Устройство наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем

Изобретение относится к устройствам, предназначенным для теплофизических исследований теплозащитных покрытий на днище поршня и наблюдения за распределением тепловых потоков в днище поршня по скорости повышения температуры его внутренней поверхности при нагреве с внешней стороны, и может быть использовано для исследования эффективности влияния теплозащитного покрытия на температуру поршня. Устройство наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем включает баллон сжиженного газа с насадкой, соединенный через регулировочный кран с ротаметром, соединенным шлангом с горелкой Бунзена, которая установлена под испытуемым поршнем, помещенным в цилиндре, имеющем отверстие в нижней части и закрепленном на штативе, на котором также закреплен тепловизор, расположенный над поршнем с его внутренней стороны, причем в нижней части цилиндра установлен защитный экран, а также подвижная заслонка с возможностью перекрытия отверстия в цилиндре. Применение заявляемого устройства позволяет повысить точность определения температуры внутренней поверхности днища поршня во всех ее точках и, соответственно, повысить эффективность оценки теплозащитных покрытий на днище поршня. 1 ил.

 

Изобретение относится к устройствам, предназначенным для теплофизических исследований теплозащитных покрытий на днище поршня и наблюдения за распределением тепловых потоков в днище поршня по скорости повышения температуры его внутренней поверхности при нагреве с внешней стороны, и может быть использовано для исследования эффективности влияния теплозащитного покрытия на температуру поршня.

Известны устройства для измерения температуры поршней в виде плавких вставок-индикаторов (патент RU 2343433, МПК G01K 11/00, опубл. 10.01.2009), устройства с использованием термопар (патент RU 2096773, МПК G0125/20, опубл. 20.11.1997) и устройства с использованием термоиндикаторных красок (Абрамович Б.Г. Термоиндикаторы и их применение. Химия и химики, 2008, №5, с. 19-64).

Недостатки известных устройств заключаются в следующем.

Плавкие вставки-индикаторы регистрируют только результат нагрева до определенной температуры, но не позволяют проследить динамику изменения температуры, что необходимо для оценки теплопроводности. Устройства с использованием термопар позволяют определять температуру и скорость ее изменения с высокой точностью, но только в отдельных точках и не показывают распределение температур по поверхности. Термоиндикаторные краски (ТУ 133-67) показывают распределение температур по поверхности, но интервал измеряемых температур составляет 10…30°С, а точность измерения 5…15°С, что недостаточно для вычисления таких физических характеристик, как теплопроводность и температуропроводность, а также для измерения тепловых потоков.

Известно устройство для определения коэффициента теплопроводности тонкостенных теплозащитных покрытий (ТЗП), содержащее испытуемый образец в виде пластины с ТЗП с одной стороны и без ТЗП с обратной стороны поверхности, установленный в съемной боковой стенке теплоизолированного вентиляционного канала, причем поверхность образца с ТЗП расположена снаружи канала, а поверхность без ТЗП обращена вовнутрь канала. В противоположной стенке канала, параллельной съемной боковой стенке, выполнен вырез в виде прямоугольного окна, в котором установлено ИК-прозрачное стекло, напротив исследуемых поверхностей образца снаружи канала установлены компьютерные термографы, при этом для подогрева поверхности образца с ТЗП используют нагреватель с постоянной температурой, а для охлаждения поверхности образца с обратной стороны используют поток холодного воздуха (патент RU 2426106, МПК G01N 25/18, опубл. 10.08.2011).

Недостатки известного устройства заключаются в ограниченных функциональных возможностях, так как устройство предназначено для исследования образцов, а не готовых изделий, что не обеспечивает анализ распределения тепловых потоков в теле изделия с учетом его конечной конфигурации.

Задачей изобретения является расширение функциональных возможностей устройства.

Техническим результатом является повышение точности определения температуры внутренней поверхности днища поршня во всех ее точках и, соответственно, повышение эффективности оценки теплозащитных покрытий на днище поршня.

Указанный результат достигается устройством наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем, включающим баллон сжиженного газа с насадкой, соединенный через регулировочный кран с ротаметром, соединенным шлангом с горелкой Бунзена, которая установлена под испытуемым поршнем, помещенным в цилиндре, имеющем отверстие в нижней части и закрепленном на штативе, на котором также закреплен тепловизор, расположенный над поршнем с его внутренней стороны, причем в нижней части цилиндра установлен защитный экран, а также подвижная заслонка с возможностью перекрытия отверстия в цилиндре.

Технический результат достигается благодаря следующему.

Современные тепловизоры, основанные на регистрации инфракрасного излучения, позволяют проводить измерения температуры любых поверхностей в диапазоне от -200 до +1200°С, с разрешающей способностью до 0,1°С и скоростью записи 15…25 кадров/с. Предложенное устройство с использованием тепловизора, например, FLIR Р660 производства США, позволяет повысить точность определения температуры внутренней поверхности днища поршня во всех ее точках и достоверно наблюдать за распределением тепловых потоков в днище поршня по скорости увеличения температуры одновременно во всех точках внутренней поверхности днища поршня. Это обеспечивает повышение эффективности оценки теплозащитных покрытий на днище поршня.

Сущность изобретения поясняется чертежом, где схематично представлено устройство наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем.

Устройство включает в себя баллон сжиженного газа пропан/бутан (по ГОСТ 15860-84) с насадкой 1, соединенный через регулировочный кран 2 с ротаметром 3, соединенным шлангом с горелкой Бунзена 4, которая установлена под испытуемым поршнем 5, помещенным в цилиндре 6, имеющем отверстие в нижней части и закрепленном на штативе 7, на котором также закреплен тепловизор 8, расположенный над поршнем с его внутренней стороны, причем в нижней части цилиндра установлен защитный экран 9 для защиты тепловизора от восходящего горячего потока, а также подвижная заслонка 10 для установления времени начала нагрева.

Устройство работает следующим образом.

В цилиндр 6 вставляют поршень 5, который удерживается силами трения или любым другим способом. Под поршнем соосно с ним устанавливают газовую горелку Бунзена 4, с помощью которой осуществляют нагрев поршня в цилиндре и которая имитирует горение рабочей смеси в двигателе внутреннего сгорания. Режим горения, зависящий от расхода газа, регулируется краном 2 и контролируется с помощью ротаметра 3. Расстояние между горелкой и поршнем подбирают экспериментально в зависимости от размеров поршня и типа горелки. Сверху, соосно с поршнем, на штативе 7 закрепляют тепловизор 8. Расстояние от поршня до тепловизора устанавливают в зависимости от требуемого масштаба изображения, размера поршня и диапазона фокусировок тепловизора. В исходном положении заслонка 10 закрывает отверстие цилиндра 6 и поршень, находящийся в нем. С помощью крана 2 и ротаметра 3 устанавливают требуемый расход газа, который подбирается экспериментально, в зависимости от размеров поршня и типа горелки. Газ поджигают и, по достижении устойчивого режима горения, открывают заслонку 10, одновременно включая запись на тепловизоре 8. Нагрев продолжают до достижения максимальной заданной температуры, которую контролируют на экране тепловизора визуально. Для окончания нагрева краном 2 перекрывают газ.

Поле температур на внутренней поверхности головки поршня снимается тепловизором в режиме видео со скоростью записи 15...25 кадров/с. Путем анализа последовательно записанных кадров выявляют характерные области нагрева, определяют их температуру в каждый момент времени и вычисляют скорость изменения температуры. Оценка теплофизических характеристик осуществляется методом сравнения с характеристиками эталонных образцов поршней. Например, можно сравнивать характеристики поршней без покрытия и с покрытиями различных типов и толщин; поршней с различной конфигурацией головки и днища; поршней надлежащего качества и имеющих дефекты. В последнем случае устройство может использоваться как средство неразрушающего контроля качества готовых изделий.

Таким образом, применение заявляемого устройства позволяет повысить точность определения температуры внутренней поверхности днища поршня во всех ее точках и, соответственно, повысить эффективность оценки теплозащитных покрытий на днище поршня.

Устройство наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем, включающее баллон сжиженного газа с насадкой, соединенный через регулировочный кран с ротаметром, соединенным шлангом с горелкой Бунзена, которая установлена под испытуемым поршнем, помещенным в цилиндре, имеющем отверстие в нижней части и закрепленном на штативе, на котором также закреплен тепловизор, расположенный над поршнем с его внутренней стороны, причем в нижней части цилиндра установлен защитный экран, а также подвижная заслонка с возможностью перекрытия отверстия в цилиндре.



 

Похожие патенты:

Изобретение относится к области измерения теплофизических характеристик физических сред и может быть использовано в морской биологии и химии для расчета температурных условий существования биологических объектов и течения химических реакций в верхнем слое донных осадков в условиях изменяющейся температуры водного слоя.

Изобретение относится к способам измерения теплофизических свойств веществ и может быть использовано в геофизике для оценки глубинных тепловых полей, условий образования и разрушения гидратов углеводородных газов в флюидонасыщенных породах пластовых резервуаров месторождений углеводородов, исследования анизотропии теплопроводности насыщенных горных пород.

Изобретение относится к области теплофизических измерений и может быть использовано в строительной теплотехнике и различных отраслях промышленности. Согласно заявленному способу на поверхность исследуемого твердого строительного материала воздействуют электромагнитным полем СВЧ-диапазона с частотой не менее 10 ГГц, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела.

Изобретение относится к наноэлектронике и наноэлектромеханике. Для нагрева пленочного образца и измерения его электрического сопротивления помещают образец в корпус кварцевого реактора.

Изобретение относится к области теплофизических измерений и может быть использовано в строительной теплотехнике и различных отраслях промышленности. Согласно заявленному способу осуществляют нагрев исследуемого объекта воздействием импульса СВЧ-излучения, измерение в заданный момент времени после воздействия импульса СВЧ-излучения избыточной температуры на теплоизолированной от окружающей среды поверхности исследуемого изделия в двух точках, находящихся на расстояниях Х1 и Х2 от плоскости электромагнитного воздействия.

Изобретение относится к области теплофизических измерений и может быть использовано для определения относительной теплопроводности материалов. Плоский исследуемый образец известной толщины помещают между двумя алмазными наковальнями с теплопроводностью, существенно превышающей теплопроводность образца, и подвергают высокому давлению, предварительно установив в верхнюю наковальню нагреватель.

Изобретение относится к области теплофизики и может быть использовано для определения тепловой проводимости контактов между прозрачными образцами или между прозрачным и высокотеплопроводным образцами.

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициента теплопроводности жидких теплоизоляционных материалов.

Изобретение относится к области технической физики и предназначено для измерения теплопроводности строительных и теплоизоляционных и иных материалов. Устройство для измерения теплопроводности включает тепловой блок, состоящий из малого измерительного нагревателя, малого охранного нагревательного элемента, выполняющего охранную функцию в случае измерения образцов малых размеров или единичного образца крупноформатной конструкции или выполняющего функцию большого измерительного нагревателя в случае измерения образцов больших размеров, большого охранного нагревательного элемента и двух охранных пластин, холодильный блок, состоящий из основания и охранной пластины, установленной под основанием, и измерительную зону, расположенную между тепловым и холодильным блоками.

Изобретение относится к области изучения теплофизических свойств материалов и может быть использовано для определения теплопроводности материалов. Способы характеристики неоднородности и определения теплопроводности материалов предусматривают нагрев поверхности образцов неоднородных материалов в процессе движения относительно друг друга образцов, источника нагрева и блока регистрации температуры.

Изобретение относится к области измерительной техники и может быть использовано для выявления несанкционированных утечек тепловой энергии. Предложен способ калибровки и поверки измерительной системы узла учета тепловой энергии и теплоносителя с возмущениями, основанный на переключении потока теплоносителя с подающего трубопровода через образцовый узел калибровки на возвратный трубопровод и отключении измерительной системы от объекта потребления.

Изобретение относится к области теплометрии и может быть использовано при калибровке датчиков теплового потока. Способ калибровки термоэлектрического датчика теплового потока заключается в том, что собственное электрическое сопротивление датчика теплового потока измеряют при пропускании переменного тока величины от 1 до 20 мА, а термоэлектрическую добротность измеряют при пропускании постоянного тока величины от 1 до 20 мА, после чего определяют чувствительность термоэлектрического датчика из следующего выражения: где Se - чувствительность термоэлектрического датчика; ACR - собственное сопротивление термоэлектрического датчика; Z - термоэлектрическая добротность датчика; s - площадь чувствительной поверхности термоэлектрического датчика; α - коэффициент Зеебека (термоЭДС) термоэлемента; 2N - количество термоэлементов или спаев в термоэлектрическом датчике.

Изобретение относится к области измерений термомагнитных свойств материалов и может найти применение при разработке технологии магнитного охлаждения и/или нагрева вблизи комнатной температуры, для применений в промышленности и в быту.

Изобретение относится к области теплофизических измерений и может быть использовано для определения тепловых характеристик отопительных приборов. Согласно заявленному способу тепловой режим помещения, в котором находится отопительный прибор, приводится в нестационарное во времени состояние, измеряется поведение во времени средней температуры отопительного прибора, средней температуры воздуха в помещении, средней температуры внутренних ограждений и температуры внешней среды.

Изобретение относится к теплотехнике и может быть использовано в системах отопления и кондиционирования. Устройство (1) для измерения тепловой энергии, излучаемой радиаторами, конвекторами или подобными устройствами, в частности для пропорционального распределения стоимости отопления и/или кондиционирования, содержащее радиатор (2), соединенный, через подающий патрубок (3) и возвратный патрубок (4), соответственно с трубой (5) для подачи горячей воды, подаваемой котлом (7) к радиатору (2), и с трубой (6) для возврата воды на выходе из радиатора (2) к указанному бойлеру (7).

Изобретение относится к измерительной теплофизике и может быть использовано для изучения теплофизических свойств материалов. Цифровой датчик теплового потока состоит из двух параллельных термобатарей.

Изобретение относится к области теплоэнергетики и может быть использовано для определения фактической величины тепловых потерь в водяных и паровых тепловых сетях системы теплоснабжения подземной прокладки в режиме эксплуатации.

Изобретение относится к области исследования свойств материалов с помощью калориметрических измерений и может быть использовано в калориметрах переменной температуры.

Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности.

Изобретение относится к приборам и методам исследования теплофизических свойств веществ с применением дифференциального калориметра и может найти применение при исследовании веществ и смесей веществ естественного происхождения, применяемых в пищевой и фармацевтической отраслях промышленности.

Группа изобретений относится к устройствам для измерения тепловых потоков, а также к способам установки устройств для измерения теплового потока в стенке камеры сгорания, и может быть использована для измерения тепловых потоков в камерах сгорания двигателей при высоких давлениях и температурах. Устройство для измерения теплового потока в камере сгорания содержит калориметрическое тело с заделанным в него спаем проводов термопары и теплоизолирующее кольцо. Причем калориметрическое тело выполнено в виде цилиндра с торцевым буртиком со стороны, противоположной тепловоспринимающей поверхности цилиндра. При этом провода термопары расположены в керамической трубке, на которую последовательно установлены теплоизолирующее кольцо и металлическая кольцевая заглушка с резьбой на внешней поверхности для поджима теплоизолирующего кольца к торцевому буртику цилиндра. Причем на цилиндр калориметрического тела под торцевым буртиком установлена теплоизолирующая шайба. Предложен также способ установки предлагаемого устройства для измерения теплового потока в стенке камеры сгорания. Технический результат - повышение точности измерения теплового потока от высокотемпературной среды к стенке камеры сгорания при высоких давлениях в камере сгорания. 2 н. и 2 з.п. ф-лы, 1 ил.
Наверх