Гомогенные катализаторы окисления диалкилдитиокарбаматов на основе тетра-4-(1-бензотриазолил)-тетра-5-(сульфонафтокси)фталоцианинов кобальта

Изобретение относится к гомогенным катализаторам окисления диалкилдитиокарбаматов на основе тетра-4-(1-бензотриазолил)-тетра-5-(сульфонафтокси)фталоцианинов кобальта. В качестве фталоцианиновых комплексов используют комплексы кобальта(II) с тетра-4-(1-бензотриазолил)-тетра-5-(4-сульфо-1-нафтокси)фталоцианином и тетра-4-(1-бензотриазолил)-тетра-5-(1,6-дисульфо-2-нафтокси)фталоцианином формулы

Комплексы получают путем сульфирования изомерных кобальтовых комплексов тетра-4-(1-бензотриазолил)-тетра-5-(1-нафтокси)фталоцианина и тетра-4-(1-бензотриазолил)-тетра-5-(2-нафтокси)фталоцианина. Изобретение позволяет получить катализаторы на основе тетра-4-(1-бензотриазолил)-тетра-5-(сульфонафтокси)фталоцианинов кобальта, обладающие высокой каталитической активностью при окислении диалкилдитиокарбаматов. 2 табл., 5 пр.

 

Изобретение относится к химической промышленности, а именно к получению новых катализаторов окисления серосодержащих соединений на основе замещенных фталоцианинов, конкретно комплексов кобальта (II) с тетра-4-(1-бензотриазолил)-тетра-5-(4-сульфо-1-нафтокси)фталоцианином и тетра-4-(1-бензотриазолил)-тетра-5-(1,6-дисульфо-2-нафтокси)фталоцианином, которые могут быть использованы для сероочистки нефти, нефтепродуктов.

Известны различные фталоцианиновые катализаторы гомогенного окисления диалкилдитиокарбаматов, в результате которого образуются тетраалкилтиурамдисульфиды.

Известно использование в качестве катализатора гомогенного окисления диалкилдитиокарбаматов кислородом воздуха в щелочных растворах тетра-4-сульфофталоцианин кобальта (II) [Г.П. Шапошников, В.П. Кулинич, В.Е. Майзлиш. Модифицированные фталоцианины и их аналоги. - М.: Красанд, 2012. 480 с.] формулы:

Недостатком этого соединения является относительно низкая каталитическая активность.

Известны также [А.с. 638594 СССР, МПК 5 C07C 155/10, A01N 9/12. Способ получения тетраалкилтиураидисульфидов / Т.А. Ананьева, В.Ф. Бородкин, В.Е. Майзлиш Т.П. Забункова (СССР). Заявитель Ивановский химико-технологический институт. - №2504671/23-04; заявл. 07.07.77; опубл. 25.12.78, Бюл. №47. - 2 с.] катализаторы окисления диметилдитиокарбаматов и диэтилдитиокарбаматов формулы:

Недостатком этого соединения также является относительно низкая каталитическая активность.

Наиболее близким к изобретению по совокупности существенных признаков является катализатор дисульфо-тетранитрофталоцианинат кобальта, полученный в [Ананьева Т.А., Титова Г.Ф., Бородкин В.Ф. Каталитические свойства замещенных сульфокислот фталоцианина кобальта в реакции окисления диметилдитиокарбамата натрия. Известия ВУЗов. Химия и химическая технология. 1979. Т. 22. Вып. 1. С. 37-40]. Он заключается в синтезе кобальтовых комплексов тетраокси- и тетранитродисульфофталоцианинов. Общим недостатком этих катализаторов является недостаточно высокая каталитическая активность.

Изобретательская задача состояла в получении новых комплексов кобальта с водорастворимыми сульфозамещенными фталоцианинами, которые обладали бы высокой каталитической активностью при окислении диалкилдитиокарбаматов. Техническим результатом изобретения является повышение активности катализаторов.

Указанный результат достигается комплексами кобальта (II) с тетра-4-(1-бензотриазолил)тетра-5-(сульфонафтокси)фталоцианинами формулы:

где

полученными путем сульфирования изомерных кобальтовых комплексов тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси)фталоцианина (1) и тетра-4-(1-бензотриазолил)-тетра-5-(2-нафтокси)фталоцианина (2).

Изобретение позволяет повысить каталитическую активность целевого продукта в 1,5-2,5 раз.

Пример 1. Синтез комплекса кобальта с тетра-4-(1-бензотриазолил)тетра-5-[1(2)-нафтокси]фталоцианином (1 или 2)

Смесь 387 мг (0.1 ммоль) 4-(1-бензотриазолил)-5-(1-нафтокси)фталонитрила или 4-(1-бензотриазолил)-5-(2-нафтокси)-фталонитрила и 136 мг (0.05 ммоль) безводного хлорида кобальта тщательно растирают и перемешивают в течение 1 часа при 230-235°C, после чего целевой фталоцианин экстрагируют из реакционной смеси хлороформом и подвергают колоночной хроматографии (сорбент - Al2O3, элюент - хлороформ).

Выход: 360 мг (85%).

Найдено, %: C 71.38, Н 3.20, N 17.44, брутто формула C96H52N20O4Co.

Вычислено, %: C 71.68; Н 3.26; N 17.42.

ЭСП в хлороформе, λmax, нм: 613; 680.

ЭСП в ДМФА, λmax, нм: 605; 668.

ИК-спектр, см-1: 1729, 1612, 1505, 1454, 1420, 1343, 1210 (Ar-O-Ar), 1196, 1162, 1099, 1041 (N=N), 1003, 786, 746 (C-N).

Полученный комплекс кобальта с тетра-4-(1-бензотриазолил)-тетра-5-(1-нафтокси)фталоцианином - зелено-голубое вещество, обладает растворимостью в органических растворителях, таких как хлороформ, бензол, ацетон, ДМФА.

Пример 2. Синтез комплекса кобальта с тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианином

Смесь 387 мг (0.1 ммоль) 4-(1-бензотриазолил)-5-(2-нафтокси)фталодинитрила и 136 мг (0.05 ммоль) безводного хлорида кобальта тщательно растирают и перемешивают в течение 1 часа при 230-235°C, после чего целевой фталоцианин экстрагируют из реакционной смеси хлороформом и подвергают колоночной хроматографии (сорбент - Al2O3, элюент - хлороформ).

Выход: 367 мг (86%).

Найдено, %: C 71.60, Н 3.04, N 17.11, брутто формула C96H52N20O4Co.

Вычислено, %: С 71.68; Н 3.26; N 17.42.

ЭСП в хлороформе, λmax, нм: 615; 681.

ЭСП в ДМФА, λmax, нм: 605; 670.

ИК-спектр, см-1: 1728, 1603, 1496, 1449, 1421, 1341, 1289 (Ar-O-Ar), 1254, 1192, 1140, 1099, 1041 (N=N), 998, 941, 783, 745 (C-N), 690.

Полученный комплекс кобальта с тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианином - темно-зеленое вещество, обладает растворимостью в органических растворителях, таких как хлороформ, бензол, ацетон, ДМФА.

Пример 3. Синтез кобальтового комплекса тетра-4-(1-бензотриазолил)-тетра-5-(4-сульфо-1-нафтокси)фталоцианина (СоРс1)

160 мг (0,1 ммоль) тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси)фталоцианинов кобальта растворяют в смеси 2 мл (18 ммоль) хлорсульфоновой кислоты и 2 мл (18 ммоль) тионилхлорида и перемешивают при комнатной температуре в течение 2 ч. Далее реакционную смесь выливают на лед, смешанный с NaCl. Полученный осадок собирают на фильтре Шотта и сушат в эксикаторе над концентрированной H2SO4 в течение 36 ч. Экстракцию конечного продукта проводят ацетоном, затем растворитель удаляют под вакуумом. Дополнительную очистку проводят с помощью хроматографии (сорбент - силикагель М 60, элюент - ДМФА).

Выход CoPc1 - 98%.

Найдено, %: С 52.00, N 12.43, Н 4.05, S 5.36; брутто формула C96H52CoN20O16S4.

Вычислено, %: С 52.01, N 12.64, Н 3.82, S 5.78.

ИК-спектр, см-1: 745 (C-N), 1045 (N=N), 1230 (Ar-O-Ar), 1060 (C-S в SO3H), 1150-1190 (SO в SO3H).

Пример 4. Синтез кобальтового комплекса тетра-4-(1-бензотриазолил)-тетра-5-(1,6-дисульфо-2-нафтокси)фталоцианина (СоРс2)

160 мг (0,1 ммоль) тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианинов кобальта растворяют в смеси 2 мл (18 ммоль) хлорсульфоновой кислоты и 2 мл (18 ммоль) тионилхлорида и перемешивают при комнатной температуре в течение 2 ч. Далее реакционную смесь выливают на лед, смешанный с NaCl. Полученный осадок собирают на фильтре Шотта и сушат в эксикаторе над концентрированной H2SO4 в течение 36 ч. Экстракцию конечного продукта проводят ацетоном, затем растворитель удаляют под вакуумом. Дополнительную очистку проводят с помощью хроматографии (сорбент - силикагель М 60, элюент - ДМФА).

Выход СоРс2 - 98%.

Найдено, %: С 42.29, N 9.73, Н 4.42, S 9.36; брутто формула C96H52CoN20O28S8.

Вычислено, %: С 42.01, N 9.91, Н 4.14, S 9.08.

ИК-спектр, см-1: 741 (C-N), 1049 (N=N), 1262 (Ar-O-Ar), 1091 (C-S в SO3H), 1158 см-1 (S=O в SO3H).

Пример 5. Использование CoPc1 и СоРс2 в качестве гомогенных катализаторов окисления соединений серы

Реакцию окисления диалкилдитиокарбаматов:

(концентрация водного раствора с=2,7·10-3-8,3·10-3 моль/л) изучали в закрытой от доступа света термостатируемой ячейке при 298,15±0,05 К. Опыты проводили при pH от 7,6 до 13. В работе использовалась установка, состоящая из термостата, термостатируемой ячейки с возможностью контроля температуры и отбора пробы, устройства подачи кислорода. Перед началом эксперимента отбирали контрольную пробу. Далее к раствору добавляли катализатор и через капилляр в ячейку начинали подавать воздух. Момент подачи воздуха принимали за начало реакции. На протяжении всего опыта через определенные промежутки времени отбирали пробы по 2 мл для определения текущей концентрации диметилдитиокарбамата (ДМК) или диэтилдитиокарбамата (ДЭК).

Для определения концентрации ДМК или ДЭК из исследуемого раствора отбирали пробу объемом 2 мл при помощи встроенного капилляра и добавляли 4 мл 0,2 н раствора сульфата меди. Образовавшийся осадок растворяли в 5 мл хлороформа. Отбирали 2 мл полученного раствора комплекса, разбавляли его 5 мл хлороформа и, определяя оптическую плотность раствора на длине волны 440 нм, рассчитывали концентрацию ДМК или ДЭК. При этом использовали предварительно полученные калибровочные зависимости оптической плотности растворов от концентрации ДМК (ДЭК), которые в пределах концентраций от 5·10-3 до 3·10-2 прямолинейны. Электронные спектры поглощения регистрировали на спектрофотометре Shimadzu UV 1800 в кварцевых кюветах толщиной 10 мм.

Эффективные константы скорости окисления диалкилдитиокарбаматов натрия ( k э ф 298 ) на образцах катализаторов, полученных по заявленному способу и по способу-прототипу, приведены в таблицах 1, 2.

Таким образом, таблицы 1 и 2 отражают повышение каталитической активности комплексов CoPc1 и СоРс2 в сравнении с прототипом в широком диапазоне значений pH.

Гомогенные катализаторы окисления диалкилдитиокарбаматов на основе тетра-4-(1-бензотриазолил)-тетра-5-(сульфонафтокси)фталоцианинов кобальта, отличающиеся тем, что в качестве фталоцианиновых комплексов используют комплексы кобальта(II) с тетра-4-(1-бензотриазолил)-тетра-5-(4-сульфо-1-нафтокси)фталоцианином и тетра-4-(1-бензотриазолил)-тетра-5-(1,6-дисульфо-2-нафтокси)фталоцианином формулы

полученные путем сульфирования изомерных кобальтовых комплексов тетра-4-(1-бензотриазолил)-тетра-5-(1-нафтокси)фталоцианина и тетра-4-(1-бензотриазолил)-тетра-5-(2-нафтокси)фталоцианина.



 

Похожие патенты:

Изобретение относится к катализатору для окислительной очистки нефти и нефтяных дистиллятов от меркаптанов. Данный катализатор содержит комплекс соли меди с азотсодержащим лигандом, иммобилизованный на носителе.

Изобретение относится к обработке жидких углеводородов для превращения кислых примесей в менее пахучие соединения. Изобретение касается способа обработки очищенного готового нефтяного продукта, содержащего меркаптаны, включающего (а) смешение очищенного готового нефтяного продукта, содержащего меркаптаны, с кислородсодержащим газом с образованием смеси и подачу этой смеси на вертикальную завесу, состоящую из вертикально висящих непористых волокон; (б) подачу водного жидкого раствора для обработки на указанную завесу, где жидкий раствор для обработки соединяется со смесью, поступающей со стадии (а), которая стекает вниз по вертикально висящим волокнам, при этом жидкий раствор для обработки получен смешением: (i) гидроксида щелочного металла; (ii) катализатора фталоцианина кобальта; (iii) или нафтеновой, или этилгексановой кислоты; (iv) одного компонента из крезола, циклогексанола, пропиленгликоля, изопропанола или крезоловой кислоты; и (v) воды.
Изобретение относится к способу получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата, сущность которого заключается в последовательном осаждении в водной среде продуктов сульфирования фталоцианина кобальта или его хлорзамещенных производных и аддуктов фталоцианина кобальта или его хлорзамещенных производных с серной кислотой - «сульфатов» с образованием смеси дисульфокислот фталоцианина кобальта или его хлозамещенных производных и тонкодисперсных частиц фталоцианина кобальта или его хлорзамещенных производных.

Изобретение относится к производству катализаторов для жидкофазного окисления серосодержащих соединений. Заявлен способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений путем активации нетканого лавсана микроволновым излучением с частотой 2450 МГц мощностью 500-2000 Вт в течение 3-15 минут, обработки активированного материала в растворе тетра-4-[(4'-карбокси)фенилсульфанил]фталоцианина кобальта при концентрации 0,2-0,6 г/л в течение 2-4 часов и последующей выдержки материала в растворе гидроксида натрия при pH 8,0-8,5 в течение 40-80 минут.
Изобретение относится к области катализа. Описан способ получения наноструктурного катализатора демеркаптанизации нефти и газоконденсата на основе производных фталоцианина кобальта и его хлорзамещенных продуктов, в котором полученные путем размола исходных фталоцианинов в шаровой мельнице при 100-120°C в присутствии спиртов общей формулы R-(OCH2- CH2)n-OH, где при n=1 R=С6H5, C4H9; при n=2 R=Н, C2H5, наночастицы фталоцианина кобальта и его хлорзамещенных производных обрабатывают концентрированными водными растворами алканоламмониевых солей дисульфокислот фталоцианина кобальта и его хлорзамещенных производных с последующей стабилизацией катализатора линейными полиэфирами (полиэтиленгликолями).

Изобретение относится к удалению серы из сырой нефти и продуктов перегонки нефти. .
Изобретение относится к каталитической композиции для процессов жидкофазной окислительной демеркаптанизации нефти и нефтепродуктов. .

Изобретение относится к нефтяной, газовой и нефтегазоперерабатывающей промышленности. .
Изобретение относится к способам очистки углеводородных композиций (нефти, газоконденсата и нефтяных фракций) от меркаптанов и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Изобретение относится к установкам для промысловой очистки сернистых нефтей от сероводорода и может быть использовано в нефтегазодобывающей промышленности. .

Изобретение относится к тетра-4-(1-бензотриазолил)тетра-5-[1(2)нафтокси]фталоцианинам кобальта общей формулы где или Соединения являются исходными для синтеза водорастворимых комплексов кобальта с тетра-4-(1-бензотриазолил)тетра-5-(сульфонафтокси)фталоцианинами, обладающих каталитической активностью при окислении серосодержащих органических соединений и красящей способностью по отношению к шерсти.

Изобретение относится к способу получения аминокислотных хелатных соединений. Способ характеризуется тем, что оксиды металлов, и/или карбонаты металлов, и/или сульфаты металлов, и/или хлориды металлов, и/или гидроксиды металлов в твердой форме механически активируют и затем активированные оксиды металлов и/или карбонаты металлов, и/или гидроксиды металлов, и/или сульфаты металлов, и/или хлориды металлов совместно с аминокислотами переводят в твердую форму и превращают в аминокислотные хелатные соединения в твердофазной реакции.

Изобретение относится к смешанным кобальт(II)овым солям кетокарбоновых и меркаптокарбоновых кислот общей формулы (I): где R=Alk, R′=Н, Alk, NH2, NHCOCH3, m=0-3, R″=H, Alk, COOH, n=0-3, где Alk=алкил C1-C3, или к таким соединениям, как кобальт(II)овая соль меркаптоуксусной и пировиноградной кислот, кобальт(II)овая соль меркаптоуксусной и α-кетоглутаровой кислот, кобальт(II)овая соль N-ацетил-L-цистеина и пировиноградной кислоты, кобальт(II)овая соль α-кетоглутаровой кислоты и L-цистеина, кобальт(II)овая соль пировиноградной кислоты и 2-меркаптопропионовой кислоты или их гидратам, или сольватам.

Изобретение относится к новым редокс парам для применения в сенсибилизированных красителем солнечных элементах СКСЭ. Редокс-пары образованы по общей формуле (производное бипиридина)nMe(Ion)m, где производное бипиридина есть: где R1, R2, R3 - любой заместитель из ряда метил, этил, пропил, бутил, пентил, гексил, Me - металл из ряда Cr, Mo, Nd, Ni, Pd, Pt, Ir, Co, Rh, Cu, W, Mn, Та, Fe, Ru, Ion - противоион - любой анион из ряда ClO4 -, Cl-, I-, BF4 -, PF6 -, CF3SO3 -, n, m - соответствуют валентности иона металла.
Изобретение относится к способу получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата, сущность которого заключается в последовательном осаждении в водной среде продуктов сульфирования фталоцианина кобальта или его хлорзамещенных производных и аддуктов фталоцианина кобальта или его хлорзамещенных производных с серной кислотой - «сульфатов» с образованием смеси дисульфокислот фталоцианина кобальта или его хлозамещенных производных и тонкодисперсных частиц фталоцианина кобальта или его хлорзамещенных производных.

Изобретение относится к комплексному соединению самонамагничивающегося металла с саленом. Комплексное соединение представлено формулой (I) где М представляет собой Fe, Cr, Mn, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir или Pt и a-f и Y представляют собой, соответственно, водород, или -NHR3-, -NHCOR3, при условии, что a-f и Y одновременно не являются водородом, где R3 представляет собой лекарственную молекулу, причем R3 обладает переносом заряда, эквивалентного менее чем 0,5 электрона(е); или формулой (II) где М представляет собой Fe, Y, a, c, d, f, g, i, j, l представляют собой, соответственно, водород; b и k представляют собой -NH2, h и e представляют собой -NHR3-, где -R3 представляет собой таксол (паклитаксел), или М представляет собой Fe, Y, a, c, d, f, g, i, j, l представляют собой, соответственно, водород; b, e, h и k представляют собой -NHR3-, где -R3 представляет собой гемфиброзил.

Изобретение относится к способу получения фармакопейного тетра(1-винилимидазол)кобальтдихлорида (Кобазола). .

Изобретение относится к комплексу кобальта с модифицированным фталоцианиновым лигандом, ковалентно связанным с силикагелем, и имеющему следующую общую формулу: где R = Cl, NHAlk, NAlk2 , n = 5-7, M = Со.

Изобретение относится к области медицины и химико-фармацевтической промышленности, в частности к химической технологии, и касается способа получения натриевой соли окта-4,5-карбоксифталоцианина кобальта (субстанции препарата терафтал).

Настоящее изобретение относится к способу получения соединения формулы (I) или его соли посредством гидрирования соединения формулы (II) или его соли в присутствии катализатора, включающего иридий и соединение формулы (X), где R1 представляет собой алкил, арил или арилалкил и R2 представляет собой арил.
Наверх