Способ определения температуры застывания нефтепродуктов и устройство для его осуществления

Изобретение относится к области измерительной техники и может быть использовано для определения температуры застывания нефти и нефтепродуктов. Согласно заявленному решению изменение температуры испытуемого нефтепродукта, помещенного в цилиндрический стакан, выполненный с возможностью размещения в нем мешалки, осуществляют хладагентом в виде смеси этилового спирта с жидким азотом. При этом цилиндрический стакан помещают в теплоизолированную емкость, заполняемую хладагентом и имеющую возможность возвратно-поступательного перемещения, герметичной фиксации цилиндрического стакана с испытуемым нефтепродуктом и подачи хладагента. В качестве температурно-зависимого параметра используют частоту вращения мешалки, а температуру застывания определяют по диаграмме, отражающей зависимость частоты вращения мешалки от температуры нефтепродукта как при понижении температуры нефтепродукта ниже температуры застывания, так и при повышении температуры до достижения температуры застывания. Также предложено устройство для реализации указанного выше способа, выполненное в виде механического и измерительного блоков. Технический результат - повышение оперативности при проведении экспресс-анализа. 2 н. и 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области измерительных средств, в частности для определения температуры застывания нефти и нефтепродуктов.

Известен способ определения температуры застывания нефтепродуктов, при котором для охлаждения кюветы с нефтепродуктом используют термоэлектрические батареи, температуру кюветы равномерно понижают, создают импульсы ультразвука, который используют в качестве температурно-зависимого параметра, при затухании которого определяют температуру застывания нефтепродукта (Коленко Е.А. Термоэлектрические охлаждающие приборы. Л.: «Наука» Лен. Отд. 1967. С. 254).

Недостатком известного способа является длительность процессов охлаждения и нагревания нефтепродукта, а также использование только в стационарных условиях.

Известен прибор для определения температуры застывания нефтепродуктов, содержащий цилиндр с нефтепродуктом, помещенный в охлаждающую баню с углекислотой и изолированный от нее воздушной прослойкой, внутри цилиндра помещены крыльчатка и термопара, взаимосвязанные между собой потенциометром, сильфоном и контактным замыкателем, при этом температурно-зависимым параметром является угол поворота крыльчатки (Авторское свид. СССР №127518, G01N 25/06, опубл. в 1960 г., автор Прокопюк С.Г.).

Недостатком известного аналога является длительность процесса охлаждения.

В качестве прототипа принят способ исследования низкотемпературных свойств многокомпонентных жидкостей, при котором кювету с жидкостью охлаждают с использованием двух термоэлектрических модулей, первый из которых имеет тепловой контакт с кюветой и имеет возможность регулирования тока термоэлектрического модуля, между термоэлектрическими модулями размещают с обеспечением теплового контакта термоаккумулирующий элемент, осуществляют его охлаждение обоими термоэлектрическими модулями с одновременным нагревом кюветы с жидкостью до заданной температуры, после достижения термоаккумулирующим элементом минимальной температуры при поддерживаемой заданной температуре жидкости начинают равномерное охлаждение кюветы с жидкостью путем регулирования тока через первый термоэлектрический модуль, а после достижения минимальной температуры кюветы с жидкостью обеспечивают ее равномерный нагрев, при этом исследование низкотемпературных свойств выполняют в течение равномерного охлаждения и равномерного нагрева жидкости (Патент РФ №2183323 C2, дата приоритета 02.08.1999, дата публикации 10.06.2002, авторы: Конторович М.Л. и др., RU, прототип).

Известно также устройство для осуществления способа исследования низкотемпературных свойств многокомпонентных жидкостей по патенту РФ №2183323, принятое в качестве прототипа, включающее корпус, в котором установлены соединенные с источниками постоянного тока два термоэлектрических модуля, первый из которых соединен с регулируемым источником тока и имеет тепловой контакт с кюветой для размещения исследуемой многокомпонентной жидкости, снабженной измерительным преобразователем температуры и датчиком температурно-зависимого физического параметра, второй термоэлектрический модуль снабжен средством теплоотвода, также имеются устройство регистрации и устройство управления, а между термоэлектрическими модулями установлен термоаккумулирующий элемент (Патент РФ №2183323 C2, дата приоритета 02.08.1999, дата публикации 10.06.2002, авторы: Конторович М.Л. и др., RU, прототип).

Недостатком известного способа исследования низкотемпературных свойств многокомпонентных жидкостей и устройства для его осуществления, принятых в качестве прототипа, является значительная трудоемкость анализа, обусловленная длительностью и условиями испытаний.

Задачей изобретения является повышение оперативности при проведении экспресс-анализа.

Для решения поставленной задачи в способе определения температуры застывания нефтепродуктов, при котором изменяют температуру нефтепродукта, размещенного в емкости, измеряют температуру нефтепродукта и регистрируют температурно-зависимые физические параметры, новым является то, что испытуемый нефтепродукт помещают в цилиндрический стакан, выполненный с возможностью соосного размещения в нем мешалки, изменение температуры испытуемого нефтепродукта осуществляют хладагентом в виде смеси этилового спирта с жидким азотом, при этом цилиндрический стакан помещают в теплоизолированную емкость, заполняемую хладагентом и имеющую возможность возвратно-поступательного перемещения, герметичной фиксации цилиндрического стакана с испытуемым нефтепродуктом и подачи хладагента, а в качестве температурно-зависимого параметра используют частоту вращения мешалки, причем температуру застывания определяют по диаграмме, отражающей зависимость частоты вращения мешалки от температуры нефтепродукта как при понижении температуры нефтепродукта ниже температуры застывания, так и при повышении температуры до достижения температуры застывания, при этом температуру начала застывания испытуемого нефтепродукта вычисляют как среднее значение между температурой остановки мешалки при охлаждении нефтепродукта и температурой начала вращения при прекращении охлаждения.

Для решения поставленной задачи и осуществления указанного способа предложено устройство для определения температуры застывания нефтепродуктов, включающее корпус, в котором установлена емкость для исследуемого нефтепродукта с датчиками регистрации температурно-зависимого параметра и средства изменения температуры нефтепродукта. Новым является то, что оно выполнено в виде механического и измерительного блоков. Механический блок содержит полый корпус, выполненный с продольным пазом и закрепленный на передней панели измерительного блока. В корпусе с возможностью возвратно-поступательного перемещения и фиксации установлены три коаксиально расположенных стакана, причем наружный и средний стаканы разделены теплоизоляцией, средний стакан снизу снабжен центрирующим выступом, а наружный стакан выполнен с ответным отверстием. Между средним и внутренним стаканами образована полость для заполнения хладагентом через трубопровод с воронкой, закрепленный в верхней части среднего стакана с возможностью перемещения в продольном пазу в полом корпусе. При этом наружный и средний стаканы закрыты крышкой, снабженной отверстиями для выхода паров хладагента и центральным отверстием, охватывающим внутренний стакан, внутри которого расположена соосно установленная на валу мешалка, соединенная через муфту с валом микроэлектродвигателя, соосно установленного относительно внутреннего стакана на платформе, закрепленной на передней панели измерительного блока. Внутренний стакан выполнен с выступающим над упомянутой крышкой верхним торцом и герметично установлен при фиксации стаканов в верхнем положении с помощью уплотнения, закрепленного на платформе, расположенной под муфтой микроэлектродвигателя и закрепленной на передней панели измерительного блока. На упомянутой платформе также закреплены датчики температуры с возможностью погружения их во внутренний стакан. На муфте микроэлектродвигателя жестко закреплен диск, снабженный отверстиями, соосно которым на платах, расположенных по обе стороны от диска и закрепленных на основании, установленном на передней панели измерительного блока, установлены фотодиод и фотоприемник, взаимодействующие между собой через отверстия в диске при его повороте и регистрирующие частоту вращения мешалки с помощью измерительного блока. При этом измерительный блок включает стабилизированный источник напряжения, первый выход которого связан с блоком задания и регистрации частоты вращения мешалки, с которым связаны микроэлектродвигатель, фотодиод и фотоприемник, а второй выход связан с блоком регистрации температуры исследуемого нефтепродукта, с которым соединены датчики температуры. Выходы блока задания и регистрации частоты вращения мешалки и блока регистрации температуры связаны с преобразователем напряжения, выход которого связан с компьютером, отражающим на мониторе запись диаграмм изменения частоты вращения мешалки и температуры испытуемого нефтепродукта.

Согласно изобретению, мешалка выполнена из материала с высокой теплопроводностью и с параметрами, обеспечивающими минимальное гидравлическое сопротивление, при этом мешалка выполнена в виде алюминиевой пластины с отверстиями, симметрично расположенными относительно оси вращения и в шахматном порядке относительно друг друга, причем ширина мешалки составляет 2/3 диаметра внутреннего стакана.

На фиг. 1 представлена функциональная схема заявляемого изобретения; на фиг. 2 - диаграммы температурно-зависимого параметра.

Устройство для определения температуры застывания нефтепродуктов выполнено в виде механического и измерительного блоков (фиг. 1). Механический блок содержит полый корпус 1, выполненный с продольным пазом 2 и закрепленный на передней панели 3 измерительного блока. В полом корпусе с возможностью возвратно-поступательного перемещения и фиксации установлены три коаксиально расположенных стакана. Наружный 4 и средний 5 стаканы разделены теплоизоляцией 6, причем средний стакан 5 снизу снабжен центрирующим выступом 7, а наружный стакан 4 выполнен с ответным отверстием 8. Между средним 5 и внутренним 9 стаканами образована полость 10 для заполнения хладагентом через трубопровод с воронкой 11, который закреплен в верхней части среднего стакана 5 с возможностью перемещения в продольном пазу 2 в полом корпусе. Наружный 4 и средний 5 стаканы закрыты крышкой 12, снабженной отверстиями 13 для выхода паров хладагента и центральным отверстием, охватывающим внутренний стакан 9 для его ориентации. Во внутреннем стакане 9 расположена мешалка 14, соосно установленная на валу 15, который соединен через муфту 16 с валом микроэлектродвигателя 17, соосно установленного относительно внутреннего стакана 9 на платформе 18, закрепленной на передней панели 3 измерительного блока. Мешалка 14 выполнена в виде тонкостенной алюминиевой пластины с отверстиями 19, симметрично расположенными относительно оси вращения и в шахматном порядке относительно друг друга, причем ширина мешалки составляет 2/3 диаметра внутреннего стакана. При этом суммарная площадь отверстий 19 мешалки с данными параметрами снижает гидравлическое сопротивление при ее вращении до минимума при частоте вращения 250 об/мин и не образует воронки в нефтепродукте, а при понижении температуры гидравлическое сопротивление увеличивается и частота вращения мешалки уменьшается. Внутренний стакан 9 выполнен с выступающим над упомянутой крышкой 12 верхним торцом и герметично установлен при фиксации стаканов 4, 5 и 9 в верхнем положении с помощью уплотнения 20, закрепленного на платформе 21, расположенной под муфтой 16 микроэлектродвигателя и закрепленной на передней панели 3 измерительного блока. На платформе 21 также закреплены датчики температуры 22 с возможностью погружения их во внутренний стакан 9. На муфте 16 микроэлектродвигателя жестко закреплен диск 23, снабженный отверстиями 24. По обе стороны от диска расположены платы 25, закрепленные на основании 26, установленном на передней панели 3 измерительного блока. На платах 25 соосно отверстиям 24 в диске установлены фотодиод 27 и фотоприемник 28, взаимодействующие между собой через отверстия 24 в диске при его повороте и регистрирующие частоту вращения мешалки с помощью измерительного блока.

Измерительный блок заключен в корпус, на передней панели 3 которого установлены и закреплены элементы механического блока. При этом измерительный блок включает стабилизированный источник напряжения 29, первый выход которого связан с блоком задания и регистрации частоты вращения мешалки 30, с которым связаны микроэлектродвигатель 17, фотодиод 27 и фотоприемник 28, а второй выход связан с блоком регистрации температуры исследуемого нефтепродукта 31, с которым соединены датчики температуры 22. Выходы блока задания и регистрации частоты вращения мешалки 30 и блока регистрации температуры 31 связаны с преобразователем напряжения 32, выход которого связан с компьютером 33, отражающим на мониторе 34 запись диаграмм изменения частоты вращения мешалки и температуры испытуемого нефтепродукта (фиг. 2).

Работа устройства для определения температуры застывания нефтепродуктов и реализация способа осуществляются следующим образом.

При подготовке устройства к работе полость 10, образованная средним 5 и внутренним 9 стаканами, заполняется этиловым спиртом до уровня трубы с воронкой 11. Наружный стакан 4 после расфиксации опускается в нижнее положение совместно с установленными в нем средним 5 и внутренним 9 стаканами и вынимается из полого цилиндрического корпуса 1 для заполнения внутреннего стакана 9 испытуемым нефтепродуктом в объеме 35 мл. После этого стаканы устанавливаются в полый корпус 1, при этом наружный стакан 4 фиксируется на передней панели 3 измерительного блока, герметизируя внутренний стакан 9 с нефтепродуктом путем его прижима к уплотнению 20. После этих подготовительных операций устройство готово к осуществлению способа определения температуры застывания исследуемого нефтепродукта.

Для реализации способа к работе подключают измерительный блок устройства. С помощью блока задания и регистрации частоты вращения мешалки 30 устанавливается частота вращения мешалки 250 об/мин. Напряжения от блоков задания и регистрации частоты вращения мешалки 30 и регистрации температуры 31 через преобразователь 32 поступают на компьютер 33 и записываются на мониторе 34 в виде диаграмм с соответствующими амплитудами. Через трубу с воронкой 11 в полость 10 заливается порция жидкого азота, при этом температура испытуемого нефтепродукта понижается, а вязкость увеличивается, что вызывает уменьшение частоты вращения мешалки 14. На диаграммах записи частоты вращения мешалки и температуры нефтепродукта амплитуда соответственно уменьшается. После прекращения паровыделений через отверстия 13 в крышке 12 доливается очередная порция жидкого азота. Эти действия продолжаются до тех пор, пока вращение мешалки не прекратится. По диаграмме записи определяется температура испытуемого нефтепродукта, при которой произошла остановка мешалки 14. Затем производится выдержка стакана с нефтепродуктом до начала вращения мешалки, при котором по диаграмме изменения температуры нефтепродукта и частоты вращения мешалки определяется температура, при которой началось вращение мешалки. Температура начала застывания исследуемого нефтепродукта вычисляется как среднее значение между температурой остановки мешалки при охлаждении нефтепродукта и температурой начала вращения при нагревании в результате прекращения охлаждения.

Исследованию подвергалось минеральное моторное масло Лукойл Стандарт 10W-40 SF/CC. Из представленных данных на фиг. 2 видно, что мешалка остановилась через 13 мин 45 сек (диаграмма П=f(t), точка А), что согласно диаграмме T=f(t) соответствует температуре минус 24°C (точка A′). Вращение мешалки началось через 19 мин 15 сек (точка В), что соответствует температуре минус 23°C (точка B′). Средняя температура застывания масла Лукойл Стандарт 10W-40 SF/CC составила минус 23,5°C.

Преимущество предлагаемых способа и устройства заключается в повышении оперативности и степени экспрессивности определения температуры застывания нефтепродукта за счет применения эффективного жидкого хладагента, обеспечивающего быстрое охлаждение нефтепродукта, и автоматической записи в виде диаграмм температурно-зависимого параметра - частоты вращения мешалки.

1. Способ определения температуры застывания нефтепродуктов, при котором изменяют температуру нефтепродукта, размещенного в емкости, измеряют температуру нефтепродукта и регистрируют температурно-зависимые физические параметры, отличающийся тем, что испытуемый нефтепродукт помещают в цилиндрический стакан, выполненный с возможностью соосного размещения в нем мешалки, изменение температуры испытуемого нефтепродукта осуществляют хладагентом в виде смеси этилового спирта с жидким азотом, при этом цилиндрический стакан помещают в теплоизолированную емкость, заполняемую хладагентом и имеющую возможность возвратно-поступательного перемещения, герметичной фиксации цилиндрического стакана с испытуемым нефтепродуктом и подачи хладагента, а в качестве температурно-зависимого параметра используют частоту вращения мешалки, причем температуру застывания определяют по диаграмме, отражающей зависимость частоты вращения мешалки от температуры нефтепродукта как при понижении температуры нефтепродукта ниже температуры застывания, так и при повышении температуры до достижения температуры застывания, при этом температуру начала застывания испытуемого нефтепродукта вычисляют как среднее значение между температурой остановки мешалки при охлаждении нефтепродукта и температурой начала вращения при прекращении охлаждения.

2. Устройство для определения температуры застывания нефтепродуктов, включающее корпус, в котором установлена емкость для исследуемого нефтепродукта с датчиками регистрации температурно-зависимого параметра и средства изменения температуры нефтепродукта, отличающееся тем, что оно выполнено в виде механического и измерительного блоков, механический блок содержит полый корпус, выполненный с продольным пазом и закрепленный на передней панели измерительного блока, в корпусе с возможностью возвратно-поступательного перемещения и фиксации установлены три коаксиально расположенных стакана, причем наружный и средний стаканы разделены теплоизоляцией, средний стакан снизу снабжен центрирующим выступом, а наружный стакан выполнен с ответным отверстием, между средним и внутренним стаканами образована полость для заполнения хладагентом через трубопровод с воронкой, закрепленный в верхней части среднего стакана с возможностью перемещения в продольном пазу в полом корпусе, при этом наружный и средний стаканы закрыты крышкой, снабженной отверстиями для выхода паров хладагента и центральным отверстием, охватывающим внутренний стакан, внутри которого расположена соосно установленная на валу мешалка, соединенная через муфту с валом микроэлектродвигателя, соосно установленного относительно внутреннего стакана на платформе, закрепленной на передней панели измерительного блока, внутренний стакан выполнен с выступающим над упомянутой крышкой верхним торцом и герметично установлен при фиксации стаканов в верхнем положении с помощью уплотнения, закрепленного на платформе, расположенной под муфтой микроэлектродвигателя и закрепленной на передней панели измерительного блока, на упомянутой платформе также закреплены датчики температуры с возможностью погружения их во внутренний стакан, на муфте микроэлектродвигателя жестко закреплен диск, снабженный отверстиями, соосно которым на платах, расположенных по обе стороны от диска и закрепленных на основании, установленном на передней панели измерительного блока, установлены фотодиод и фотоприемник, взаимодействующие между собой через отверстия в диске при его повороте и регистрирующие частоту вращения мешалки с помощью измерительного блока, при этом измерительный блок включает стабилизированный источник напряжения, первый выход которого связан с блоком задания и регистрации частоты вращения мешалки, с которым связаны микроэлектродвигатель, фотодиод и фотоприемник, а второй выход связан с блоком регистрации температуры исследуемого нефтепродукта, с которым соединены датчики температуры, выходы блока задания и регистрации частоты вращения мешалки и блока регистрации температуры связаны с преобразователем напряжения, выход которого связан с компьютером, отражающим на мониторе запись диаграмм изменения частоты вращения мешалки и температуры испытуемого нефтепродукта.

3. Устройство для определения температуры застывания нефтепродуктов по п. 2, отличающееся тем, что мешалка выполнена из материала с высокой теплопроводностью и с параметрами, обеспечивающими минимальное гидравлическое сопротивление, при этом мешалка выполнена в виде алюминиевой пластины с отверстиями, симметрично расположенными относительно оси вращения и в шахматном порядке относительно друг друга, причем ширина мешалки составляет 2/3 диаметра внутреннего стакана.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано для определения концентрации сажи в моторном масле двигателей внутреннего сгорания.

Изобретение относится к области диагностики качества масел. При осуществлении способа предварительно нагревают взятые в равных объемах воду и масло с введенным в него деэмульгатором до заданной температуры, смешивают их и образованную смесь подвергают перемешиванию с поддержанием температуры смеси, равной начальной температуре компонентов до образования прямой эмульсии, после чего помещают полученную эмульсию в калориметр и в процессе разделения ее на фазы регистрируют изменение температуры в слоях водной фазы и масляной фазы, по полученной зависимости изменения температур в указанных слоях находят значения установившихся температур в слоях и по разности указанных температур судят о деэмульгирующих свойствах масла, причем, чем больше разность температур, тем выше деэмульгирующие свойства.

Изобретение относится к аналитической химии газовых и воздушных сред, а также непищевых материалов. Способ характеризуется тем, что применяют газоанализатор с n=3-8 пьезокварцевыми резонаторами с собственной частотой колебаний 10-15 МГц, электроды которых модифицированы селективными и чувствительными сорбентами к газам-маркерам отработки моторных масел, отбирают анализируемый образец моторного масла и помещают в герметично закрывающийся сосуд для насыщения газовой фазы газами-маркерами отработки моторных масел, после установления равновесия в системе газ - жидкость, не нарушая герметичности сосуда, отбирают пробоотборником 1-5 см3 равновесной газовой фазы и инжектируют ее в закрытую ячейку детектирования анализатора газов, фиксируют изменение частоты колебаний модифицированных пьезокварцевых резонаторов в течение 1 мин, по результатам откликов в программе строят «визуальный отпечаток», рассчитывают его площадь Sв.о, отн.ед.2, рассчитывают разность площадей ΔS между площадью «визуального отпечатка» для анализируемой пробы Si и площадью «визуального отпечатка» для стандартного образца моторного масла Sст по формуле ΔS=(Si-Sст)/Sст×l00%, если относительная разница площадей ΔS≤30%, то моторное масло соответствует норме, если ΔS≥30%, то степень отработки масла критическая, при ΔS>45% - моторное масло отработано и подлежит замене.

Изобретение относится к области аналитической химии для определения присадок в моторных маслах и может найти применение в аналитических лабораториях, производственных и технологических лабораториях нефтеперерабатывающих заводов, криминалистической практике.

Изобретение относится к способу и системе для анализа свойств флюидов в микрофлюидном устройстве. Флюид вводится под давлением в микроканал, и в ряде мест, расположенных вдоль микроканала, оптически детектируются фазовые состояния флюида.

Группа изобретений относится к получению характеристик нефтесодержащей текучей среды, извлекаемой из углеводородосодержащего геологического пласта. Представлен способ получения характеристик одного или нескольких свойств многокомпонентной нефтесодержащей текучей среды, заключающийся в том, что: (а) измеряют в скважине с помощью скважинного инструмента анализа текучей среды данные, представляющие, по меньшей мере, одно свойство для группы компонентов многокомпонентной нефтесодержащей текучей среды, и сохраняют данные в считываемой компьютером памяти, причем это, по меньшей мере, одно свойство для группы компонентов является весовым процентом группы компонентов; (б) с использованием процессора компьютера и программного обеспечения, сохраненного в считываемой компьютером памяти, получают, по меньшей мере, одно свойство для соответствующих компонентов группы из группы компонентов на основе данных, сохраненных на этапе (а), причем это, по меньшей мере, одно свойство является весовым процентом для соответствующих компонентов группы, и соотношение, полученное из анализа базы данных давление-объем-температура, причем это соотношение выражается линейной функцией количества атомов углерода для соответствующих компонентов группы и основано на коэффициентах дозирования, вычисленных в соответствии с уравнением где i изменяется в диапазоне целых чисел, соответствующих группе компонентов с определенным количеством атомов углерода в группе компонентов, Ψi - коэффициент дозирования для i-го компонента с определенным количеством атомов углерода в группе компонентов, А и В заданы по результатам регрессионного анализа базы данных давление-объем-температура, и CNi - количество атомов углерода для i-го компонента с определенным количеством атомов углерода в группе компонентов; (в) используют процессор компьютера и программное обеспечение, по меньшей мере, одно свойство для соответствующих компонентов группы, полученных на этапе (б) для оценки или прогнозирования одного или нескольких свойств многокомпонентной нефтесодержащей текучей среды; (г) выводят результаты, полученные на этапе (в) пользователю.

Изобретение относится к диагностированию двигателей внутреннего сгорания, в частности, к устройствам для определения загрязненности фильтра предварительной очистки масла смазочной системы двигателя.

Группа изобретений относится к автомобильной технике. Способ профилактики работы двигателя автомобиля включает оценку соответствия топлива по его устойчивости к окислению на основании определения процентного содержания ВНТ в топливе питания двигателя посредством спектроскопии в ближней инфракрасной области с возможностью изменения указанного содержания и уведомление пользователя о качестве топлива на основании результатов вышеуказанного определения.
Изобретение относится к оценке качества моторных масел и может быть использовано для определения их пригодности при эксплуатации техники. .

Изобретение относится к нефтяной промышленности и касается способа и системы для получения характеристик градиентов состава и свойств текучей среды коллектора, представляющего интерес, и анализа свойств коллектора на основе таких градиентов.

Изобретение относится к области измерительной техники и может быть использовано для обнаружения парафинизации дизельного топлива в топливном баке в автотранспортном средстве.

Изобретение предназначено для определения температуры начала льдообразования (криоскопической точки) при замораживании водных растворов и влагосодержащих продуктов и материалов.

Изобретение относится к контрольно-измерительной и испытательной технике. .
Изобретение относится к области анализа качественных характеристик пищевых и косметических продуктов посредством физико-химических методов. .
Изобретение относится к исследованию термодинамических свойств. .

Изобретение относится к теплофизике и предназначено для определения температуры плавления или размягчения твердых веществ. .
Изобретение относится к химической промышленности и может быть использовано, например, при определении состава смеси после разложения жидкого аммиака в замкнутом объеме.

Изобретение относится к способам определения реологических свойств материалов с помощью инверсионной газовой хроматографии и может быть использовано для точного определения температуры размягчения тяжелых нефтепродуктов и их узких фракций, в том числе фракций нефтяного и каменноугольного пеков, битумов, асфальтов, крекинг-остатков, мазута и пр. Способ определения температуры размягчения нефтяного пека и его фракций включает нагрев образца материала и определение его температуры размягчения методом инверсионной газовой храматографии с использованием колонки, заполненной нефтяным пеком или узкими фракциями нефтяного пека, нанесенными на твердый инертный носитель. Затем в заполненную исследуемым пеком колонку вводят органические соединения в качестве тест-сорбатов, температуру размягчения пека или его фракций определяют по минимуму на графике зависимости логарифма удельного удерживаемого объема сорбатов от обратной температуры. Техническим результатом является повышение точности определения температуры размягчения для широкого круга нефтепродуктов. 6 з.п. ф-лы, 3 ил.
Наверх