Устройство для сжижения природного газа

Изобретение относится к нефтегазовой промышленности и может быть использовано для сжижения природного газа и утилизации попутного газа путем его сжижения. Устройство содержит линию подачи газа, три вихревых трубы с линиями отвода частично нагретого и охлажденного газа, связанные между собой каскадно через линии охлажденного газа. Также содержит теплообменные аппараты, линию отвода сжиженного газа и емкость для сбора конденсата. Теплообменные аппараты размещены на линиях отвода частично нагретого газа первых двух вихревых труб. На линиях отвода охлажденного газа из вихревых труб установлены дроссели, а линии отвода частично нагретого газа всех вихревых труб подведены к вводу первой вихревой трубы. При этом первые две вихревые трубы оснащены сепарационными узлами, которые снабжены линиями отвода газа и линиями отвода механических примесей, подключенными к емкости сбора механических примесей. Техническим результатом является снижение габаритов и массы устройства, обеспечение оптимального охлаждения. 1 з.п. ф-лы, 2 табл., 2 ил.

 

Изобретение относится к нефтегазовой промышленности и может быть использовано для сжижения природного газа и утилизации попутного газа путем его сжижения.

Известно устройство для сжижения природного газа, содержащее фильтр, вихревую трубу, теплообменник, дроссель, сборник конденсата, линии подачи и отвода газа, регулирующие вентили [патент №2157487 РФ, F25J 1/00, опубл. 10.10.2000], которое предназначено лишь для частичного сжижения газа.

Известно также устройство для сжижения природного газа, содержащее узел разделения линии подачи газа, вихревые трубы, линию отвода охлажденного газа, дроссельные устройства, пять рекуперативных теплообменных аппаратов, линии потребителей редуцированного газа, линию отвода частично нагретого газа, линию отвода несжиженного газа, сборник конденсата и линию отвода сжиженного газа [патент №2285212 РФ, F25J 1/00, опубл. 10.10.2006]. Данное устройство характеризуется увеличенными габаритами и массой из-за применения большого количества теплообменных аппаратов и трубопроводов.

Общими недостатками вышеописанных устройств является отсутствие их защиты от твердых частиц диоксида углерода, который кристаллизуется непосредственно в устройстве и может уменьшать проходные сечения каналов. Кроме того, из-за того что необходимая температура достигается при адиабатическом дросселировании - медленном протекании газа под действием постоянного перепада давлений сквозь дроссель (эффекта Джоуля-Томсона), на последний во время работы действует основная нагрузка, что снижает его надежность и срок службы.

Прототипом предлагаемого изобретения является устройство для сжижения газа, содержащее линию подачи газа, три вихревых трубы с линиями отвода частично нагретого и охлажденного газа, связанные между собой каскадно через линии охлажденного газа, установленные перед вводом в каждую вихревую трубу поршневой компрессор и теплообменный аппарат, дроссельное устройство на линии отвода сжиженного газа из емкости для сбора конденсата [патент US 3775988, МПК F25J 1/00, F25J 3/02, опубл. 04.12.1973, Figura 1]. Линии отвода частично нагретого газа от второй и третьей вихревой трубы подведены к теплообменникам предшествующих вихревых труб, первой и второй, соответственно. Линии выходящего из теплообменников газа соединены с линией подачи газа в первую вихревую трубу.

Недостатками прототипа являются громоздкость из-за применения большого количества поршневых компрессоров, требующих частого технического обслуживания и существенно увеличивающих металлоемкость и габариты устройства, осуществление охлаждения с использованием нескольких стадий сжатия-расширения, а также отсутствие сепарации от нежелательных примесей.

Задачей изобретения является снижение общих габаритов и массы устройства, обеспечение оптимального охлаждения, повышение надежности за счет предотвращения уменьшения проходных сечений каналов и износа дроссельных устройств и улучшение товарных свойств сжиженного газа.

Указанный технический результат достигается тем, что в устройстве для сжижения природного и попутного газа, содержащем линию подачи газа, три вихревых трубы с линиями отвода частично нагретого и охлажденного газа, связанные между собой каскадно через линии охлажденного газа, теплообменные аппараты, линию отвода сжиженного газа и емкость для сбора конденсата, согласно изобретению, теплообменные аппараты размещены на линиях отвода частично нагретого газа первых двух вихревых труб, на линиях отвода охлажденного газа из вихревых труб установлены дроссели, а линии отвода частично нагретого газа всех вихревых труб подведены к вводу первой вихревой трубы, при этом первые две вихревые трубы оснащены сепарационными узлами, которые снабжены линиями отвода газа и линиями отвода механических примесей, подключенными к емкости сбора механических примесей.

Сепарационный узел выполнен в виде кругового ряда отверстий, расположенных по диаметру вихревой трубы и ориентированных в радиальном направлении под углом к ее оси, вокруг отверстий с внешней стороны вихревой трубы установлен кожух, в который снизу вмонтирована линия отвода механических примесей, а сверху - линия отвода газа.

Линия отвода частично нагретого газа из третьей вихревой трубы подведена к теплообменному аппарату, установленному на линии отвода частично нагретого газа из второй вихревой трубы, который сообщен с теплообменным аппаратом первой вихревой трубы.

Применение большего количества дросселей будет способствовать дополнительному охлаждению газа, что позволит уменьшить количество теплообменных аппаратов (два вместо трех), а это, в свою очередь, повысит экономичность, уменьшит габариты и массу устройства. Оснащение первых двух вихревых труб сепарационными узлами обеспечит эффективное отделение от газа механических примесей, углекислого газа, сероводорода и жидкости, это улучшит характеристики сжиженного газа, а также защитит оборудование от преждевременного износа и предотвратит уменьшение сечения проходных каналов из-за кристаллизации в них углекислого газа, повысив тем самым надежность устройства. Использование охлаждения в вихревых трубах в совокупности с дросселями, установленными на линиях отвода охлажденного газа, позволит достичь глубокого охлаждения. Отсутствие поршневых компрессоров приводит к уменьшению габаритов и металлоемкости устройства, а также повышает его экономичность.

На фиг. 1 представлена схема предлагаемого устройства для сжижения газа, на фиг. 2 - фрагмент вихревой трубы с сепарационным узлом, продольный разрез.

Предлагаемое устройство для сжижения газа содержит линию подачи газа 1, три вихревые трубы (ВТ) 4, 14, 22, которые имеют линии отвода охлажденного потока газа 10, 20, 24 и линии отвода частично нагретого потока газа 7, 17, 23 (фиг. 1). При этом на линиях отвода охлажденного потока газа 10, 20, 24 установлены дроссели 11, 21, 25. На линиях отвода частично нагретого потока газа 7, 17 от первой ВТ 4 и второй ВТ 14 размещены теплообменные аппараты 8 и 18 с линиями отвода 9 и 19 соответственно. Поток частично нагретого газа из третьей ВТ 22 через линию 23 подведен к теплообменному аппарату 18 и предназначен для охлаждения в нем проходящего противотоком газа из второй ВТ 14 с последующим отводом к вводу первой ВТ 4. С этой же целью через теплообменный аппарат 8 пропущен поток частично нагретого газа из второй ВТ 14, проходящий по линии 19, также подключенный к вводу первой ВТ 4. Линия отвода охлажденного потока газа 24 от третьей ВТ 22 подключена через дроссельное устройство 25 к емкости для сбора конденсата 26.

Вихревые трубы 4, 14 содержат сопловый ввод 27 (фиг. 2) и сепарационные узлы 2 и 12. Сепарационные узлы 2, 12 представляют собой круговой ряд отверстий 28, окруженных с внешней стороны вихревой трубы специальным кожухом 29, который имеет нижнее 30 и верхнее 31 отверстия. Отверстия 28 расположены по диаметру вихревой трубы и ориентированы в радиальном направлении под углом к ее оси. В нижние отверстия 30 вмонтированы линии отвода мехпримесей 5, 15, сообщающиеся с емкостями для их сбора 6, 16, а верхние отверстия 31 связаны с линиями отвода газа 3, 13, подключенными к линиям отвода частично нагретого потока газа 7, 17 (фиг. 1).

Устройство для сжижения газа работает следующим образом.

В предложенном устройстве осуществляется принцип каскадного охлаждения газа с применением трех ВТ. В первом каскаде происходит следующее. Попутный нефтяной газ по линии 1 поступает в ВТ 4, где происходит разделение потока газа на охлажденный и частично нагретый, при этом частично нагретый поток отводится по линии 7 и поступает в теплообменный аппарат 8, а охлажденный поток направляется по линии 10 через дроссельное устройство 11 во вторую ВТ 14.

При закручивании в ВТ 4 входного потока, поступающего через сопловой ввод 27, более тяжелые частицы, например механические примеси и жидкость, отбрасываются к периферии ВТ 4 за счет центробежных сил и отводятся через круговой ряд отверстий 28 в специальный кожух 29, где под действием силы тяжести механические примеси падают вниз и через нижнее отверстие 30 по линии 5 направляются в емкость 6, а часть газа, отсепарированного вместе с мехпримесями, уходит через верхнее отверстие 31 по линии 3, попадает в линию частично нагретого газа 7 и, смешиваясь с ним, поступает в теплообменный аппарат 8.

При прохождении охлажденного потока через дроссельное устройство 11 возникает эффект Джоуля-Томсона, при котором происходит изоэнтальпийное расширение газа, вследствие чего его температура дополнительно понижается.

Во втором каскаде в ВТ 14 вновь происходит охлаждение и разделение потока газа, после чего охлажденный поток газа поступает в третью ВТ 22, проходя по линии 20 через дроссельное устройство 21, а частично нагретый поток газа - в теплообменный аппарат 18 по линии 17. Во второй ВТ 14 температура потока понижается и происходит конденсация сероводорода и углекислого газа, которые отделяются через сепарационный узел 12, как более тяжелые компоненты вместе с оставшимися механическими примесями, и по линии 15 отводятся в емкость 16. Часть газа, отсепарированного вместе с сероводородом и углекислым газом, уходит по линии 13, попадает в линию частично нагретого газа 17 и, смешиваясь с ним, поступает в теплообменный аппарат 18.

В третьем каскаде после разделения газа в ВТ 22 охлажденный поток проходит по линии 24 через дроссельное устройство 25, где газ охлаждается до температуры кипения метана, после чего образовавшийся конденсат поступает в емкость 26. Частично нагретый газ из ВТ 22 поступает по линии 23 в теплообменный аппарат 18, где служит хладагентом для проходящего там частично нагретого газа из ВТ 14, так как имеет более низкую температуру. При выходе из теплообменного аппарата 18 газ из ВТ 22 отводится в линию 9, через которую поступает и в первую ВТ 4. Частично нагретый газ из второй ВТ 14 охлаждается в теплообменнике 18 и по линии 19 переходит в теплообменник 8 в качестве хладагента для частично нагретого газа из первой ВТ 4, а затем поступает в линию 9 и уходит в ВТ 4. Частично нагретый газ ВТ 4 охлаждается в теплообменнике 8 и по линии 9 отводится обратно на вход в ВТ 4.

Геометрические параметры вихревых труб в заявляемом устройстве выбираются в зависимости от характеристики поступающего потока газа и требуемой степени охлаждения.

Рассмотрим решение этого вопроса на примере конкретного расчета.

Исходными данными для расчета являются: требуемая температура Тх охлажденного потока и его давление Рх, температура Т1 и давление Р1 на входе в вихревую трубу, газовая постоянная R, показатель адиабаты k, коэффициент расхода сопла αс, потребный весовой расход холодного потока Gx.

1 каскад с ВТ 4. Исходные данные:

Gx=0.083 кг/с

Р1=100 атм

Px=20 атм

T1=293 К

Tx=243 К

αc=0.96

R=500 Дж/(кг·К)

k=1.314

Находим потребный эффект охлаждения

Степень расширения π газа составляет:

Находим температурную эффективность η

Для обеспечения максимальной экономичности зададимся весовой долей холодного потока µ=0.65 (это значение выбрано согласно монографии Меркулова А.П. Вихревой эффект и его применение в технике. - М.: Машиностроение, 1969. - С. 50), тогда общий расход газа G составит:

Проходное сечение Fc сопла определяется выражением:

Отсюда находим высоту h и ширину b сопла:

Диаметр вихревой трубы D

Диаметр диафрагмы DД, устанавливаемой на выходе вихревой трубы для прохождения частично нагретого потока и разворота охлажденного потока в обратном направлении:

Длина L вихревой трубы:

Рассчитаем температуру газа при прохождении через дроссельное устройство 11, то есть когда возникает эффект Джоуля-Томсона. Для этого примем:

T1=Tx=243 К - температура потока на входе в дроссельное устройство;

P1х=20 атм - давление на входе в дроссельное устройство;

Р2=18 атм - температура на выходе из дроссельного устройства.

Исходя из соотношения: получим температуру охлажденного газа на выходе из дроссельного устройства 11

Для других каскадов расчет введется аналогичным образом, поэтому приводим лишь исходные и полученные данные для второго каскада в таблице 1, для третьего - в таблице 2.

2 каскад с ВТ 14

Исходные данные при прохождении газа через второе дроссельное устройство 21:

Т1х=200 K

Р1х=0.51 МПа

Р2=0.3 МПа

Температура охлажденного газа на выходе из дроссельного устройства 21 составит Т2=176 K.

3 каскад с ВТ 22.

Исходные данные при прохождении газа через дроссельное устройство 25:

Т1=Tx=142 К

Р1=Px=0.06 МПа

Р2=0.02 МПа

Температура охлажденного газа на выходе из дроссельного устройства 25 составит Т2=109 К.

Проведенные расчеты показали, что в первой ВТ 4 перепад температуры составил 50 К, во второй ВТ 14 перепад - 37 К, а в третьей ВТ 22-34 К. Перепад температуры в дроссельном устройстве 11 составил 6 К, во втором дроссельном устройстве 21-24 К, а в третьем дроссельном устройстве 25-30 К. При полученной на выходе из дроссельного устройства 25 Т2=109 К (или -164°С), которая ниже температуры кипения метана (-161,5°С), происходит процесс сжижения метана. После чего образовавшийся конденсат отправляется в емкость 26.

Поскольку температура кипения диоксида углерода (СО2) равна -57°С, а в ВТ 14 температура понижается до -73°С, то можно предположить, что в ВТ 14 СО2 будет конденсироваться и отбрасываться к периферии как более тяжелая фракция и отводиться через сепарационный узел в емкость 6, вместе с оставшимися механическими примесями и сероводородом (температура кипения последнего -60°С).

Таким образом, предлагаемое техническое решение позволяет повысить экономичность, снизить габариты и массу устройства, обеспечивая при этом эффективный способ сжижения природного, в том числе попутного газа за счет полного использования потока газа непосредственно для сжижения и применения вихревых труб совместно с дроссельными устройствами, а также улучшает эффективность сепарации от нежелательных примесей.

1. Устройство для сжижения природного газа, содержащее линию подачи газа, три вихревых трубы с линиями отвода частично нагретого и охлажденного газа, связанные между собой каскадно через линии охлажденного газа, теплообменные аппараты, линию отвода сжиженного газа и емкость для сбора конденсата, отличающееся тем, что теплообменные аппараты размещены на линиях отвода частично нагретого газа первых двух вихревых труб, на линиях отвода охлажденного газа из вихревых труб установлены дроссели, а линии отвода частично нагретого газа всех вихревых труб подведены к вводу первой вихревой трубы, при этом первые две вихревые трубы оснащены сепарационными узлами, которые снабжены линиями отвода газа и линиями отвода механических примесей, подключенными к емкости сбора механических примесей.

2. Устройство по п. 1, отличающееся тем, что сепарационный узел выполнен в виде кольцевого ряда отверстий, расположенных по диаметру вихревой трубы и ориентированных в радиальном направлении под углом к ее оси, при этом вокруг отверстий с внешней стороны вихревой трубы установлен кожух, связанный снизу с линиями отвода механических примесей, а сверху - с линией отвода газа.



 

Похожие патенты:

Изобретение относится к криогенной технике и может быть использовано в газовой промышленности для сжижения природного газа. Способ сжижения природного газа, включающий предварительное охлаждение, очистку от масла и капельной влаги, адсорбционную осушку и очистку от углекислого газа компрессата, полученного сжатием смеси природного газа и технологического потока газа, охлаждение компрессата до полной конденсации, очистку от твердых примесей фильтрованием и разделение на технологический поток.

Изобретение относится к химической промышленности, в частности к способу получения сверхчистого сжатого гелия в баллонах. Газообразный гелий с концентрацией 99,99% подают на всасывание в компрессор [1], где сжимают до давления 15-25 кгс/см2.

Изобретение относится к криогенной технике. Способ получения сжиженного метана высокой чистоты, включающий предварительное охлаждение компрессата, его разделение на технологический поток, который охлаждают, редуцируют и нагревают продуктовым и технологическим потоками, и продуктовый поток, который охлаждают, редуцируют и сепарируют с получением сжиженного метана и газа сепарации.

Изобретение относится к технологии раздельного извлечения компонент газовых смесей, в частности очистки гексафторида урана от легколетучих примесей. Способ охлаждения газовой смеси включает предварительную очистку сжатого атмосферного воздуха, предварительное захолаживание сжатого атмосферного воздуха, охлаждение сжатого атмосферного воздуха в турбодетандере до заданной температуры, отвод работы, затраченной на расширение, регулирование холодопроизводительности.

Изобретение относится к криогенной технологии газоразделения попутных нефтяных газов. Способ комплексной осушки и очистки попутного нефтяного газа включает газодинамическую сепарацию, мембранную технологию удаления кислых соединений.

Группа изобретений относится к области сжижения природных газов высокого давления и их смесей. Способ частичного сжижения природного газа по варианту 1 включает предварительное охлаждение прямого потока газа высокого давления.

Изобретение относится к газовой промышленности, конкретно к технологиям ожижения природного газа. Способ производства сжиженного природного газа, согласно которому входящий поток газа очищают от примесей и компримируют до разделения его на технологический и продукционный потоки.

Способ сжижения газа, заключающийся в том, что предварительно очищенный и осушенный природный газ охлаждают и конденсируют в теплообменнике предварительного охлаждения, затем сепарируют, отделяя жидкую этановую фракцию, которую направляют на фракционирование, а газовый поток с первого сепаратора последовательно охлаждают в теплообменнике сжижения, используя смешанный хладагент, переохлаждают газообразным азотом в теплообменнике переохлаждения, давление переохлажденного СПГ снижают в жидкостном детандере, и переохлажденный СПГ направляют на сепарирование, после чего сжижаемый газ направляют в емкость хранения СПГ, отсепарированный газ направляют в систему топливного газа.

Способ предназначен для раздачи природного газа потребителям газа низкого давления с получением сжиженного газа. Способ заключается в отводе потока газа из магистрального трубопровода высокого давления, расширении его в многоступенчатой турбине с получением в ней механической энергии, теплообмене в теплообменнике и раздаче полученного газа низкого давления потребителю, при этом газ из магистрального трубопровода высокого давления направляют на вход тракта горячего теплоносителя теплообменного устройства и охлаждают, а на выходе из тракта его направляют в многоступенчатую турбину, где охлажденный поток газа расширяют до давления меньше заданного давления подачи потребителю в трубопроводе низкого давления, при котором подаваемый поток сжатого природного газа меняет свои параметры и свое агрегатное состояние, переходя из однофазного на входе в многоступенчатую турбину в двухфазный поток на выходе из нее, при этом из последнего отделяют в сепараторе жидкую фазу и направляют для раздачи в трубопровод сжиженного газа, а оставшуюся после отделения часть потока направляют на вход тракта холодного теплоносителя теплообменного устройства для подогрева при теплообмене с подаваемым потоком сжатого природного газа из магистрального трубопровода высокого давления и далее сжимают эту часть в дожимающем компрессоре до давления, равного давлению в трубопроводе низкого давления, одновременно нагревая ее до положительных температур, а затем направляют для раздачи в трубопровод низкого давления, причем на сжатие этой части природного газа в компрессоре используют механическую энергию расширения, полученную в многоступенчатой турбине, при этом отделение сжиженной части природного газа осуществляют после каждой ступени турбины.

Способ и система предназначены для оптимизации операций изоляции диоксида углерода и направлены на управление рабочими параметрами наземной установки для сжатия диоксида углерода (CO2) или трубопровода для поддержания потока CO2 в жидком или сверхкритическом состоянии при транспортировке к месту изоляции.

Изобретение относится к способу охлаждения одно- или многокомпонентного потока косвенным теплообменом со смесью охлаждающего средства в циркуляционном контуре смеси охлаждающего средства. Смесь охлаждающего средства сжимают в две ступени, разделяют на низкокипящую, сжатую до конечного давления циркуляционного контура смеси охлаждающего средства, фракцию смеси охлаждающего средства и одну высококипящую, сжатую до промежуточного давления фракцию смеси охлаждающего средства. Высококипящую фракцию смеси охлаждающего средства нагнетают до давления низкокипящей фракции смеси охлаждающего средства и перед косвенным теплообменом или непосредственно в его начале объединяют с низкокипящей фракцией смеси охлаждающего средства. Техническим результатом является создание способа охлаждения, который требует меньших затрат на оборудование и регулирование. 2 з.п. ф-лы, 1 ил.

Группа изобретений относится к водозаборному блоку трубопроводов, который может быть подвешен к морской структуре. Блок содержит пучок из первого трубчатого канала и второго трубчатого канала, которые по существу простираются бок о бок в направлении длины. Каждый содержит ближайший участок, содержащий средства подвески, последующий соединительный участок, последующий удаленный участок, содержащий водозаборную секцию. Указанный удаленный участок простирается между первым удаленным краем и соединительным участком соответствующего трубчатого канала. Указанный соединительный участок соединяет по текучей среде ближайший участок и удаленный участок. Причем первый и второй трубчатые каналы поперечно соединяются между собой с помощью одной распорной втулки в сочетании с соответствующими соединительными участками, при этом в полностью подвешенном состоянии часть удаленного участка первого трубчатого канала простирается дальше в направлении длины, чем второй трубчатый канал. Также описаны способ получения сжиженного углеводородного потока и способ получения потока парообразных углеводородов. Группа изобретений позволяет снизить риск полного прекращения транспортирования воды в ближайший участок из-за закупорки в удаленной части водозаборного блока трубопроводов. 4 н. и 8 з.п. ф-лы, 6 ил.

Изобретение относится к криогенике. Способ сжижения природного газа включает очистку нерасширившегося газа от примесей, разделение его на три потока, первый и второй из которых подают на сжижение по тракту системы рекуперативных теплообменных аппаратов. Отношение массовых расходов газа, который подается на сжижение, к общему расходу газа, поступающего в вихревые трубы, составляет 0,1-0,2. Далее потоки дросселируют и собирают образовавшийся конденсат в накопительной емкости. Третий поток пропускают через теплообменный аппарат. Далее поток разделяют на два равных потока, подают в вихревые трубы с дополнительным потоком, где разделяют на подогретый и охлажденный с отношением массовых расходов охлажденного газа на выходе из трубы и общего газа, поступающего в нее, равным 1,2. Охлажденный газ из вихревых труб пропускают по тракту системы рекуперативных теплообменных аппаратов, частично охлаждая нерасширившийся поток газа, подаваемый на сжижение. Далее отводят газ к потребителю редуцированного газа, подогретый газ из вихревой трубы с дополнительным потоком дросселируют, охлаждают в теплообменном аппарате и вместе с эжектируемыми через эжектор массами газа подают в качестве дополнительного потока в вихревую трубу с дополнительным потоком. Изобретение позволяет увеличить долю выхода конденсата. 2 з.п. ф-лы, 1 ил.
Настоящее изобретение относится к способу производства жидкого водорода и электроэнергии. Способ производства водорода и/или электроэнергии включает создание системы, подходящей для производства водорода и/или электроэнергии, содержащей, по меньшей мере, устройство реформинга, приспособленное для приема сырьевого природного газа и реформинга природного газа с получением водородсодержащего газа; устройство для производства электроэнергии, приспособленное для приема, по меньшей мере, части водорода, содержащегося в водородсодержащем газе, и осуществления реформинга водорода для производства электроэнергии; и устройство для сжижения водорода, приспособленное для приема части водорода, содержащегося в водородсодержащем газе, и для сжижения водорода с получением жидкого водорода, при этом во время работы в устройство для сжижения водорода подают по меньшей мере часть электроэнергии, произведенной в устройстве для выработки электроэнергии, и во время работы из системы отводят жидкий водород и/или электроэнергию; при этом в течение первого периода природный газ направляют в устройство реформинга газа, и система работает для отвода жидкого водорода; и в течение второго периода природный газ направляют в устройство реформинга газа, и система работает для отвода электроэнергии. 21 з.п. ф-лы, 1 ил.

Изобретение относится к способу удаления тяжелых углеводородов из исходного потока природного газа. Способ включает стадии: охлаждение исходного потока природного газа; введение охлажденного исходного потока природного газа в систему разделения газ-жидкость и разделение охлажденного исходного потока природного газа на паровой поток природного газа, обедненного тяжелыми углеводородами, и на поток жидкости, обогащенной тяжелыми углеводородами; нагревание парового потока природного газа, обедненного тяжелыми углеводородами; пропускание по меньшей мере части парового потока природного газа, обедненного тяжелыми углеводородами, через один или несколько слоев адсорбционной системы для адсорбирования из него тяжелых углеводородов с получением таким образом потока природного газа, обедненного тяжелыми углеводородами; и охлаждение по меньшей мере части потока природного газа, обедненного тяжелыми углеводородами, с получением охлажденного потока природного газа, обедненного тяжелыми углеводородами. При этом паровой поток природного газа, обедненный тяжелыми углеводородами, нагревают, и по меньшей мере часть потока природного газа, обедненного тяжелыми углеводородами, охлаждают в экономайзере-теплообменнике путем косвенного теплообмена между исходным паровым потоком природного газа, обедненного тяжелыми углеводородами, и по меньшей мере части потока природного газа, обедненного тяжелыми углеводородами. Также изобретение относится к устройству. Предлагаемое изобретение позволяет лучше извлекать тяжелые углеводороды из потоков природного газа. 2 н. и 9 з.п. ф-лы, 4 ил., 2 табл., 1 пр.

Изобретение относится к газовой промышленности, в частности к ожижению природного газа. Холодильная машина содержит компрессор, вход которого сообщен с паровой зоной циркуляционного ресивера, а выход сообщен с жидкостной зоной циркуляционного ресивера, которая через циркуляционный насос сообщена со входом испарителя. В качестве рабочего тела использована льдосодержащая суспензия СО2, содержание льда в которой не превышает 45%. Дно циркуляционного ресивера выполнено с наклоном, превышающим угол, обеспечивающий «сползание» частиц льда, причем циркуляционный насос сообщен с нижней точкой дна циркуляционного ресивера. На подающей линии установлен первый запорный вентиль, причем участок подающей линии между циркуляционным насосом и первым запорным вентилем сообщен с циркуляционным ресивером рециркуляционной линией, снабженной вторым запорным вентилем. Технический результат выражается в возможности охлаждения природного газа до -50°С перед его подачей в криогенный теплообменник. 1 ил.

Данное изобретение относится к способу и устройству для сжижения природного газа. В варианте осуществления настоящего изобретения способ сжижения природного газа включает: охлаждение части питающего потока природного газа с образованием охлажденного питающего потока природного газа; объединение охлажденного питающего потока природного газа со сжатым потоком орошения с формированием объединенного потока природного газа; разделение объединенного потока природного газа на первый поток легких фракций и первый поток тяжелых фракций; расширение первого потока легких фракций с формированием расширенного первого потока легких фракций; и сжатие потока орошения в сжатый поток орошения. Изобретение направлено на удаление тяжелых фракций и снижение энергозатрат. 3 з.п. ф-лы, 1 ил.

Изобретение относится к криогенной технике. Способ сжижения природного газа включает очистку природного газа от тяжелых углеводородов, сернистых соединений и паров ртути, смешение с технологическим газом и сжатие компрессором с двигателем внутреннего сгорания в качестве привода. Полученный компрессат разделяют на две части. Одну часть охлаждают сторонним хладоагентом и хладоагентом, полученным в чиллере за счет тепла отходящих газов привода компрессора, и смешивают с другой частью, предварительно охлажденной частично нагретым газом сепарации, охлаждают в рекуперационном теплообменнике и разделяют на технологический и продуктовый газы. Продуктовый газ редуцируют и сепарируют с получением сжиженного природного газа и газа сепарации. Газ сепарации нагревают, смешивают с газами регенерации и используют в качестве топливного газа для привода компрессора. Технологический газ редуцируют, нагревают в рекуперационном теплообменнике и смешивают с очищенным и осушенным природным газом. Для снижения содержания легких компонентов в сжиженном природном газе редуцированный продуктовый газ сепарируют в условиях противоточного нагрева по меньшей мере частью технологического газа. Техническим результатом является повышение выхода и качества сжиженного природного газа. 1 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в газовой промышленности. Способ переработки магистрального природного газа с низкой теплотворной способностью, включающий стадию цеолитной осушки и очистки исходного магистрального природного газа от примесей, стадию криогенного разделения природного газа с извлечением гелия, азота и широкой фракции легких углеводородов, последующие стадии очистки широкой фракции легких углеводородов и стадию извлечения товарных сжиженных углеводородных газов в виде пропана, бутана, фракции С5 и выше, при этом исходный магистральный природный газ делят на три части: первую часть отправляют на выработку энергоресурсов для собственных нужд, вторую часть отправляют на выработку товарных продуктов через последовательные стадии цеолитной осушки и очистки исходного магистрального природного газа и криогенного разделения природного газа с извлечением гелия, метана и широкой фракции легких углеводородов, последующие стадии очистки широкой фракции легких углеводородов и извлечения товарных сжиженных углеводородных газов в виде пропана, бутана, фракции С5 и выше, третью часть отправляют на компаундирование с метаном, выделенным из второй части исходного магистрального природного газа. Задача изобретения - разработка энергосберегающего способа переработки магистрального природного газа. 4 з.п. ф-лы, 2 ил.

Изобретение относится к отделению диоксида углерода от газового потока. Заявлены способ отделения диоксида углерода (CO2) от газового потока и устройство отделения диоксида углерода (CO2) от потока, содержащего CO2. Способ включает охлаждение газового потока на стадии охлаждения с получением охлажденного газового потока и охлаждение этого охлажденного газового потока в сопле Лаваля с получением одного из видов CO2 - твердого или жидкого, или обоих этих видов CO2. Способ дополнительно включает отделение по меньшей мере части одного из видов CO2 - твердого или жидкого, или обоих этих видов CO2, от охлажденного газового потока в сопле Лаваля, с получением обогащенного по CO2 потока и обедненного по CO2 газового потока. Способ дополнительно включает расширение обедненного по CO2 газового потока в детандере, расположенном ниже сопла Лаваля по ходу потока, с получением охлажденного обедненного по CO2 газового потока, и рециркуляцию по меньшей мере части охлажденного обедненного по CO2 газового потока на стадию охлаждения для охлаждения газового потока. Изобретение позволяет снизить эрозию поверхности сопла и уменьшить общую потерю давления. 3 н. и 17 з.п. ф-лы, 6 ил.
Наверх