Способ прокатки труб с термомеханической обработкой

Изобретение относится к технологии упрочнения труб нефтяного сортамента из микролегированных карбидо- и нитридообразующими элементами сталей непосредственно в процессе горячей деформации. Способ прокатки труб с термомеханической обработкой включает нагрев трубной заготовки до 1150-1300°C, прошивку и последующее деформирование с суммарной радиальной степенью деформации не менее 70%, при этом радиальная степень деформации на каждом этапе деформирования после прошивки не должна превышать 35%. Перед последним этапом деформирования черновая труба с температурой 700-880°C подвергается ускоренному индукционному нагреву до температуры 850-1000°C, после чего не позднее чем через 5 с осуществляются окончательная деформация в калибровочном или редукционном стане и охлаждение на воздухе. Технический результат заключается в улучшении потребительских свойств трубы за счет исключения разнозернистости структуры, увеличения вязкости и пластичности стали, повышения прочностных свойств стали. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к трубопрокатному производству и направлено на совершенствование технологии упрочнения труб нефтяного сортамента из микролегированных сталей с карбидо- и нитридообразующими элементами непосредственно в процессе горячей деформации.

Известен способ термомеханической обработки труб нефтяного сортамента из углеродистых и микролегированных Nb, V, Mo, Cr сталей, включающий предварительную деформацию, выдержку на воздухе, нагрев, окончательную деформацию и регулируемое охлаждение, при этом нагрев совмещают с окончательной деформацией за счет тепла, выделяющегося при окончательной деформации (патент РФ №2387718, М. кл. C21D 8/00, опубл. 27.04.2010). Недостатком способа является необходимость строгой выдержки параметров степени и скорости деформации, а также температурного режима. На практике это является труднодостижимым, так как при изменении темпов проката во время настройки, запусков оборудования, различных задержек в процессе деформации значительно изменяются и скорость деформации, и температура.

Известен способ прокатки труб с термомеханической обработкой, заключающийся в нагреве, прошивке заготовки, охлаждении водой с наружной поверхности давлением не менее 15 ати, деформации в непрерывном стане со степенью деформации не менее 50% и охлаждением во время деформации до температуры 800-900°C с наружной поверхности валками и потоками охлаждающей воды и с внутренней поверхности предварительно охлажденной до 150-250°C оправкой, индукционном нагреве и окончательной деформации в редукционном стане (патент РФ №2291903, М. кл. C21D 8/10, опубл. 20.01.2007). Недостатком способа является его ограниченная применимость только для трубопрокатных агрегатов с непрерывным станом, а также применение ускоренного регулируемого водного охлаждения, которое приводит к дополнительному искривлению изделий. В способе не учитывается температура нагрева под окончательную деформацию, которая является основополагающей для формирования структуры металла труб, изготавливаемых в состоянии после горячей деформации (без проведения последующей термической обработки). Способ не ограничивает максимальную степень деформации в непрерывном стане, при больших степенях которой в микрообъемах, максимально насыщенных дислокациями, происходит резкий рост аномально крупных зерен. В итоге в мелкозернистой структуре присутствуют отдельные крупные зерна, что в значительной степени ухудшает потребительские свойства изготавливаемых труб.

Технической задачей, на решение которой направлено предлагаемое изобретение, является исключение разнозернистости структуры металла, увеличение вязкости и пластичности стали, повышение прочностных свойств стали, снижение брака по геометрическим размерам труб, что обеспечивает повышение эффективности термомеханической обработки, расширение области ее применения, а также улучшение потребительских свойств труб.

Указанный результат достигается тем, что трубную заготовку нагревают до температуры 1150-1300°C, затем осуществляют ее прошивку и последующее деформирование с суммарной радиальной степенью деформации не менее 70%, при этом радиальная степень деформации на каждом этапе деформирования (в зависимости от применяемого оборудования - радиальная деформация на каждом стане) после прошивки не должна превышать 35%. Перед последним этапом деформирования черновая труба с температурой 700-880°C подвергается ускоренному индукционному нагреву до температуры 850-1000°C, после чего не позднее чем через 5 с осуществляются окончательная деформация в калибровочном или редукционном стане и охлаждение на воздухе.

Нижняя граница температурного диапазона нагрева металла под прошивку обеспечивает наилучшую пластичность металла, а верхняя обеспечивает отсутствие перегрева металла. Температуры подобраны экспериментально для среднеуглеродистых микролегированных Nb, V, Mo, Cr сталей.

Суммарная радиальная степень деформации не менее 70% обеспечивает получение мелкозернистой структуры, также она обеспечивает выделение карбидов, нитридов и карбонитридов Nb, V, Mo, Cr в мелкодисперсной форме.

Радиальная деформация (или деформация по толщине) стенки рассчитывается по формуле:

εs=(S0-S1)/S0*100,

где S1 - толщина стенки после деформации, мм;

S0 - толщина стенки до деформации, мм.

Радиальная степень деформации на каждом этапе деформирования после прошивки не более 35% позволяет избежать значительного скопления дислокации в отдельных микрообъемах и, следовательно, роста аномально крупных зерен. Получаемая структура мелкодисперсная по всему сечению изготавливаемых труб.

Охлаждение трубы в процессе деформации до температуры 700-880°C обеспечивает выделение максимального количества карбидов, нитридов и карбонитридов Nb, V, Mo, Cr. Снижение указанной температуры (менее 700°C) нецелесообразно ввиду затруднения процесса деформации и образования дефектов при прокате труб. Повышение этой температуры (свыше 880°C) приводит к неполному выделению (уменьшению количества выделений) карбидов, нитридов и карбонитридов, что снижает эффект упрочнения.

Проведение ускоренного индукционного нагрева позволяет избежать значительных структурных изменений при нагреве, а окончательная деформация непосредственно после ускоренного нагрева позволит обеспечить еще большее измельчение структурных составляющих с сохранением дисперсности карбидных, нитридных и карбонитридных выделений.

Время не более 5 с, через которое производится окончательная деформация после ускоренного охлаждения, предотвращает рост зерна и растворение мелкодисперсных частиц.

Отсутствие применения (в сравнении с прототипом) ускоренного регулируемого водного охлаждения исключает дополнительное искривление труб.

Предлагаемое и известное решения опробованы в промышленных условиях. Трубные заготовки диаметром 156 мм выплавлены в 150-тонной дуговой сталеплавильной печи из стали 38Г2СФ с содержанием углерода 0,38%, марганца 1,30%, ванадия 0,09%. Из трубной заготовки в условиях ОАО «Синарский трубный завод» изготовлены горячедеформированные трубы размерами 73×5,5 мм, 89×6,5 мм (с окончательной деформацией в редукционном стане); 146×7,0 мм (с окончательной деформацией в калибровочном стане).

Результаты исследования свойств труб приведены в таблице 1.

Предлагаемый способ обработки позволяет получать трубы из микролегированных Nb, V, Mo, Cr сталей с благоприятным комплексом вязкопластических свойств, а также способствует получению мелкозернистой равномерной структуры для труб всего сортамента и снижает брак по геометрическим размерам.

1. Способ прокатки труб с термомеханической обработкой, включающий нагрев трубной заготовки, предварительную деформацию, подогрев, окончательную деформацию, охлаждение, отличающийся тем, что нагрев трубной заготовки производят до температуры 1150-1300°C, предварительную деформацию осуществляют с суммарной степенью радиальной деформации не менее 70%, степень радиальной деформации на каждом этапе деформирования после прошивки составляет не более 35%, подогрев под окончательную деформацию проводят до температуры 850-1000°C после ускоренного индукционного нагрева, при этом окончательную деформацию проводят в калибровочном или редукционном стане не более чем через 5 секунд после ускоренного индукционного нагрева, а охлаждение осуществляют на воздухе.

2. Способ по п. 1, отличающийся тем, что ускоренный индукционный нагрев осуществляют при температуре 700-880°C.



 

Похожие патенты:

Изобретение относится к области металлургии. Для обеспечения высокой прочности, повышенной деформируемости и низкотемпературной ударной вязкости стальную трубу получают свариванием базового стального листа, сформованного в виде трубы, при этом базовый стальной лист содержит, мас.%: C от 0,010 до 0,080, Si от 0,01 до 0,50, Mn от 1,2 до 2,8, S от 0,0001 до 0,0050, Ti от 0,003 до 0,030, B от 0,0003 до 0,005, N от 0,0010 до 0,008, O от 0,0001 до 0,0080, P 0,050 или менее, Al 0,020 или менее, Mo 0,03 или менее, необязательно один или несколько элементов из Cr, Cu и Ni, железо и сопутствующие примеси - остальное, при этом Ceq, полученный посредством определенного выражения, составляет от 0,30 до 0,53, а Pcm, полученный посредством определенного выражения, составляет от 0,10 до 0,20, структура металла базового стального листа содержит от 27 до 90%, в расчете на долю площади, полигонального феррита и твердую фазу, состоящую из бейнита и/или мартенсита, в качестве ее остатка.

Изобретение относится к области металлургии, в частности к технологии упрочнения труб нефтяного сортамента из микролегированных сталей непосредственно в процессе горячей деформации.

Изобретение относится к области металлургии, в частности производству труб нефтепромыслового сортамента. Для обеспечения низкой анизотропии предела текучести трубы при приложении к ней различных напряжений, зависящих от среды использования, получают трубу из аустенитного сплава, имеющую предел текучести при растяжении YSLT по меньшей мере 689,1 МПа.

Изобретение относится к области металлургии и может быть использовано при изготовлении труб для энергетического машиностроения и оборудования АЭС. Способ производства металлопродукции из легированных марок стали, например нержавеющих и сплавов, включает выплавку стали, горячую деформацию, термическую обработку в интервале температур от 450 до 950°C с последующим охлаждением в воде или на воздухе, холодную деформацию и термическую обработку в интервале температур от 750 до 950°C с последующим охлаждением в воде или на воздухе.
Изобретение относится к области черной металлургии, а именно к производству рессорно-компрессорных штанг нефтяных насосов, выполненных из среднеуглеродистой легированной конструкционной стали.

Изобретение относится к области металлургии, в частности к нержавеющей стали для нефтяной скважины и трубе из нержавеющей стали для нефтяной скважины. Нержавеющая сталь для нефтяной скважины содержит, % по массе: С не более 0,05, Si не более 0,5, Mn от 0,01 до 0,5, Р не более 0,04, S не более 0,01, Cr свыше 16,0 и не более 18,0, Ni свыше 4,0 и не более 5,6, Мо от 1,6 до 4,0, Cu от 1,5 до 3,0, Al от 0,001 до 0,10, и N не более 0,050, причем остальное составляют Fe и примеси.

Изобретение относится к области металлургии. Для обеспечения высокой стойкости труб для нефтяных скважин к сульфидному растрескиванию под напряжением (СРН-стойкость) бесшовная стальная труба содержит, мас.%: от 0,15 до 0,50 С, от 0,1 до 1,0 Si, от 0,3 до 1,0 Mn, 0,015 или менее P, 0,005 или менее S, от 0,01 до 0,1 Al, 0,01 или менее N, от 0,1 до 1,7% Cr, от 0,4 до 1,1% Мо, от 0,01 до 0,12 V, от 0,01 до 0,08 Nb, от 0,0005 до 0,003 В или дополнительно содержит от 0,03 до 1,0 мас.% Cu и имеет микроструктуру, которая содержит 0,40% или более растворенного Mo и фазу отпущенного мартенсита, которая является главной фазой и которая имеет зерна первичного аустенита с размером зерна 8,5 или более и 0,06 мас.% или более диспергированного осадка M2C-типа, имеющего по существу зернистую форму.

Изобретение относится к обработке металлов давлением, в частности к способам формовки тройников, и может быть использовано в различных отраслях машиностроения для изготовления штампованных и штампосварных тройников трубопроводов.
Изобретение относится к металлургии, а именно к производству трубных заготовок диаметром от 90 до 110 мм, 140 мм и 150 мм. .
Изобретение относится к области металлургии, а именно к производству трубных заготовок. .

Изобретение относится к способу изготовления биметаллических насосно-компрессорных труб и может использоваться при получении трубной продукции или ремонте насосно-компрессорных труб (НКТ).

Изобретение относится к области производства сварных труб на непрерывных трубосварочных агрегатах. Способ включает использование штрипсов с шириной, имеющей запас на утяжку по ширине при деформации, сварку встык концов штрипсов в непрерывную полосу, ее деформацию путем знакопеременного пластического изгиба с натяжением неприводными роликами многороликового гибочно-натяжного устройства, протягивание через это устройство полосы тянущим устройством, формовку полосы в трубную заготовку, сварку ее кромок и калибровку или профилирование сваренной трубы.
Изобретение относится к области обработки металлов давлением, в частности к технологии и оборудованию для производства прямошовных магистральных труб в трубоформовочных цехах металлургических предприятий.

Изобретение предназначено для получения круглых в значительной степени труб (104) со стыковым швом с узким стыком, или зазором, (111) из металлических листов. Металлический лист подают на трубоформовочный пресс (1), в котором он, лежа на нижнем штампе (6), с помощью поднимаемого и опускаемого верхнего штампа (9) под действием усилия гибки поэтапно формуется в трубу (4; 104) со стыковым швом.

Изобретение относится к способам герметизации труб для защиты их внутренней поверхности от воздействия атмосферы печи при нагреве, штамповке и термообработке в процессе изготовления крутоизогнутых отводов труб из высоколегированной стали.

Изобретение относится к области обработки металлов давлением, в частности для профилирования материала. .

Изобретение относится к обработке металлов давлением и может быть использовано, в частности, на непрерывных трубосварочных агрегатах. .

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении, в частности котельных труб, методом прессования с последующим редуцированием.

Изобретение относится к области обработки металла давлением, а точнее, к трубоэлектросварочному производству и может быть использовано как при проектировании новых, так и при модернизации работающих конструкций четырехвалковых клетей формовочных и профильно-калибровочных станов.

Изобретение относится к трубосварочному производству, а точнее к формовочным клетям трубопрофильного стана. .

Изобретение относится к области обработки металлов давлением, в частности к гибочным прессам, предназначенным для получения стальных труб гибкой толстолистовой стали. При замене верхнего штампа на переднем конце пуансона гибочного пресса осуществляют задвигание верхнего штампа, его размещение под пуансоном и выдвигание из-под пуансона с помощью каретки, на которой размещают верхний штамп. Каретка перемещается между двумя матричными элементами в направлении вдоль продольной оси пуансона. При этом задвигание каретки в положение под пуансоном и ее выдвигание из-под пуансона производят посредством устройства выдвижения стальной трубы, установленного на гибочном прессе. Отсоединение верхнего штампа от переднего конца пуансона и присоединение производят в состоянии, при котором установочный блок верхнего штампа поднят и приведен в контакт с передним концом пуансона. В результате обеспечивается возможность осуществления быстрой и безопасной смены штампа, что позволяет повысить производительность изготовления стальных труб. 2 н. и 5 з.п. ф-лы, 7 ил.
Наверх