Способ комбинированного упрочнения поверхности деталей

Изобретение относится к упрочняющей обработке деталей. Обеспечивают пропускание в месте контакта деформирующего инструмента с деталью импульсов электрического тока. Осуществляют давление деформирующего инструмента на поверхность детали и воздействие на деформирующий инструмент ультразвуковых колебаний. В месте контакта деформирующего инструмента с деталью пропускают электрический ток с плотностью i<i min, где i min - плотность электрического тока, при которой в материале детали происходят фазовые превращения, приводящие к образованию упрочненного поверхностного слоя с высокодисперсным мартенситом - белым слоем. Ультразвуковые колебания совершают с амплитудой а=p a/2πρ·ν·c, где р а - акустическое давление, создающее пластическую деформацию на заданную глубину поверхностного слоя; ρ - плотность обрабатываемого материала; ν - частота ультразвуковых колебаний; с - скорость распространения ультразвуковых волн в обрабатываемом материале. В результате повышается контактная выносливость и долговечность деталей. 1 ил., 2 табл., 1 пр.

 

Изобретение относится к области упрочняюще-чистовой обработки деталей и может быть использовано в различных областях машиностроения для упрочнения поверхностей стальных деталей, работающих в условиях трения качения при контактных циклических нагрузках с целью повышения их контактной выносливости и долговечности.

Современной проблемой машиностроения является увеличение контактной выносливости и долговечности деталей, работающих в условиях трения качения при высоких контактных циклических нагрузках, таких как подшипники качения, зубчатые передачи, фрикционные передачи, кулачковые механизмы и др. Перспективным направлением в решении данной задачи является поверхностное упрочнение с использованием концентрированных потоков энергии (лазерная, плазменная, электромеханическая и др.). Основанные на комплексном высокоскоростном температурно-силовом воздействии на обрабатываемую поверхность, они обеспечивают формирование высокопрочных, износоустойчивых наноразмерных структур поверхностного слоя стальных изделий так называемого белого слоя или гарденита. Основной проблемой, с которой приходится сталкиваться при этом, - низкое сопротивление поверхностей циклическим контактным нагрузкам из-за малой пластичности упрочненного поверхностного слоя и резкой границы перехода от упрочненного поверхностного слоя к основному металлу, приводящее к выкрашиванию (питтингу) поверхности.

Известен способ упрочняюще-чистовой обработки, при котором поверхность изделия обрабатывают пластическим деформированием выглаживающим инструментом, в качестве которого используется неподвижная твердосплавная пластина или вращающийся твердосплавный ролик, с одновременным пропусканием через зону контакта инструмента с обрабатываемой поверхностью переменного электрического тока [Авт. Св. №759299, В24В 39/00, БИ №32, 1980]. Причинами, препятствующими достижению требуемого технического результата, является формирование хрупкого поверхностного слоя, подверженного выкрашиванию при действии контактных циклических нагрузок

Известен способ электромеханической обработки поверхности деталей машин, при котором пропускают импульсы тока в месте контакта ролика инструмента с деталью с обеспечением нагрева выступающих гребешков поверхности детали и давлением на выступающие гребешки поверхности детали с обеспечением их деформирования, сглаживания и упрочнения поверхностного слоя металла детали [патент РФ №2349442, В24В 39/00, опубликовано 20.03.2009]. Причинами, препятствующими достижению требуемого технического результата, является малая глубина пластической деформации, ограниченная сглаживанием микронеровностей, а дальнейшее увеличение деформирующего усилия ограничено возможностью появления вторичной волнистости и коробления детали.

Известно устройство для ультразвуковой упрочняюще-чистовой обработки, в котором одновременное воздействие статической силы P и динамической силы, создаваемое ультразвуковой колебательной системой, пластически деформирует поверхностный слой детали, тем самым упрочняет его и одновременно сглаживает неровности поверхности детали [RU 42974 U1, B24d 39/00, 27.12.2004]. Причинами, препятствующими достижению требуемого технического результата, является малая глубина пластической деформации, ограниченная сглаживанием микронеровностей, кроме того, в данном техническом решении упрочнение поверхностного слоя происходит за счет холодной пластической деформации и не превышает 40-50% от исходной твердости материала.

Наиболее близким по техническому решению является способ комбинированного упрочнения поверхности деталей, включающий пропускание в месте контакта деформирующего инструмента с деталью импульсов электрического тока плотностью энергии импульсов 700-3000 Дж/мм2, осуществляют давление деформирующего инструмента на поверхность детали с обеспечением пластической деформации и упрочнения поверхностного слоя, при этом на глубину упрочненного поверхностного слоя осуществляют пластическую деформацию путем воздействия на деформирующий инструмент ультразвуковых колебаний с частотой 20-25 кГц и амплитудой, обеспечивающей формирование остаточных сжимающих напряжений от -60 до -10 МПа на глубину упрочненного поверхностного слоя до 200 мкм. [Патент РФ №2529327, В24В 39/00, опубликовано 27.09.2014]. Причинами, препятствующими достижению требуемого технического результата, является формирование хрупкого поверхностного слоя, подверженного выкрашиванию при действии контактных циклических нагрузок, а наличие сжимающих остаточных напряжений при их сложении со сжимающими контактными напряжениями приведет к снижению контактной выносливости и долговечности.

Таким образом, известные способы поверхностного упрочнения имеют низкий технический уровень, связанный с формированием поверхностного слоя с низкой пластичностью и склонностью к выкрашиванию при действии контактных циклических нагрузок, что снижает контактную выносливость и долговечность.

В этой связи важнейшей задачей является создание нового способа поверхностного упрочнения стальных деталей, особенно с малой жесткостью, работающих при циклических контактных нагрузках в условиях трения качения, обеспечивающего формирование упрочненного поверхностного слоя на заданную глубину с достаточной пластичностью и плавным переходом от упрочненного поверхностного слоя к основному металлу.

Техническим результатом является повышение контактной выносливости и долговечности деталей, работающих при циклических контактных нагрузках в условиях трения качения за счет формирования упрочненного поверхностного слоя на заданную глубину с достаточной пластичностью и плавным переходом от упрочненного поверхностного слоя к основному металлу.

Технический результат достигается тем, что способ комбинированного упрочнения поверхности деталей включает пропускание в месте контакта деформирующего инструмента с деталью импульсов электрического тока, осуществление давления деформирующего инструмента на поверхность детали и воздействие на деформирующий инструмент ультразвуковых колебаний, при этом в месте контакта деформирующего инструмента с деталью пропускают электрический ток с плотностью i<imin, где imin - плотность электрического тока, при которой в материале происходят фазовые превращения, приводящие к образованию упрочненного поверхностного слоя с высокодисперсным мартенситом - белым слоем, а ультразвуковые колебания осуществляют с амплитудой где pa - акустическое давление, создающее пластическую деформацию на заданную глубину поверхностного слоя; ρ - плотность обрабатываемого материала; ν - частота ультразвуковых колебаний; с - скорость распространения ультразвуковых волн в обрабатываемом материале.

На графике показаны кривые 1, 2, 3 распределения микротвердости по толщине поверхностного слоя материала обрабатываемой детали:

1 - при обработке с плотностью тока i>imin и формировании белого слоя;

2 - при обработке с плотностью тока i<imin и статическом деформирующем усилии;

3 - при обработке с плотностью тока i<imin и с деформирующим усилием, которое создают путем воздействия на деформирующий инструмент ультразвуковых колебаний с амплитудой «а», которую определяют из условия

а=pа/2πρ·ν·c,

где pа - акустическое давление, создающее пластическую деформацию на заданную глубину поверхностного слоя; ρ - плотность обрабатываемого материала; ν - частота ультразвуковых колебаний; с - скорость распространения ультразвуковых волн в обрабатываемом материале.

Отличием предлагаемого способа комбинированного упрочнения поверхности деталей является то, что пластическую деформацию на заданную глубину упрочнения поверхностного слоя осуществляют при плотности электрического тока «i», которую определяют из условия

i<imin

где imin - плотность электрического тока, при которой в материале происходят фазовые превращения,

а ультразвуковые колебания осуществляют с амплитудой «а», которую определяют из условия:

a = p а / 2 π ρ ν c                                ( 1 )

где pа - акустическое давление, создающее пластическую деформацию на заданную глубину поверхностного слоя; ρ - плотность обрабатываемого материала; ν - частота ультразвуковых колебаний; с - скорость распространения ультразвуковых волн в обрабатываемом материале.

При пропускании электрического тока через зону контакта деформирующего инструмента с обрабатываемой поверхностью в результате выделения Джоулева тепла происходит нагрев локального объема поверхностного слоя с одновременной пластической деформацией и последующим быстрым теплоотводом в основной объем материала. При плотности тока в зоне контакта деформирующего инструмента с обрабатываемой поверхностью i>imin в материале проходят фазовые превращения, приводящие к образованию на детали упрочненного поверхностного слоя с высокопрочной наноразмерной структурой высокодисперсного мартенсита - белого слоя, с высокой твердостью, но малой пластичностью и резким переходом от белого слоя к основному металлу, что снижает контактную выносливость и долговечность (кривая 1).

При плотности тока в зоне контакта деформирующего инструмента с обрабатываемой поверхностью i<imin количества выделенного в зоне контакта тепла недостаточно для протекания в материале фазовых превращений, температура локального нагрева поверхности не превышает 1000K и на поверхности формируется горячедеформированная структура. Однако, глубина упрочненного поверхностного слоя в этом случае определяется величиной деформирующего усилия. При статическом деформирующим усилии, величина которого определяется условием сглаживания микронеровностей поверхности, глубина упрочненного поверхностного слоя незначительна (кривая 2). Дальнейшее увеличение деформирующего усилия при этом ограничено появлением вторичной волнистости упрочненной поверхности и короблением маложестких деталей.

При наложении на статическую составляющую деформирующего усилия динамической составляющей, которую создают путем воздействия на деформирующий инструмент ультразвуковых колебаний, при прохождении ультразвуковых волн через материал обрабатываемой детали в поверхностном слое происходит искажение кристаллической решетки, дробление зерен на блоки, измельчение структуры и, как следствие, увеличение микротвердости и глубины упрочненного слоя при его плавном переходе к структуре основного металла (кривая 3), что обеспечивает повышение контактной выносливости и долговечности. Выбор амплитуды ультразвуковых колебаний из условия (1) обусловлен созданием необходимого акустического давления на деформирующий инструмент, обеспечивающего пластическую деформацию на заданную глубину упрочнения поверхностного слоя материала обрабатываемой детали.

Реализация предложенного способа осуществляется следующим образом.

Определяют величину статической составляющей деформирующего усилия из условия сглаживания микронеровностей F с т = A к ω K σ в T ( R z R z a ) m где ω - скоростной коэффициент; K - коэффициент пропорциональности; σ в T - временное сопротивление материала при температуре 1000К; Rz - высота микронеровностей поверхности материала обрабатываемой детали; а - упругое сближение; m - показатель политропы.

Aк - площадь контакта деформирующего инструмента с обрабатываемой поверхностью: Aк=2π·0,85Rz(r·ρ·R/r+ρ)0,5, где r - радиус деформирующего инструмента; R - радиус профиля деформирующего инструмента; ρ - радиус кривизны обрабатываемой поверхности.

Примечание: расчет Fст и Aк проводился по формулам, приведенным в: [Аскинази, Б.М. Упрочнение и восстановление деталей электромеханической обработкой / Б.М. Аскинази - Л.: Машиностроение, 1977 с. 37-38]/

Определяют амплитуду ультразвуковых колебаний динамической составляющей деформирующего усилия из условия: а=pа/2πρ·ν·c? где pа - акустическое давление, определяемое из условия протекания пластической деформации на заданную глубину упрочненного поверхностного слоя; ρ - плотность обрабатываемого материала; ν=20-25 кГц - частота ультразвуковых колебаний (выбор частоты ультразвуковых колебаний в интервале ν=20-25 кГц обусловлен тем, что при частоте менее 20 кГц ультразвуковые колебания не возникают, а при частоте более 25 кГц не происходит существенного увеличения воздействия ультразвуковых колебаний на поверхность материала обрабатываемой детали); с - скорость распространения ультразвуковых волн в обрабатываемом материале.

Определяют минимальную плотность электрического тока imin, при которой в материале происходят фазовые превращения (Таблица 1).

Проводят обработку при плотности тока, определяемой из условия i<imin, путем воздействия на обрабатываемую поверхность деформирующим усилием, включающим статическую составляющую, величину которой определяют из условия сглаживания микронеровностей обрабатываемой поверхности и динамическую составляющую, которую создают путем воздействия на деформирующий инструмент ультразвуковых колебаний с амплитудой, которую определяют из условия (1). Режимы поверхностного упрочнения приведены в таблице 2.

Пример. Осуществляли обработку по предложенному способу партии образцов (материал - сталь 45 ГОСТ 1050-74, НВ224-240, Rz2,5 D=40 мм, L=10 мм). Площадь контакта определялась из условия Aк=2π·0,85Rz(r·ρ·R/r+ρ)0,5 и составляла 0,1 мм.

Статическая составляющая деформирующего усилия инструмента (ролик из сплава ВК-4М диаметром 40 мм с радиусом профиля 6 мм) определялась в соответствии с условием F с т = A к ω K σ в T ( R z R z a ) m и составляла 46Н. Плотность тока определялась в соответствии с условием i<imin и составляла для стали 45 (таблица 1) 200 А/мм2. Амплитуда ультразвуковых колебаний с частотой ν=25 кГц определялась из условия (1) и для глубины пластически деформированного поверхностного слоя 200 мкм при акустическом давлении 500 МПа составляла 69 мкм.

В результате локального нагрева поверхностного слоя материала при прохождении через зону контакта электрического тока плотностью i<imin и пластической деформации поверхностного слоя деформирующим усилием, включающим статическую составляющую, величину которой определяют из условия сглаживания микронеровностей обрабатываемой поверхности, и динамическую составляющую, которую создают путем воздействия на деформирующий инструмент ультразвуковых колебаний, происходит формирование горячедеформированной структуры упрочненного поверхностного слоя с микротвердостью на поверхности 4600 МПа с плавным ее уменьшением до 2000 МПа на глубине 200 мкм, что обеспечивает увеличение контактной выносливости и долговечности.

Проведенные сравнительные испытания образцов на машине СМЦ-2 в условиях трения качения, упрочненных по известному (прототип) и предложенному способу, показали увеличение на 25-30% числа циклов нагружения до появления первых следов выкрашивания поверхности (питтинга) у образцов, упрочненных по предложенному способу по сравнению с прототипом, что доказывает эффективность предложенного способа.

Способ комбинированного упрочнения поверхности деталей, включающий пропускание в месте контакта деформирующего инструмента с деталью импульсов электрического тока, осуществление давления деформирующего инструмента на поверхность детали и воздействие на деформирующий инструмент ультразвуковыми колебаниями, отличающийся тем, что в месте контакта деформирующего инструмента с деталью пропускают электрический ток с плотностью i<i min, где i min - плотность электрического тока, при которой в материале детали происходят фазовые превращения, приводящие к образованию упрочненного поверхностного слоя с высокодисперсным мартенситом, а ультразвуковые колебания совершают с амплитудой а=p a/2πρ·ν·c, где р а - акустическое давление, создающее пластическую деформацию на заданную глубину поверхностного слоя; ρ - плотность обрабатываемого материала; ν - частота ультразвуковых колебаний; с - скорость распространения ультразвуковых волн в обрабатываемом материале.



 

Похожие патенты:

Изобретение относится к технологии машиностроения и может быть использовано при финишной обработке поверхностей прецизионных деталей. Способ включает предварительную обработку заготовки с обеспечением макрогеометрии ее поверхности и последующее формирование на ней маслоудерживающего рельефа, который формируют на станке с ЧПУ путем нанесения сферической фрезой взаимно перпендикулярных канавок с параметрами, обеспечивающими получение толщины смазочной пленки не менее 5 мкм, приходящейся на единицу площади обрабатываемой поверхности.

Изобретение относится к отделочно-упрочняющей обработке цилиндрических поверхностей деталей выглаживанием. Осуществляют вращательное движение детали и продольное перемещение алмазного выглаживающего инструмента.

Изобретение относится к машиностроению и может быть использовано при обработке щеточными машинами. Последняя содержит вращающийся от привода держатель щетки, кольцевую щетку, имеющую фланец с направленной наружу щетиной, и стопорное устройство, погруженное во вращающийся фланец со щетиной.

Изобретение относится к устройствам для пластического деформирования кромок двутавров. Устройство содержит обминающие ролики, имеющие галтель для пластического деформирования каждой кромки двутавра и выполненные из материала с твердостью выше, чем материал заготовки двутавра.

Изобретение относится к машиностроению и может быть использовано для ультразвукового упрочнения деталей типа тел вращения на станках с ЧПУ. Устройство содержит корпус, акустическую систему, состоящую из преобразователя, соединенного с волноводом, на торцевой части которого закреплен излучатель ультразвука.

Изобретение относится к машиностроению и может быть использовано при поверхностном пластическом деформировании маложестких заготовок с криволинейными поверхностями.

Изобретение относится к упрочнению металлических деталей машин поверхностным пластическим деформированием. Осуществляют зажатие детали снизу и сверху по ее краям посредством установленных в раме вращающихся прижимных валов.

Изобретение относится к машиностроению и может быть использовано при поверхностном пластическом деформировании цилиндрических и торцовых поверхностей. Осуществляют обработку вращающейся заготовки сферическим деформирующим элементом более высокой твердости по сравнению с твердостью материала обрабатываемой заготовки.

Изобретение относится к отделочно-упрочняющей обработке деталей методами поверхностного пластического деформирования. Осуществляют внедрение деформирующего элемента в обрабатываемую поверхность и его перемещение по обрабатываемой поверхности.

Изобретение относится к ультразвуковым инструментам для деформационной обработки. Инструмент содержит корпус с ручкой и направляющими скольжения, в которых установлен с возможностью осевого возвратно-поступательного движения стакан с фланцем и насадкой.

Изобретение относится к упрочнению металлических втулок. Осуществляют фиксацию торцов полой заготовки. Вращают полую заготовку. Нагревают внутреннюю поверхность полой заготовки до температуры, не достигающей температуры рекристаллизации материала заготовки. Осуществляют обкатку ее наружной поверхности путем возвратно-поступательного осевого перемещения роликовой матрицы. Используют роликовую матрицу, состоящую из одного или более роликов, один из которых имеет участок большего диаметра. В результате обеспечивается увеличение глубины упрочненной зоны заготовки. 1 ил., 1 пр.

Изобретение относится к области раскатки дорожек качения колец шариковых подшипников. Установка содержит шариковую оправку с деформирующими элементами в виде шариков, механизм нагружения и механизм для установки и вращения заготовки. В механизме нагружения установлен электронный динамометр. Между механизмом нагружения и шариковой оправкой установлен компенсатор перекоса осей шариковой оправки и заготовки в виде эластичной прокладки или шарнирного подшипника. В качестве шариковой оправки служит противоположное верхнее кольцо шарикового подшипника. В механизме для установки и вращения заготовки в качестве опоры установлен подшипник качения. Деформирующие шарики имеют диаметр, равный диаметру шариков подшипника качения. В результате повышается качество подшипника. 1 ил, 1 пр.

Изобретение относится к ультразвуковой обработке круглой пластины. Закрепляют пластину на опоре по ее краю, устанавливают источник ультразвуковых колебаний на пластине и осуществляют ее деформирование. При этом источник ультразвуковых колебаний устанавливают в центре поверхности пластины и сообщают ему ультразвуковые колебания и статическое усилие. Деформирование пластины осуществляют на величину δ, равную где R и r - соответственно наружный и внутренний радиусы пластины, мм; t - толщина пластины, мм; Е - модуль упругости материала пластины, МПа; μ - коэффициент Пуассона материала пластины; [σt] - предел текучести материала пластины, МПа. В результате исключаются искажения геометрической формы пластины и повышается качество обработки. 2 ил.

Изобретение относится к способам повышения прочности деталей с покрытиями. Осуществляют обкатку детали деформирующим элементом с одновременным пропусканием через зону контакта деформирующего элемента с обрабатываемой поверхностью импульсного электрического тока силой 2-5 кА, напряжением 2-3 В, с длительностью импульсов 0,08-0,2 с и с частотой импульсов 0,16-0,4 Гц. Обкатку осуществляют с силой 50-3000 Н со скоростью перемещения пятна деформации 50-100⋅10-3 м/с при продольной подаче 0,08-0,12 мм/об. В результате повышается адгезионная прочность между покрытием и подложкой. 1 ил., 2 табл.

Изобретение относится к способам повышения прочности деталей с покрытиями. Осуществляют обкатку детали деформирующим элементом и производят последующее упрочнение покрытия ультразвуковой обработкой с частотой ультразвуковых колебаний 18-22 кГц упрочняющим элементом. Расстояние между деформирующим и упрочняющим элементами составляет 10-30 мм, а линейная скорость перемещения пятна деформации деформирующих и упрочняющих элементов 50-100⋅10-3 м/с при продольной подаче 0,08-0,12 мм/об. В результате повышается адгезионная прочность между покрытием и подложкой. 1 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к изменению изгибной жесткости цилиндрических стержневых изделий. Осуществляют формирование остаточных напряжений при осесимметричном пластическом деформировании изделия с помощью деформирующего инструмента с конической рабочей частью. Остаточные напряжения формируют при относительном обжатии величиной 1,0%. Формируют остаточные напряжения сжатия в периферийных слоях изделия до глубины 0,3R, где R – радиус изделия и остаточные напряжения растяжения в центральной области изделия путем создания растягивающего усилия, превышающего по величине осевое усилие сжатия. В результате: повышается жесткость изделий. 3 ил.

Изобретение относится к наноструктурирующему упрочнению поверхностного слоя прецизионных деталей выглаживанием. Используют выглаживающий инструмент, содержащий индентор, изготовленный из сверхтвердого инструментального материала, и модуль охлаждения индентора жидким теплоносителем. Выглаживающий инструмент устанавливают в динамометре, три выхода которого соединяют с микропроцессором, связанным с регулируемым источником тока, который соединяют с упомянутым модулем охлаждения индентора. В процессе обработки задают силу выглаживания и поддерживают коэффициент трения. В результате повышается скорость обработки. 2 ил.

Изобретение относится к способу механической обработки заготовки из титанового сплава. Осуществляют предварительное локальное пластическое деформирование вращающейся заготовки и ее лезвийную обработку путем снятия припуска. Локальное пластическое деформирование заготовки осуществляют непрерывно движущимся с подачей шариком на величину, не превышающую значение снимаемого припуска лезвийной обработкой. При этом осуществляют постоянное давление шарика по винтовой траектории с углом наклона деформационного слоя по отношению к торцевой части заготовки. В результате повышается точность и качество механической обработки. 4 ил, 2 табл.

Изобретение относится к упрочнению изделий, преимущественно валов со шлицевыми головками, и предназначено для обработки деталей, работающих на статическое и циклическое кручение. Для повышения качества упрочняемых изделий и стабильности процесса термомеханического упрочнения. К нагретому валу 1, имеющему шлицевые головки, через разрезные втулки 2 прикладывают усилие Poc1 осевого растяжения величиной, необходимой только для исправления кривизны вала, полученной при его нагреве, и для совмещения осей шлицевых головок и шлицевых втулок 3. К торцу головок вала 1 подводят подпружиненные шлицевые втулки 3, которые имеют возвратно-вращательное движение n у торцов вала, но не совершают осевого перемещения. При совмещении шлицев вала и втулки подпружиненная втулка 3 «заскакивает» на головку, после чего к ней прикладывают большее усилие P1 для полного сопряжения шлицевых втулок и шлицевых головок вала, затем к нижней шлицевой втулке 3 прикладывают крутящий момент Мкр, необходимый для осуществления деформации кручением, а к разрезным втулкам 2 - осевое усилие Рос.2 растяжения, превышающее по величине усилие Poc1 и необходимое для осевой деформации вала с требуемым удлинением и степенью деформации 0,5-1,0%. При этом нижние разрезные втулки 2 движутся вниз с определенной скоростью Voc.p. на длине Δl (необходимое удлинение вала), что позволяет во все время закручивания поддерживать осевое усилие растяжения. 3 ил.

Изобретение относится к ультразвуковой упрочняющей обработке металлической детали. Осуществляют воздействие на поверхность детали индентором, колеблющимся с ультразвуковой частотой. Индентор прижимают к обрабатываемой поверхности под углом 60-80 градусов. Обработку проводят в безокислительной атмосфере, создаваемой аргоном или азотом, или гелием, или углекислым газом, или их смесью. В результате повышается твердость поверхностного слоя и увеличивается глубина упрочненного слоя металлических деталей. 5 ил., 2 табл.
Наверх