислотам, при этом толщину дополнительного слоя выбирают исходя из возможности обеспечения блокировки диффузии примесей из компаунда в процессе платинирования электродов.

В частных случаях реализации, нанесение дополнительного слоя электроизолирующего материала на диэлектрическую поверхность датчика производят последовательно с первоначальным нанесением его на всю поверхность датчика и последующей механической очисткой торцевых поверхностей электродов.

Толщина дополнительного слоя электроизолирующего материала, преимущественно, не менее 5 мкм.

В качестве дополнительного электроизолирующего материала может быть использован полипараксилилен или фторэпоксидный лак.

В частных случаях реализации способа, перед нанесением дополнительного слоя электроизолирующего материала в торцевых поверхностях измерительных электродов могут быть выполнены лунки, преимущественно, глубиной 0,2-0,3 мм.

Техническое решение поясняется следующими графическими материалами, не охватывающими и тем более не ограничивающими весь объем притязаний данного технического решения, а являющимися частными примерами выполнения изобретения.

Фиг. 1 - пример поэтапной реализации способа с выполнением лунки в торцевой части электрода датчика.

Способ реализуется следующим образом.

На датчик, внешняя поверхность которого сформирована эпоксидным компаундом, наносится слой дополнительного электроизолирующего покрытия. При этом электроды могут быть защищены, например, силиконом.

В качестве материала дополнительного электроизолирующего покрытия может быть использован полипараксилилен или фторэпоксидный лак, так как они не подвержены воздействию соляной, азотной и платинохлористоводороной кислот, используемых при платинировании измерительных электродов датчика.

Покрытие полипараксилиленом осуществляют в стационарных установках типа «Ксигер-1М».

Покрытие фторэпоксидным лаком наносят в камерах вакуумного напыления.

Дополнительный слой электроизолирующего материала предпочтительно наносится толщиной не менее 5 мкм, что обеспечивает блокировку диффузии примесей из компаунда в процессе платинирования электродов.

После завершения процесса полимеризации нанесенного дополнительного электроизолирующего покрытия осуществляется платинирование торцевых поверхностей измерительных электродов датчика по известной технологии.

В частных случаях реализации способа слой дополнительного электроизолирующего покрытия наносят на всю поверхность изготовленного датчика пульсаций скорости преобразователей гидрофизических полей перед платинированием измерительных электродов.

После завершения процесса полимеризации нанесенного дополнительного электроизолирующего покрытия производится очистка торцевых поверхностей измерительных электродов датчика до металлической платины. Очистка производится механическим путем, например, с использованием фрезы или ручного инструмента.

После очистки измерительных электродов осуществляется платинирование их торцевых поверхностей по известной технологии.

Для повышения технологичности и качества очистки торцевых поверхностей может быть использована технология обработки, с формированием лунок (фиг. 1).

При этом до нанесения дополнительного электроизолирующего покрытия, в торцевой части платинового измерительного электрода 1 выполняются лунки 2, представляющие собой углубления глубиной 0,2-0,3 мм.

Лунки 2 могут быть выполнены, например, с помощью фрезы или ручного инструмента.

После обработки всех платиновых измерительных электродов 1 на диэлектрический корпус 3 датчика, включая торцевые части измерительных электродов 1, наносится дополнительное электроизолирующее покрытие 4, обеспечивающие отсутствие открытых участков компаунда диэлектрического корпуса 3.

Лунки 2 в торцевых частях измерительных электродов 1 обеспечивают целостность дополнительного электроизолирующего покрытия 4 компаунда диэлектрического корпуса 3 датчика при платинировании электродов, так как очистка торцевой части платинового измерительного электрода 1 перед платинированием от дополнительного электроизолирующего покрытия 4 осуществляется только в лунке 2, не захватывая границы электрод - компаунд.

Кроме того, лунки 2 выполняют дополнительную функцию сохранения платиновой черни благодаря тому, что она не подвергается истиранию из-за абразивных свойств воды при движении датчика в водной среде.

Таким образом, реализация способа повышения чувствительности датчика с использованием дополнительного электроизолирующего покрытия обеспечивает отсутствие химических примесей, диффундирующих в осаждающуюся на электроды платиновую чернь, а следовательно снижение электрического сопротивления между электродом и водной средой и соответственно, уровня электрохимических шумов измерительных электродов до значения соответствующего шумам платиновых электродов, платинированных в идеальных условиях, отдельно от конструкции, что обеспечивает повышение чувствительности электромагнитного датчика пульсаций скорости.

Заявляемый способ повышения чувствительности электромагнитных датчиков пульсаций скорости преобразователей гидрофизических полей может быть осуществлен известными технологическими методами с использованием существующих материалов и оборудования.

1. Способ повышения чувствительности электромагнитных датчиков пульсаций скорости преобразователей гидрофизических полей, включающий нанесение платиновой черни на торцевые поверхности платиновых электродов, установленных в зазорах магнитной системы датчика, заподлицо с их внешней поверхностью, отличающийся тем, что перед нанесением платиновой черни электроизоляционный материал датчика покрывают дополнительным слоем электроизолирующего материала, инертного к соляной, азотной и платинохлористоводородной кислотам, при этом толщину дополнительного слоя выбирают исходя из возможности обеспечения блокировки диффузии примесей из компаунда в процессе платинирования электродов.

2. Способ по п.1, отличающийся тем, что нанесение дополнительного слоя электроизолирующего материала на диэлектрическую поверхность производят последовательно с первоначальным нанесением его на всю поверхность датчика и последующей механической очисткой торцевых поверхностей электродов.

3. Способ по п.1 или 2, отличающийся тем, что дополнительный слой электроизолирующего материала выполняют толщиной не менее 5 мкм.

4. Способ по п.1 или 2, отличающийся тем, что в качестве дополнительного электроизолирующего материала используют полипараксилилен или фторэпоксидный лак.

5. Способ по п.2, отличающийся тем, что перед нанесением дополнительного слоя электроизолирующего материала в торцевых поверхностях измерительных электродов выполняют лунки.

6. Способ по п.5, отличающийся тем, что лунки выполняют глубиной 0,2-0,3 мм.



 

Похожие патенты:

Группа изобретений относится к области измерений параметров движения, предназначена для исследования движения жидких сред и может быть использована для измерения составляющих пульсаций вектора скорости потока жидкости, в частности пресной и морской воды при проведении гидрологических исследований.

Изобретение относится к измерительной технике, а именно к электромагнитным устройствам для измерения скорости потока электропроводной жидкости и основывается на явлении электромагнитной индукции: при движении проводника в магнитном поле в нем индуцируется электродвижущая сила Е, пропорциональная магнитной индукции В и скорости V проводника, которая действует в направлении, перпендикулярном к движению жидкости и магнитному полю.

Группа изобретений относится к измерительной технике, представляет собой устройство и способ измерения скорости электропроводящей среды и может быть использована при добыче и транспортировке нефти.

Изобретение относится к области средств измерения скорости перемещения твердых тел относительно жидких сред и может быть использовано в навигационном приборостроении, а именно - при конструировании и изготовлении индукционных лагов судов.

Изобретение относится к области измерений параметров движения, предназначено для исследования движения жидких сред и может быть использовано для измерения составляющих пульсаций вектора скорости потока жидкости, в частности пресной и морской воды при проведении гидрологических исследований.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к измерительной технике, а именно к устройствам для измерения пульсаций скорости потока электропроводящей жидкости, и может быть применено для измерения компонент вектора скорости течения с низким уровнем собственных шумов и, следовательно, с высокой разрешающей способностью, при исследованиях мелкомасштабной турбулентности в лабораторных и натурных условиях.

Изобретение относится к области исследования гидрофизических полей. .

Изобретение относится к области навигационного приборостроения и предназначено для использования в индукционных лагах быстроходных судов. .

Изобретение относится к измерительной технике, а именно к электромагнитным устройствам для измерения скорости электропроводящей жидкости, и может быть использовано для измерения скорости, например, судов.

Изобретение относится к измерительной технике, а именно к тензометрическим средствам измерения. Технический результат: расширение динамического диапазона преобразования напряженно-деформированных состояний сенсорной консоли вследствие воздействия на ее поверхность скоростного напора (динамического давления) газовых или жидкостных потоков. Сущность: тензорезистивный преобразователь содержит сенсорную консоль, работающую на изгиб, выполненную из упругой подложки тонкопленочного эластичного полимера, двух фольговых тензорезисторов, планарно расположенных на противоположных сторонах подложки, продольные оси которых параллельны между собой, или четырех фольговых тензорезисторов, планарно и попарно расположенных на противоположных сторонах подложки, продольные оси которых симметричны относительно ее продольной оси и параллельны между собой. Тензорезисторы включены в смежные плечи полу- или полномостовую схему измерительного моста. Сенсорная консоль ориентирована ортогонально вектору приложенной силы. В преобразователь введены кольцевой сегмент с кривизной поверхности, соответствующей максимально возможному упругому изгибу сенсорной консоли, хонейкомб, и флюгерный элемент. Кольцевой сегмент выполнен с проницаемой поверхностью. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительного оборудования, а именно к области средств измерения скорости перемещения твердых тел относительно жидких сред, и может быть использовано в навигационном приборостроении при конструировании и изготовлении лагов для водоизмещающих плавсредств. Электромагнитный лаг комплексных измерений содержит поворотный датчик скорости с синхронно следящим приводом для определения истинного значения скорости и направления движения, блок определения мгновенного центра скоростей, датчик угловых скоростей, блоки координат датчика лага и заданных «характерных» точек измерения. Технический результат - возможность определения скорости и направления движения любой точки судна, надводного и подводного корабля, а также кинематических параметров движения при качке с целью выбора оптимального, безопасного ходового режима, повышения эффективности судовождения и работы бортовых систем в сложных условиях плавания. 1 з.п. ф-лы, 1 ил.

Изобретение относится к электроизмерениям и может быть использовано для измерения скорости электропроводной жидкости и ее флуктуаций. Устройство для измерения скорости жидкости содержит измеритель электрического сопротивления и два подключенных к нему электрода, один из которых закреплен неподвижно напротив другого. В устройство введена расположенная между электродами диэлектрическая пластина с отверстием. Отверстие диэлектрической пластины расположено между электродами. Плоскость пластины совпадает с направлением вектора скорости жидкости. Пластина установлена на упругом элементе с возможностью перемещения под действием потока жидкости и снабжена элементом гидродинамического сопротивления. Технический результат - увеличение чувствительности измерения скорости жидкости и точности измерения флуктуаций скорости, которое достигнуто за счет уменьшения шунтирующего действия окружающей среды на сопротивление между электродами и, вследствие этого, увеличения кратности изменения сопротивления. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, первый смеситель, первый направленный ответвитель, основной выход которого соединен с первым входом циркулятора, а дополнительный выход соединен с первым входом смесителя, при этом второй вход смесителя соединен со вторым выводом циркулятора, а третий вывод циркулятора соединен с приемо-передающей антенной, вычислительный блок, соединенный с выходом смесителя. Дополнительно устройство содержит второй и третий направленные ответвители, фазовый детектор, выходом соединенный с управляющим входом генератора СВЧ, выход которого соединен с входом второго направленного ответвителя, основной выход которого, в свою очередь, соединен с входом третьего направленного ответвителя, дополнительный выход которого соединен с первым входом фазового детектора, устройства ввода и вывода электромагнитной волны в трубопровод, соединенные соответственно с основным выходом третьего направленного ответвителя и со вторым входом фазового детектора, умножитель частоты, входом соединенный с дополнительным выходом второго направленного ответвителя, а выходом со входом первого направленного ответвителя, генератор акустических колебаний, излучатель и приемник акустических колебаний, направленных под углом α к направлению движения потока, второй смеситель, первый вход которого соединен с выходом акустического приемника, при этом выход генератора акустических колебаний соединен с акустическим излучателем и со вторым входом смесителя, частотный дискрименатор, первым входом соединенный с выходом второго смесителя, а вторым входом с выходом первого смесителя, а выходом с управляющим входом акустического генератора, при этом вычислительный блок соединен также с выходом акустического генератора. Технический результат заключается в повышении точности измерения. 1 ил.

Изобретение относится к измерительной технике. Особенностью заявленного электромагнитного измерителя компонент вектора скорости электропроводной жидкости является то, что магниты ориентированы так, что магнитное поле направлено вдоль оси вращения магнитного блока, на каждом из магнитов на его полюсах закреплены наконечники из магнитного материала, свободные концы которых расположены на минимально возможном расстоянии, исходя из прочностных характеристик конструкции, от рабочих поверхностей электродов, которые находятся посередине длины корпуса в зоне концентрации магнитного поля, при этом корпус имеет удлиненную форму с соотношением длины и диаметра, обеспечивающим прочность корпуса во время океанографических измерений. Техническим результатом является уменьшение погрешностей измерений компонент вектора скорости течения, вызываемых динамикой обтекания корпуса, и увеличение чувствительности. 2 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в том числе химически агрессивных сред. Радиоволновой расходомер содержит генератор СВЧ, первый циркулятор, соединенную с ним первую приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, первый смеситель, соединенный с выходом первого циркулятора, и вычислительный блок, соединенный с выходом первого смесителя. Дополнительно устройство содержит делитель мощности на четыре, входом соединенный с выходом генератора СВЧ, второй циркулятор, соединенную с ним вторую приемопередающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока и расположенную на расстоянии L от первой вдоль оси трубопровода, второй смеситель, своим входом соединенный с выходом второго циркулятора, а выходом - с вычислительным блоком, при этом выходы делителя мощности последовательно соединены с входами первого смесителя, первого циркулятора, второго циркулятора и второго смесителя. Технический результат – повышение точности. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных сред. Cпособ измерения массового расхода жидких сред заключается в том, что радиоволна с частотой направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности x(t) со средней частотой . Дополнительно часть мощности радиоволны с частотой направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока на расстоянии L по его оси от первой волны, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности y(t) со средней частотой , массовый расход определяется по времени максимума взаимно-корреляционной функции сигналов x(t) и y(t) и по частоте максимума их взаимного спектра плотности мощности. Технический результат – повышение точности. 3 ил.

Изобретение относится к измерителям скорости и направления течений в морях и пресноводных водоемах на различных глубинах в составе автономных буйковых станций и других неподвижных (малоподвижных) носителей. Электромагнитный измеритель течений содержит немагнитный корпус, в котором установлен магнитный блок из двух пар постоянных магнитов с чередующейся полярностью, на полюсах магнитов закреплены наконечники из магнитомягкого материала, несколько пар электродов, закрепленных на корпусе, при этом содержит расположенную на заданном расстоянии от магнитов магнитного блока катушку индуктивности, ось которой параллельна оси вращения магнитного блока и лежит на окружности, образованной вращением вокруг оси магнитного блока геометрических осей его магнитов, и которая подключена к блоку электроники, обеспечивающему возвратно-вращательное движение магнитного блока с заданной частотой на заданный угол, измеритель содержит установленную на заданном расстоянии от магнитов магнитного блока по крайней мере одну пару дополнительных постоянных магнитов, при этом каждая пара расположена перпендикулярно оси вращения магнитного блока и один из магнитов каждой пары установлен в корпусе неподвижно, а другой - на оси вращения магнитного блока. Технический результат - увеличение длительности автономной работы и увеличение ресурса работы измерителя с сохранением улучшенных метрологических и эксплуатационных характеристик. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области навигационного приборостроения и предназначено для использования в индукционных лагах надводных кораблей и глубоководных аппаратов. Датчик индукционного лага, содержащий электромагнитную систему возбуждения и измерительные электроды, при этом электромагнитная система возбуждения и измерительные электроды размещены в корпусе с нарезанными на внутренней поверхности кольцевыми канавками, герметизированы залитым в корпус изоляционным материалом, а между корпусом и электромагнитной системой возбуждения установлен армирующий элемент. Технический результат – повышение прочности датчика индукционного лага. 2 з.п. ф-лы, 1 ил.
Наверх