Электроробот - водовоз для заливки воды в баки на фермах

Изобретение относится к сельскому хозяйству и может быть использовано для транспортировки и заливки воды в баки на фермы. Технический результат - повышение скорости доставки воды на фермы. Электроробот-водовоз содержит цистерну, двигатель, люк с автоматическим люкозатворным механизмом, насос, датчик уровня воды в баке, электрифицированную платформу, кабину. Также он содержит пантограф для питания электроробота-водовоза по контактной сети постоянного тока, манипулятор со шлангом для слива воды в бак, две веб-камеры внешнего вида с адаптером, две веб-камеры для контроля работы манипулятора, wi-fi передатчик для связи с центром управления и систему управления. Система управления содержит микроконтроллер, блок синхронизации для контроля места остановки электроробота-водовоза, регулятор скорости и блок диагностики электрических и механических узлов. 2 ил.

 

Изобретение относится к сельскому хозяйству, в частности к фермам, может быть использовано для транспортировки и заливки воды на фермы.

Известна четырехосная железнодорожная цистерна для перевозки воды, модель 15-1639-01 (http://www.fraht-vagon.ru) производства ОАО «МЗТМ» (http://www.metallurgmash.ru/). Год постановки на серийное производство 1996. Полный объем котла составляет 30,52 м3. Используется верхний способ налива, нижний способ слива самотеком, стояночный тормоз, теплоизоляция цистерны, конструкционная скорость вагона 120 км/ч.

Недостатком указанного вагона-цистерны является невозможность автономного передвижения по заданным маршрутам с выполнением автоматической заливки.

Наиболее близким по технической сущности к предлагаемому изобретению является автоцистерна для питьевой воды НГФА3-66064-62, предназначенная для транспортировки и кратковременного хранения питьевой воды (http://www.nefaz.ru/production_detail-55.html)

Недостатками прототипа является меньший объем транспортируемой воды, отсутствие возможности перемещения по железной дороге, автоматической работы, удаленного управления.

Задачей изобретения является создание электроробота-водовоза и автоматизированной системы управления данным роботом.

Предлагаемый электроробот-водовоз для заливки воды в баки на фермах содержит цистерну, двигатель, люк с автоматическим люкозатворным механизмом, насос, датчик уровня воды в баке, электрифицированную платформу, кабину, пантограф для питания электроробота-водовоза по контактной сети постоянного тока, манипулятор со шлангом для слива воды в бак, две веб-камеры внешнего вида с адаптером, две веб-камеры для контроля работы манипулятора, wi-fi передатчик для связи с центром управления, систему управления с микроконтроллером, блоком синхронизации для контроля места остановки электроробота-водовоза, регулятором скорости и блоком диагностики электрических и механических узлов, при этом первый вход микроконтроллера соединен через wi-fi передатчиком, две веб-камеры внешнего вида через адаптер соединены со вторым входом микроконтроллера, две веб-камеры слежения за работой манипулятора соединены с третьим входом микроконтроллера, блок синхронизации соединен с четвертым входом микроконтроллера, двигатель через регулятор скорости связан с пятым входом микроконтроллера, манипулятор соединен с шестым входом микроконтроллера, насос соединен с седьмым входом микроконтроллера робота, датчик уровня воды в баке соединен с восьмым входом микроконтроллера, блок диагностики соединен с девятым входом микроконтроллера.

Сущность предлагаемого изобретения поясняется чертежами.

На фиг. 1 представлена общая схема электроробота водовоза.

На фиг. 2 представлена система управления электророботом-водовозом.

Электроробот-водовоз содержит панель управления 1, кабину 2, пантограф 3, люк 4, люкозатворный механизм 5, манипулятор 6, цистерну 7, ж/д платформу 8, веб-камеры внешнего вида 9, насос 10, электродвигатель водовоза 11, датчик уровня воды 12, веб-камеры контроля работы манипулятора 13, микроконтроллер робота 14, wi-fi передатчик 15, адаптер 16, регулятор скорости 17, блок диагностики 18, блок синхронизации 19, ЦУП 20.

Первый вход микроконтроллера робота 14 соединен через wi-fi передатчик 15 с ЦУПом 20, две веб-камеры внешнего вида 9 через адаптер 16 соединены со вторым входом микроконтроллера 14, две веб-камеры слежения за работой манипулятора 13 соединены с третьим входом микроконтроллера 14, блок синхронизации 19 соединен с четвертым входом микроконтроллера 14, двигатель 11 через регулятор скорости 17 связан с пятым входом микроконтроллера 14, манипулятор 6 соединен с шестым входом микроконтроллера 14, насос 10 соединен с седьмым входом микроконтроллера робота, датчик уровня воды 12 соединен с восьмым входом микроконтроллера 14, блок диагностики 18 соединен с девятым входом микроконтроллера 14.

Работает электроробот-водовоз следующим образом.

Питание электроробота-водовоза происходит по контрактной сети постоянного тока при помощи пантографа 3. На микроконтроллер робота 14 через wi-fi передатчик 15 приходит команда из ЦУПа 20, подается сигнал на блок диагностики 18 для проверки всех механических и электрических узлов; поступает сигнал о местонахождении фермы; из микроконтроллера робота 14 подается сигнал на регулятор скорости 17, затем на электродвигатель 11, начинается движение до фермы; скорость движения робота контролируется и изменяется с помощью регулятора скорости 17; сигнал, поступающий с передней веб-камеры 9, преобразуется в адаптере 16, затем поступает на микроконтроллер 14; при приближении к ферме передняя веб-камера 9 считывает метки, и на регулятор скорости 17 подается сигнал о замедлении скорости и остановке возле отмеченного места, которое определяется при помощи передней веб-камеры 9 и контролируется блоком синхронизации 19, происходит стыковка с фермой; на манипулятор 6 из микроконтроллера 14 приходит сигнал о начале работы; после того, как манипулятор 6 принял рабочее положение, с датчика уровня воды 12 на микроконтроллер 14 приходит сигнал о наличии в баке воды; при отсутствии в баке воды из микроконтроллера 14 подается сигнал на насос 10; с датчика уровня воды 12 приходит сигнал о заполнении бака, насос 10 прекращает работу; из микроконтроллера на манипулятор 6 приходит сигнал о завершении работы и принятии первичного положения; робот начинает движение к следующей ферме. При отключении автоматического режима управление переходит оператору в ЦУП. Информацию о передвижении робота оператор получает с помощью двух веб-камер внешнего вида 9; информацию о работе манипулятора получает с помощью двух веб-камер контроля работы манипулятора 13.

Электроробот-водовоз для заливки воды в баки на фермах, содержащий цистерну, двигатель, люк с автоматическим люкозатворным механизмом, насос, датчик уровня воды в баке, электрифицированную платформу, кабину, пантограф для питания электроробота-водовоза по контактной сети постоянного тока, манипулятор со шлангом для слива воды в бак, две веб-камеры внешнего вида с адаптером, две веб-камеры для контроля работы манипулятора, wi-fi передатчик для связи с центром управления, систему управления с микроконтроллером, блоком синхронизации для контроля места остановки электроробота-водовоза, регулятором скорости и блоком диагностики электрических и механических узлов, при этом первый вход микроконтроллера соединен с wi-fi передатчиком, две веб-камеры внешнего вида через адаптер соединены со вторым входом микроконтроллера, две веб-камеры слежения за работой манипулятора соединены с третьим входом микроконтроллера, блок синхронизации соединен с четвертым входом микроконтроллера, двигатель через регулятор скорости связан с пятым входом микроконтроллера, манипулятор соединен с шестым входом микроконтроллера, насос соединен с седьмым входом микроконтроллера робота, датчик уровня воды в баке соединен с восьмым входом микроконтроллера, блок диагностики соединен с девятым входом микроконтроллера.



 

Похожие патенты:

Для реализации задачи обнаружения препятствий, возникающих на пути движения мобильного робототехнического комплекса, используют ультразвуковые датчики, установленные по периметру комплекса.

Изобретение относится к области робототехники, а именно к робототехническим средствам, предназначенным для работы в дистанционном режиме в особо опасных условиях без участия человека.

Изобретение относится к робототехнике, а именно к робототехническим комплексам, предназначенным для дистанционной работы в труднодоступных и опасных для присутствия человека местах.

Изобретение относится к области робототехники и предназначено для построения колесных андроидных роботов, используемых внутри помещений. Шасси колесного робота содержит прямоугольную раму, два ведущих колеса, выполненные большего диаметра и с жестко закрепленными осями, два пассивных колеса, выполненные меньшего диаметра и свободно вращающимися вокруг вертикальной оси, и пятое пассивное колесо, выполненное большего диаметра и с жестко закрепленной осью.

Изобретение относится к области робототехники и предназначено для построения колесных андроидных роботов. Устройство для подъема и пускания торса андроидного робота содержит основание, на котором закреплен двигатель, и гайку, навинченную на винт, опирающийся на подшипник.

Робототехнический комплекс содержит самоходное управляемое транспортное средство, пульт дистанционного управления, систему управления движением, систему навигации, систему связи и передачи данных, комплект специального оборудования, систему технического зрения, исполнительные механизмы.

Изобретение относится к робототехнике и может найти применение в качестве мобильного робота и самодвижущейся транспортной тележки для использования в цехах промышленных предприятий с высокими градиентами окружающей температуры.

Изобретение относится к сканирующей зондовой микроскопии, микромеханике, робототехнике и нанотехнологии. Шагающий робот-нанопозиционер предназначен для прецизионного перемещения зонда микроскопа или исследуемого под микроскопом образца и содержит перемещаемую платформу, более трех опор и несущую поверхность, его конструктивные элементы изготовлены из материалов с малыми коэффициентами теплового расширения.

Изобретение относится к военной технике, а именно к способам применения многофункциональных робототехнических комплексов, предназначенных для дистанционной работы, и может быть использовано для решения задач обеспечения боевых действий сухопутных войск.

Изобретение относится к военной и специальной технике а именно к робототехническим комплексам, предназначенным для дистанционной работы в условиях боевых действий, а также в труднодоступных и опасных для присутствия человека местах.

Изобретение относится к модулю обнаружения препятствий и роботу-уборщику, включающему упомянутый модуль. Робот-уборщик содержит корпус, приводное устройство для приведения в движение корпуса, модуль обнаружения препятствий для обнаружения препятствий вокруг корпуса и устройство управления для управления приводным устройством на основании результатов, полученных модулем обнаружения препятствий. Модуль обнаружения препятствий содержит по меньшей мере один излучатель света и приемник света. Излучатель света включает в себя источник света и широкоугольную линзу для преломления или отражения света от источника света для рассеивания падающего света в виде плоского света. Приемник света содержит отражающее зеркало для повторного отражения отраженного света, отражаемого препятствием, для генерации отраженного света, оптическую линзу, отнесенную от отражающего зеркала на заданное расстояние, чтобы позволить отраженному свету проходить через оптическую линзу, и датчик изображений и схему обработки изображений. Изобретение позволяет повысить точность обнаружения препятствий без использования множества датчиков или отдельного сервомеханизма. 2 н. и 13 з.п. ф-лы, 52 ил.

Изобретение относится к использованию роботизированных устройств для обработки объемных объектов и может найти применение в области сельского хозяйства, в промышленности, строительстве, а также в дефектоскопии. Способ включает использование роботизированного устройства для обработки, манипулятор которого удерживает съемный рабочий инструмент. Способ характеризуется тем, что включает этапы, на которых: а) последовательно перемещают роботизированное устройство для обработки на заранее рассчитанные или произвольно выбранные дискретные рабочие места в непосредственной близости от объемного объекта, б) на каждом занятом роботизированным устройством для обработки рабочем месте с помощью системы позиционирования определяют реальные координаты и ориентацию роботизированного устройства для обработки, в) для каждого занятого рабочего места с учетом размеров рабочего инструмента и мобильного шасси и определенных на этапе б) реальных координат и ориентации определяют возможность достижения рабочим инструментом из данного занятого рабочего места по крайней мере части области обработки объемного объекта. При отсутствии такой области перемещают роботизированное устройство для обработки в новое рабочее место, этапы а)-в) повторяют для нового рабочего места, рассчитывают траекторию движения рабочего инструмента для части области обработки объемного объекта, достижимой из занятого рабочего места, и осуществляют обработку части области обработки объемного объекта. При определении возможности достижения рабочим инструментом по крайней мере части области обработки из данного занятого рабочего места и расчете траектории движения рабочего инструмента исключают ранее обработанные части области обработки. Способ обеспечивает точную и полную автоматизированную обработку объемных объектов сложной формы в реальных условиях на месте их расположения. 5 з.п. ф-лы, 2 ил.

Группа изобретений относится к орбитальной заправке космических аппаратов (КА), например искусственных спутников. Система дозаправки содержит обслуживаемый (14) и обслуживающий (12) КА со средствами транспортировки топлива из баков КА (12) в баки КА (14). Она также содержит клапанный инструмент (30) для соединения и отсоединения заправочного трубопровода (25) с отверстием (23) для горючего и с отверстием (27) для окислителя на соответствующих баках КА (12). Имеется механизм (16) позиционирования инструмента (рука-манипулятор, например, с двумя степенями свободы) с концевым исполнительным элементом (18). С помощью матрицы (26) датчиков определяются смещения между инструментом и отверстиями (23) и (27). Механизм (16) может захватывать, кроме (30), и другие инструменты, которые хранятся в контейнере (20). Система может быть автономной и/или дистанционно управляться оператором, находящимся в космосе или на Земле. Техническим результатом группы изобретений является обеспечение роботизированной (дистанционно контролируемой) дозаправки заранее не подготовленных спутников. 4 н. и 86 з.п. ф-лы, 12 ил.

Изобретение относится к робототехнике, а именно к устройствам, с помощью которых осуществляют испытания мобильных роботов, в том числе, в рамках игровых мероприятий и соревнований. Конструктивные узлы, выполняющие роль препятствий для прохождения роботов, установлены на общем основании и соединены между собой с образованием единой сборно-разборной конструкции. Конструктивные узлы включают соединенные друг с другом платформу, выполненную в виде объемного элемента с плоским верхним основанием, пандус, выполненный в виде объемного элемента, имеющего наклонную верхнюю поверхность, башню, предназначенную для перемещения внутри нее робота. Башня включает полую трубчатую конструкцию с входным проемом, внутри которой смонтирована винтообразная лестница, содержащая лестничные марши, выполненные в виде настилов. Техническим результатом изобретения является повышение уровня сложности перемещений робота для оценки характеристик его работы. 15 з.п. ф-лы, 2 ил.

Изобретение относится к герметизации трещины в стенке бассейна атомной электростанции, а именно способу герметизации шва и мобильному роботу, оснащенному размотчиком клейкой ленты, который содержит головку, прижимающую клейкую ленту к стенке. Для осуществления герметизации шва управляют множеством отсасывающих систем робота, содержащих присоски, причем указанное множество отсасывающих систем содержит первую отсасывающую систему и по меньшей мере вторую отсасывающую систему. При этом размотчик механически интегрирован с первой отсасывающей системой, выполненной с возможностью перемещения относительно второй отсасывающей системы для регулирования положения головки размотчика и клейкой ленты, которую наносят на шов. И управляют перемещением первой отсасывающей системы относительно второй отсасывающей системы. При этом клейкую ленту размотчика наносят на шов при перемещении первой отсасывающей системы относительно второй отсасывающей системы. Изобретение позволяет наклеивать ленту в труднодоступных местах, на острых краях и при этом на протяженных участках. 3 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к области робототехники, а именно к мобильному робототехническому комплексу МРК с автономным питанием и системой дистанционного управления, предназначенному для поиска, эвакуации или разрушения подозрительных предметов на месте их обнаружения. МРК содержит мобильный робот, состоящий из манипулятора с навесным оборудованием, устанавливаемым на гусеничное шасси в сборе, включающее соединенный с ходовой частью корпус, на который с обоих бортов внутри замкнутого гусеничного обвода установлены приводные мотор-звездочки. Внутри каждого замкнутого гусеничного обвода на корпус устанавливают по нижнему краю два опорных катка и балансирную тележку с катками, по верхнему краю - поддерживающий каток и механизм изменения геометрии гусеничного обвода. С наружной стороны гусеничного обвода на корпусе шасси устанавливают кронштейн с прижимным катком, обеспечивающим сцепление гусеничного обвода с приводной мотор-звездочкой. Механизм изменения геометрии гусеничного обвода состоит из линейного привода с подвижным штоком, соединенным с ленивцем, на одном конце которого установлена роликовая опора, а на другом - механизм натяжения с опорным катком, которые постоянно находятся в контакте с гусеничным обводом. МРК обладает повышенной проходимостью и устойчивостью. 2 ил.

Изобретение относится к области робототехники, в частности к вариантам движущегося робота, и может быть использовано для дистанционного беспилотного исследования труднодоступных или опасных для человека участков земной и инопланетной поверхностей. Движущийся робот состоит из трех или шести приводов поступательного движения, состоящих из неподвижно соединенных цилиндров под углом 90° между их осями и выдвигающихся штоков-опор, и корпуса, расположенного вокруг места соединения упомянутых приводов с размещенными внутри источником энергии и узлом управления. Робот выполнен с возможностью поочередного отталкивания штоков-опор от поверхности перемещения. Два штока-опоры при движении служат опорами робота, находящимися на поверхности перемещения, с возможностью выдвижения из цилиндра третьего штока-опоры и его отталкиванием от поверхности перемещения с обеспечением смещения центра тяжести робота и опрокидывания его корпуса через два штока-опоры, находящихся на поверхности перемещения. 2 н.п. ф-лы, 11 ил.

Изобретение относится к области робототехники и может быть использовано для управления мобильным роботом. Посредством камеры, установленной на подвижном роботе, получают изображение местности. С помощью мыши или сенсорного дисплея указывают конечную точку, в которой должен оказаться робот, на полученном изображении, отображенном на мониторе посредством приложения или веб-сайта через интерфейс, запущенный на программируемом устройстве управления, показывающем видео с камеры робота, с использованием оптических параметров камеры вычисляют координаты конечной точки в системе координат, связанной с роботом. Осуществляют обнаружение препятствий с помощью установленного на подвижном роботе сканирующего лазерного дальномера и осуществляют автоматическое перемещение робота в конечную точку по спланированной траектории с объездом им статических и динамических препятствий. При этом рассчитывают требуемые угловую и поступательную скорости движения робота с минимальным отклонением от спланированной траектории. Изобретение обеспечивает повышение точности позиционирования положения робота при его перемещении. 2 з.п. ф-лы, 3 ил.

Изобретение относится к использованию роботизированных устройств для обработки объемных объектов и может найти применение в области сельского хозяйства при обрезке и фигурной стрижке фруктовых и декоративных деревьев и кустарников, цветов, живых изгородей, в промышленности - при окрашивании сложных трехмерных поверхностей. Способ включает использование роботизированного устройства для обработки, манипулятор 2 которого удерживает съемный рабочий инструмент 5, устройства визуального отображении. Способ включает этапы, на которых последовательно перемещают роботизированное устройство для обработки на заранее рассчитанные или произвольно выбранные дискретные рабочие места в непосредственной близости от объемного объекта. На каждом занятом роботизированным устройством для обработки рабочем месте с помощью системы позиционирования определяют реальные координаты и ориентацию роботизированного устройства для обработки относительно объекта обработки и координаты поверхности объекта. Для каждого занятого рабочего места определяют возможность достижения рабочим инструментом 5 из данного занятого рабочего места по крайней мере части области обработки объемного объекта, определяемой в соответствии с известной моделью обработки. Рассчитывают траекторию движения рабочего инструмента для части области обработки объемного объекта. Осуществляют обработку части области обработки объемного объекта. При определении возможности достижения рабочим инструментом по крайней мере части области обработки из данного занятого рабочего места и расчете траектории движения рабочего инструмента исключают ранее обработанные части области обработки. Устройство визуального отображения в каждый момент времени отображает графическое изображение поверхности объекта обработки, совмещенное с моделью обработки для возможности визуального контроля за процессом обработки. Способ обеспечивает точность и полную автоматизированную обработку объемных объектов сложной формы в реальных условиях и контроль за процессом обработки. 5 з.п. ф-лы, 2 ил.

Изобретение относится к малогабаритному самоходному транспортному средству, выполненному в виде аксессуара смартфона, обеспечивающего его перемещения по заданной траектории, для осуществления видеосвязи. Устройство содержит блок управления, расположенный на подвижной платформе, два независимых соосных ведущих колеса, выдвижную опору, два электродвигателя, датчики обнаружения препятствий и края поверхности, в частности стола, и встроенный источник питания. При этом подвижная платформа выполнена в виде корпуса с отсеком для установки смартфона, каждое колесо жестко закреплено на валу своего электродвигателя, а с другой стороны на эти валы установлены датчики обратной связи с мотором, причем оба электродвигателя выполнены реверсивными и с возможностью изменения скорости вращения. Выдвижная опора выполнена в виде поворотной консоли, позволяющей устанавливать корпус под углом от 0 до 85° к горизонту и вместе с колесами обеспечивать устойчивое положение при его перемещении по плоскости. Блок управления выполнен с возможностью сбора и обработки данных, поступающих от смартфона и от датчиков обнаружения препятствий и края поверхности, а также для формирования и передачи управляющих сигналов на электродвигатели колес и выдвижной опоры. 1 з.п. ф-лы, 3 ил.
Наверх