Газожидкостной сепаратор

Изобретение предназначено для разделения газожидкостной смеси в поле центробежных сил и может найти промышленное применение на нефтяных промыслах для разделения газожидкостной смеси. Газожидкостный сепаратор содержит вертикальный цилиндрический корпус, входной, выходной и сливной патрубки, сепарационный пакет. Сепарационный пакет выполнен в виде эксцентрично установленного отбойника, установленного по ходу вращения газожидкостного потока и представляющего собой цилиндрическую обечайку с перфорацией в нижней части и вырезом. При этом отбойник установлен таким образом, что образует с корпусом канал щелевого сопла, ограниченного боковыми стенками и направленного в вырез отбойника. Минимальный зазор между отбойником и корпусом составляет 3 ÷ 5 мм и содержит герметичный замок, при этом зазор расположен напротив щелевого сопла. По центру отбойника расположен патрубок выхода газа, а зазор между отбойником и корпусом закрыт перегородкой с отверстиями для слива конденсата. Техническим результатом является упрощение конструкции газожидкостного сепаратора и повышение надежности и прочности конструкции элементов завихрения. 2 ил.

 

Изобретение предназначено для разделения газожидкостной смеси в поле центробежных сил.

Известен сепаратор, который включает вертикальный цилиндрический корпус, горизонтальную перегородку, входной, выходной, сливной патрубки, дефлектор, вертикальный сепарационный пакет, состоящий из вертикальных плоских изогнутых сепарационных пластин. Для улучшения эффективности аппарата и увеличения его производительности по жидкой и газовой фазам изогнутые концы пластин направлены в разные стороны касательно к наружному и внутреннему диаметрам сепарационного пакета, осевая линия входного патрубка по горизонтали смещена относительно осевой линии корпуса аппарата на 1/2 диаметра входного патрубка, при этом диаметр входного патрубка не превышает 1/4 диаметра корпуса, дефлектор, установленный по ходу вращения газожидкостного потока, имеет максимально допустимое сечение, причем по ходу потока он сужается по горизонтали и возрастает по высоте, сохраняя при этом площадь поперечного сечения, в конце верхней суженной части дефлектора установлена дугообразная пластина, нисходящая по ходу газожидкостного потока и направленная по отношению к горизонтали под углом 15°-30°, по ходу вращения газожидкостного потока с зазором к внутренней стороне корпуса установлена изогнутая пластина, которая своим нижним концом заходит под нижнюю крышку дефлектора [патент РФ №2244584, кл. B01D 45/12, опубл. 20.01.2005 г. ].

Недостатком известной конструкции является сложное конструктивное исполнение.

Наиболее близким к заявляемому является сепаратор, содержащий вертикальный цилиндрический корпус, горизонтальную крышку, входной, выходной, сливной патрубки, дефлектор, установленный по ходу вращения газожидкостного потока, вертикальный сепарационный пакет с плоским днищем, состоящий из плоских изогнутых сепарационных пластин, образующих щелевые каналы в зоне нахлестки и своими вертикальными изогнутыми концами направленных в разные стороны касательно относительно наружного и внутреннего диаметров сепарационного пакета, ложное днище, отличающийся тем, что в центре плоского днища сепарационного пакета и ложного днища выполнены сквозные отверстия, в которые вмонтирован пустотелый цилиндр, основание которого установлено на ложном днище, а верхняя кромка цилиндра приподнята относительно поверхности плоского днища, по наружному диаметру нижней поверхности ложного днища смонтирован цилиндрический вертикальный рассеиватель с просечками, а непосредственно под пустотелым цилиндром прикреплен диск [патент №2320395, МПК B01D 45/12, опубл. 27.03.2008 г. ].

Недостатком устройства является сложность конструктивного исполнения сепаратора, невысокая надежность устройства.

Технический результат - упрощение конструкции газожидкостного сепаратора и повышение надежности и прочности конструкции элементов завихрения за счет замены их на более прочные и легкие в изготовлении и эксплуатации.

Указанный технический результат достигается тем, что в газожидкостной сепаратор, содержащий вертикальный цилиндрический корпус, входной, выходной и сливной патрубки, сепарационный пакет, имеет особенность выполнения, заключающуюся в том, что сепарационный пакет выполнен в виде эксцентрично установленного отбойника, установленного по ходу вращения газожидкостного потока и представляющего собой цилиндрическую обечайку с перфорацией в нижней части и вырезом, при этом отбойник установлен таким образом, что образует с корпусом канал щелевого сопла, ограниченного боковыми стенками и направленного в вырез отбойника, минимальный зазор между отбойником и корпусом содержит герметичный замок, при этом зазор расположен напротив щелевого сопла, по центру отбойника расположен патрубок выхода газа, а зазор между отбойником и корпусом закрыт перегородкой с отверстиями для слива конденсата.

Сепаратор состоит из цилиндрического корпуса 1 с входным патрубком 2 газожидкостной смеси и выходным патрубком 3 выхода газа, сепарационный пакет, выполненный в виде эксцентрично установленного отбойника 4, установленного по ходу вращения газожидкостного потока и представляющего собой цилиндрическую обечайку с вырезом 5 для входа газожидкостного потока внутрь отбойника 4, щелью 6 для отвода отделенной жидкости в верхней части и перфорацией 7 для отвода остатков отделенной жидкости в его нижней части. Отбойник 4 образует с корпусом 1 канал щелевого сопла 8, ограниченного боковыми стенками 9 и направленного в вырез 5 отбойника. Минимальный зазор между отбойником 4 и корпусом 1 составляет 3…5 мм и располагается напротив щелевого сопла 8. В минимальном щелевом зазоре имеется герметичный замок 10. В нижней части сепаратора расположен конденсатосборник 11 с патрубком выхода конденсата 12. Внутри отбойника 4 размещен патрубок выхода газа 3, располагающийся по оси отбойника 4. Межтрубное пространство между корпусом 1 и отбойником 4 в нижней его части ограничено перегородкой 13 с отверстием 14 для слива конденсата вдоль стенки корпуса 1 в конденсатосборник 11. Канал щелевого сопла 8 между корпусом 1 и отбойником 4 в нижней части закрыт перегородкой 13 с отверстиями для слива конденсата (фиг. 1 и фиг. 2).

Устройство работает следующим образом.

Газожидкостная смесь подается в газожидкостной сепаратор через входной патрубок 2 и ударяется в отбойник 4, при этом крупные капли осаждаются на отбойнике и коагулируются. Затем поток, двигаясь по каналу щелевого сопла 8 между корпусом 1 и отбойником 4, ускоряется, закручивается вдоль поверхности корпуса 1 и через вырез 5 в отбойнике 4 попадает на внутреннюю поверхность отбойника, где продолжает закручиваться в кольцевом канале, образованном отбойником 4 и патрубком выхода газа 3. Крупные капли в потоке под действием сил инерции, сохраняя прямолинейную направленность движения, попадают на стенку корпуса сепаратора и по ней пленкой стекают в щель между отбойником 4 и корпусом 1 скапливаясь возле замка 10 и стекая вдоль него в межтрубное пространство, образованное отбойником 4 и корпусом 1. Под действием центробежных сил, возникающих при вращении потока в кольцевом канале между отбойником 4 и патрубком выхода газа 3, газожидкостная смесь разделяется на газ и жидкость. Осажденная жидкость удаляется с внутренней поверхности отбойника в межтрубное пространство через щель 6. Таким образом, большая часть жидкости улавливается и отводится в межтрубное пространство в начале сепарации, не контактируя с циркулирующим газовым потоком и не разбрызгиваясь в дальнейшем потоком газа из щелевого сопла 8. Дальнейшее вращение газового потока в кольцевом канале между отбойником 4 и патрубком выхода газа 3 способствует отделению оставшейся в потоке жидкости, которая оседает в виде пленки на отбойнике 4 и движется к нижней части отбойника, где имеются отверстия перфорации 7 прямоугольной формы, сквозь которые уловленная жидкость также отводится в межтрубное пространство между корпусом 1 и отбойником 4. Уловленная жидкость, попавшая в межтрубное пространство, стекает в конденсатосборник 11 через отверстие 14 в перегородке 13 по стенке корпуса 1. На выходе из кольцевого канала между отбойником 4 и патрубком выхода газа 3 поток расширяется, теряя свою скорость, при этом очищенный от жидкости газ находится ближе к центру потока, откуда он попадает в патрубок 3 выхода газа. Уловленная жидкость откачивается из конденсатосборника 11 через патрубок выхода конденсата 12.

Таким образом, описанный газожидкостный сепаратор позволяет эффективно очищать поток газа как от капельной жидкости, находящейся в газе, так и от жидкости, которая может поступать в патрубок 2 входа газа в виде жидкостных пробок или уже выпавшей из газа жидкости, увлекаемой газом в виде пленки или ручья в сепаратор, без опасения ее разбрызгивания или повреждения элементов сепаратора.

Предлагаемое изобретение находит промышленное применение на нефтяных промыслах для разделения газожидкостной смеси.

Газожидкостной сепаратор, содержащий вертикальный цилиндрический корпус, входной, выходной и сливной патрубки, сепарационный пакет, отличающийся тем, что сепарационный пакет выполнен в виде эксцентрично установленного отбойника, установленного по ходу вращения газожидкостного потока и представляющего собой цилиндрическую обечайку с перфорацией в нижней части и вырезом, при этом отбойник установлен таким образом, что образует с корпусом канал щелевого сопла, ограниченного боковыми стенками и направленного в вырез отбойника, минимальный зазор между отбойником и корпусом содержит герметичный замок, при этом зазор расположен напротив щелевого сопла, по центру отбойника расположен патрубок выхода газа, а зазор между отбойником и корпусом закрыт перегородкой с отверстиями для слива конденсата.



 

Похожие патенты:

Изобретение относится к прямоточным центробежным сепараторам для отделения жидкости и твердых частиц из газожидкостного потока за счет центробежной силы и может быть использовано в газовой, нефтегазовой, химической, горнорудной промышленности, в теплоэнергетике и в других областях техники.

Изобретение относится к области улавливания мелкодисперсных, аэрозольных и растворенных жидких частиц, а также механических примесей из газового потока с использованием центробежных сил и может применяться в нефтяной, газовой, химической и других отраслях промышленности.

Группа изобретений относится к газовой, нефтяной, химической промышленности и может быть использована в процессах и аппаратах для сепарации жидкости и отделения механических примесей из газового потока.

Группа изобретений относится к способу эксплуатации дожимных насосных станций, содержащих центробежные сепараторные фильтры, на нефтяных месторождениях. Центробежный сепараторный фильтр содержит вертикальный корпус, имеющий центральную часть, по существу, цилиндрической формы и верхнюю и нижнюю части, по существу, полусферической формы, тангенциальный впуск текучей среды, содержащей нефть и частицы, подлежащие фильтрации, расположенный в верхней части корпуса, осевую трубу с выпуском отфильтрованной текучей среды, имеющую концентрическое расположение с корпусом и закрепленную в его верхней части, множество конусных пластин, расположенных вокруг осевой трубы друг под другом, причем основание конусных пластин направлено вниз относительно положения корпуса, выпуск удаленных из текучей среды частиц, расположенный в нижней части корпуса.

Группа изобретений относится к способу сепарации жидкости от газа и к устройству для его осуществления, например, перед процессом осушки газа от влаги или процессом его компримирования.

Изобретение относится к устройству для очистки газа, который загрязнен частицами. Устройство для очистки газа содержит центробежный сепаратор с центробежным ротором для отделения частиц из газа и приводное устройство для вращения центробежного ротора вокруг оси вращения.

Изобретение предназначено для сепарации текучих сред. Циклонный сепаратор содержит трубчатый корпус, в котором ускоряется текучая среда, и сообщающие вихревое движение средства, предназначенные для завихрения текучей среды в кольцеобразном пространстве между корпусом и центральным элементом, установленным внутри корпуса, в котором текучая среда низкого давления впрыснута через центральное отверстие центрального элемента.

Изобретение относится к газовой и нефтяной промышленности и может быть использовано в других отраслях промышленности в процессах разделения неоднородных смесей в центробежном поле.

Изобретение относится к системе очистки газов, которая может быть использована для устранения как твердых загрязнений, так и для удаления влаги из газообразных сред.

Изобретение относится к технике очистки запыленных газов и может быть использовано в химической, пищевой и металлургической промышленности. Вращающийся фильтр для очистки газов включает вертикальный цилиндрический корпус с коническим днищем, снабженным штуцером для удаления пыли, вращающуюся выхлопную трубу, нижняя часть которой изготовлена из пористого материала, расположена ниже штуцера подачи запыленного газового потока и выполняет функцию фильтрующего элемента, штуцер для отвода очищенного газа, штуцер для подачи в аппарат запыленного газового потока, расположенный тангенциально к корпусу, крышку с соединительным штуцером, ветряное колесо для вращения выхлопной трубы, расположенное на уровне штуцера подачи пылегазового потока, по ходу движения газа.

Изобретение относится к центробежному сепаратору для очистки газа, содержащего масло, главным образом для очистки картерных газов из двигателя внутреннего сгорания, такого как дизельный двигатель. Центробежный сепаратор содержит неподвижный корпус, образующий разделительное пространство и содержащий первую концевую часть и противоположную вторую концевую часть, причем неподвижный корпус имеет поверхность внутренней стенки, обращенную к разделительному пространству, впускной канал, продолжающийся к разделительному пространству и образующий впуск для очищаемого газа, центробежный ротор, который предусмотрен в разделительном пространстве и продолжается от первой концевой части ко второй концевой части, причем центробежный ротор содержит шпиндель и множество разделительных дисков, удерживаемых шпинделем. Сепаратор также содержит приводной элемент, предусмотренный для вращения центробежного ротора в направлении вращения вокруг оси вращения, чтобы создать вращающийся объем газа, за счет чего масло отделяется от газа посредством центробежных сил, газовый выпускной канал для выпуска очищенного газа из разделительного пространства, масляный выпуск для выпуска масла из разделительного пространства и устройство подачи масла. Устройство подачи масла выполнено с возможностью подачи такого количества масла в разделительное пространство, чтобы текущая масляная пленка создавалась на поверхности внутренней стенки при работе центробежного сепаратора. Техническим результатом является уменьшение вязких скоплений в разделительном пространстве центробежного сепаратора, особенно на поверхности внутренней стенки корпуса центробежного сепаратора. 16 з.п. ф-лы, 3 ил.

Группа изобретений относится к области фармацевтической и пищевой промышленности, в частности к оборудованию, используемому в медицинской сфере деятельности, ветеринарных служб, служб контроля производственных объектов и обеспечивающему возможность улавливания частиц и микроорганизмов, присутствующих в окружающем воздухе, их подсчета и идентификации. Портативное устройство (7) для улавливания частиц и микроорганизмов, присутствующих в окружающем воздухе, содержит циклоническую камеру (8) центрифугирования с устройством (16) подачи внешнего воздуха и устройством выпуска воздуха из циклонической камеры (8). Причем циклоническая камера выполнена составной. Портативное устройство снабжено устройством соединения (19), выполненным в виде Т-образной формы, одно из ответвлений которого связано с устройством выпуска. Два других его ответвления выполнены в виде изогнутых трубок (20), с возможностью подключения через цилиндрические насадки (21) к приборам выпуска воздуха в индивидуальный механизированный аппарат защиты органов дыхания (А). Последний включает маску с трубкой, устройство подачи воздуха через фильтр (4). Фильтр (4) выполнен с возможностью монтирования на него портативного устройства (7). В способе улавливания частиц и микроорганизмов из окружающего воздуха, включающем засасывание окружающего воздуха посредством портативной аппаратуры и последующее отделение частиц и микроорганизмов и их сбор, используют индивидуальный аппарат защиты органов дыхания (А), содержащий портативное устройство (7) улавливания частиц и микроорганизмов. Группа изобретений обеспечивает повышение эффективности эксплуатации, за счет расширения технологических возможностей, и улавливания, отделения и сбора частиц и микроорганизмов из окружающего воздуха при одновременном обеспечении защиты органов дыхания человека от облучения, воздействия биологических и/или химических рисков. 3 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к газодобывающей промышленности и предназначено для очистки природного газа от механических примесей, выносимых с углеводородной продукцией из скважин эксплуатационного фонда. Устройство для очистки природного газа содержит цилиндрический корпус с коаксиально установленным фильтрующим элементом, завихритель, установленный под углом к оси фильтрующего элемента. Корпус в верхней части снабжен двумя входными штуцерами для равномерного захода газа. В нижней части корпуса установлен промывочный штуцер. Завихритель выполнен в виде стальной пластины, расположенной по всей длине фильтрующего элемента. Техническим результатом является повышение надежности и безаварийности работы системы очистки газа. 2 ил.

Группа изобретений относится к сепарационному устройству и способу сепарирования потока текучей среды в сепарационном устройстве. Устройство для сепарирования потока текучей среды, состоящего по меньшей мере из двух текучих сред, различающихся по плотности, содержит первый трубчатый элемент, снабженный компонентом, создающим вращение в потоке текучей среды за входом в первый трубчатый элемент, и второй трубчатый элемент, по меньшей мере, частично расположенный внутри первого трубчатого элемента за компонентом, создающим вращение, и формирующий выход для текучих сред с меньшей плотностью. При этом первый и второй трубчатые элементы образуют между внутренней поверхностью первого трубчатого элемента и наружной поверхностью второго трубчатого элемента кольцевой зазор, соединенный с первой выпускной секцией для текучих сред, имеющих более высокую плотность. Второй трубчатый элемент, по меньшей мере, на части своей длины снабжен сквозными отверстиями, проходящими сквозь его стенку и ведущими во вторую выпускную секцию для текучих сред, имеющих более высокую плотность, а первая выпускная секция и вторая выпускная секция присоединены к общему контейнеру, снабженному выходом для текучих сред, имеющих более высокую плотность. Согласно способу сепарирования потока многофазной текучей среды в трубе приводят поток текучей среды во вращение посредством компонента, создающего вращение, который установлен за входом в первый трубчатый элемент. На первой стадии сепарирования обеспечивают возможность текучим средам, имеющим более высокую плотность, отделиться на заданное расстояние от потока текучих сред, имеющих меньшую плотность. После этого проводят отделившиеся текучие среды, имеющие меньшую плотность, через второй трубчатый элемент, по меньшей мере, частично расположенный внутри первого трубчатого элемента, сепарируют текучие среды, имеющие более высокую плотность, в первую выпускную секцию, отводят через отверстия, проходящие сквозь стенку второго трубчатого элемента, захваченные текучие среды, имеющие более высокую плотность, от сепарированных текучих сред, имеющих меньшую плотность, и направляют захваченные текучие среды, имеющие более высокую плотность, во вторую выпускную секцию. Техническим результатом группы изобретений является повышение эффективности сепарации при минимальных потерях давления в протекающей через сепаратор текучей среде. 2 н. и 10 з.п. ф-лы, 6 ил.

Сепаратор // 2602095
Группа изобретений относится к сепаратору для отделения загрязняющих веществ в виде твердых частиц, жидкости и аэрозоля от потока текучей среды, а также к системе вентиляции картера двигателя внутреннего сгорания, содержащей такой сепаратор. Сепаратор для отделения загрязняющих веществ от потока текучей среды содержит первый вход, предназначенный для впуска первого потока текучей среды, содержащего увлеченные им загрязняющие вещества, первый и второй регулируемые инерционные сепараторы, которые соединены один с другим последовательно, и насос, соединенный со вторым регулируемым инерционным сепаратором и выполненный так, чтобы создавать зону пониженного давления для всасывания первого потока текучей среды через первый и второй регулируемые инерционные сепараторы. Первый регулируемый инерционный сепаратор соединен с первым входом для впуска первого потока текучей среды с первого входа. При этом каждый из регулируемых инерционных сепараторов предназначен для отделения загрязняющих веществ от первого потока текучей среды и содержит первую камеру, предназначенную для впуска первого потока текучей среды, вторую камеру, соединенную с первой камерой по меньшей мере одним отверстием, выполненным так, что первый поток текучей среды ускоряется при прохождении через отверстие и сталкивается с поверхностью отбойника, так что загрязняющие вещества отделяются от первого потока текучей среды, и привод, выполненный так, чтобы регулировать площадь пропускного сечения по меньшей мере одного отверстия в соответствии с перепадом давления между давлением текучей среды в первой камере и эталонным давлением текучей среды в третьей камере. Система вентиляции картера содержит канал для картерных газов, предназначенный для подачи картерных газов из картера, и сепаратор, в котором первый вход соединен с каналом для картерных газов. Двигатель внутреннего сгорания содержит систему вентиляции картера, в которой насос содержит четвертую камеру, имеющую второй вход для впуска второго потока текучей среды в четвертую камеру, при этом во втором входе расположена форсунка в виде сужающегося сопла для ускорения второго потока текучей среды, и третий вход для впуска первого потока текучей среды, причем третий вход расположен относительно второго входа так, что второй поток текучей среды может увлекать и ускорять первый поток текучей среды, и в которой второй вход предназначен для впуска потока газа под давлением, отводимого от турбонагнетателя, и сепаратор предназначен для отделения картерного масла от картерных газов. Техническим результатом является повышение эффективности работы системы вентиляции картера двигателя внутреннего сгорания, а также предотвращение повышения давления на входе текучей среды до неприемлемых значений. 3 н. и 12 з.п. ф-лы, 16 ил.

Способ газодинамической сепарации относится к технике низкотемпературной обработки многокомпонентных углеводородных газов - природных и нефтяных, а именно для осушки газа путем конденсации и сепарации из него водных и/или углеводородных компонентов, и может найти применение в системах сбора, подготовки и переработки многокомпонентных углеводородных газов. Способ газодинамической сепарации включает подачу потока высоконапорного многокомпонентного углеводородного газа в сопло, его изоэнтальпийное расширение и охлаждение при течении в сопле, конденсацию компонентов в охлажденном потоке газа, отделение конденсата от газовой фазы и повышение его давления путем торможения в диффузоре. При этом отделенный углеводородный конденсат при контакте с исходным газом частично испаряется и при этом дополнительно охлаждается, а исходный газ охлаждают при теплообмене с хладагентом - дополнительно охлажденным конденсатом. Техническим результатом является повышение эффективности газодинамической сепарации и снижение энергозатрат. 3 зп. ф-лы, 1 ил.

Изобретение относится к технике очистки газов от примесей в виде твердых частиц, капельной жидкости. Аппарат для извлечения примеси из газа содержит улиточный корпус, ротор с каналами, образованными наклонными к радиальному направлению пластинами, осевой патрубок со спрямляющими поток лопатками для вывода очищенного газа. Вал ротора выполнен полым и перфорированным, на валу закреплен перфорированный цилиндр. Улиточный корпус соединен с криволинейным каналом, на внутренней стенке которого за сечением ввода загрязненного газа установлена подпружиненная лопатка и выполнено окно для вывода части газа из улиточного корпуса в криволинейный канал, На периферии криволинейного канала перед входом в улиточный корпус для вывода отсепарированной примеси вмонтирован патрубок с гидравлическим затвором. Криволинейный канал, улиточный корпус, ротор, патрубок для вывода очищенного газа, патрубок с гидравлическим затвором закреплены в обечайке высокого давления с патрубками ввода газа и вывода примеси в виде суспензии. Внутри осевого патрубка со спрямляющими поток лопатками вывода очищенного газа из ротора, в подшипниковом корпусе, закреплено сальниковое устройство с трубкой для ввода жидкости в полый перфорированный вал. Техническим результатом является повышение эффективности очистки газа при переменных режимах работы и проведение процесса очистки в условиях высокого давления газа. 3 ил.

Заявляемое техническое решение относится к области отделения дисперсных частиц от газов и может найти применение в нефтяной, газовой и других отраслях промышленности. Сепаратор газожидкостный содержит вертикальный корпус, входной патрубок, расположенный тангенциально к внутренней поверхности вертикального корпуса, выходное отверстие, сливной патрубок, сепарирующее устройство, выполненное в виде малогабаритного сепаратора вихревого типа. Входное отверстие сепарирующего устройства расположено выше входного патрубка сепаратора газожидкостного. Техническим результатом является повышение эффективности работы сепаратора за счет двухступенчатой сепарации газа. 4 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Делитель-концентратор образован размещенными одна над другой цилиндрическими обечайками с уменьшающимися диаметрами по ходу потока, каждая из которых соединена патрубком с топочной камерой и содержит подведенный к верхней обечайке трубопровод, а в нижней обечайке которого коаксиально расположены цилиндрическая полая вставка с завихрителем и рассекатель. Внутри обечаек расположен трубопровод, который разъединен на верхнюю и нижнюю части, нижняя часть трубопровода образована уменьшающимися по ходу потока трубами, на которых расположены один или несколько отводов грубой пыли, размещенных напротив патрубков, находящихся на цилиндрических обечайках и соединенных с топочной камерой, причем в нижней трубе, соединенной с цилиндрической полой вставкой, установлен дополнительный завихритель, а верхняя часть трубопровода своим нижним концом соединена с объемом последней по ходу потока цилиндрической обечайки. Диаметр отводов грубой пыли равен разнице диаметров, уменьшающихся по ходу потока труб нижней части трубопровода. В верхней части трубопровода установлен регулирующий клапан. Изобретение позволяет повысить полноту сгорания топлива без вредных выбросов. 2 з.п. ф-лы, 1 ил.

Изобретение относится к вихревым пылеуловителям. Вихревой пылеуловитель содержит цилиндрический корпус, в верхней части которого расположены осевой вывод очищенного газа и верхний тангенциальный ввод вторичного потока очищаемого газа, имеющий прямоугольное сечение с соотношением сторон, равным 1/(1,52,0), а в нижней части корпуса расположены нижний тангенциальный ввод первичного потока очищаемого газа, имеющий прямоугольное поперечное сечение с соотношением сторон, равным 1/(1,52,0), с размещенными с ним последовательно начальным цилиндрическим прямым участком, криволинейным цилиндрическим коленом с радиусом поворота оси 2,02,5 величины его внутреннего диаметра и с завихрителем очищаемого газа, а также оконечным цилиндрическим прямым участком, полости которых сообщены между собой. При этом начальный и оконечный участки расположены относительно друг друга под углом 90±2°, в торце начального участка установлен люк осмотра с внутренним диаметром, равным 0,70,8 величины внутреннего диаметра начального участка, на внешней поверхности оконечного прямого участка установлена отбойная шайба, выполненная в виде пустотелого усеченного конуса, большее основание которого обращено вниз и установлено на уровне нижнего конца цилиндрического корпуса с кольцевым зазором между ними и углом наклона образующей к большому основанию 6075°. Цилиндрический корпус установлен на цилиндроконический пылесборник большего диаметра, при этом соотношение их внутренних диаметров равно 1/(1,32,0). Патрубок выгрузки уловленной пыли расположен в нижней части пылесборника. Вихревой пылеуловитель дополнительно содержит ввод чистого воздуха, который установлен коаксиально в центре нижнего тангенциального ввода первичного потока очищаемого газа и выполнен в виде начального цилиндрического прямого участка, цилиндрического криволинейного направляющего колена с радиусом поворота оси 2,03,0 величины его внутреннего диаметра и оконечного цилиндрического прямого участка, полости которых сообщены между собой. При этом начальный и оконечный участки расположены относительно друг друга под углом 90±2°, на верхнем конце оконечного цилиндрическою прямого участка ввода чистого воздуха установлена заглушка, а на его цилиндрической поверхности выполнены вертикальные прямоугольные прорези с соотношением сторон, равным 1/(3,55,0), и закреплены тангенциально направляющие лопатки под углом 1520°. Коаксиально оконечному цилиндрическому прямому участку ввода чистого воздуха установлен цилиндр - разделитель, закрепленный на оконечном цилиндрическом прямом участке ввода чистого воздуха, на его цилиндрической поверхности выполнены вертикальные прямоугольные прорези с соотношением сторон, равным 1/(3,55,0), и закреплены тангенциально направляющие лопатки под углом 1520°. В цилиндрическом криволинейном направляющем колене ввода чистого воздуха выполнена прорезь прямоугольного сечения с соотношением сторон, равным 1/(2,03,0), и с завихрителем - направляющей лопаткой, установленной тангенциально под углом 15° к цилиндрической поверхности направляющего колена. При этом подача в корпус пылеуловителя первичного потока очищаемого газа и чистого воздуха осуществляется в одном направлении. Техническим результатом является повышение эффективности пылеулавливания и надежности пылеуловителя.
Наверх