Способ переработки пылевидных отходов металлургического производства

Изобретение относится к области металлургии, в частности к способу переработки пылевидных отходов металлургического производства. Способ включает подачу пылевидных отходов металлургического производства с углеродным материалом на поверхность жидкого шлака в шлакоприемную чашу после заполнения ее жидким шлаком из плавильного агрегата, нагрев, восстановление оксидов металлов и извлечение восстановленных металлов. При этом слой из пылевидных отходов располагают между слоями углеродного материала. Извлечение восстановленных металлов производят магнитной сепарацией в процессе последующей переработки шлака. Использование изобретения обеспечивает исключение вторичного окисления восстановленного металла кислородом окружающего воздуха и позволяет получить чистые металлизированные слитки. 1 з.п. ф-лы, 1 табл., 1 пр.

 

Разработка относится к области переработки металлсодержащих отходов металлургии и машиностроения путем извлечения соединений металлов для возврата в металлургический цикл, а также может быть использовано для получения добавок в композиционные материалы для обеспечения высокого биологического сопротивления.

Известен способ переработки металлургических отходов (пыли), в котором брикетирование отходов осуществляют совместно с твердым углеродсодержащим веществом в виде измельченного каменного или бурого угля крупностью 3-5 мм. Брикеты подают в прямоточную трубчатую печь, отапливаемую со стороны загрузки топлива кислородными горелками, при этом температуру брикетов на выходе из печи поддерживают в диапазоне 700-1000°С. Отходы перед брикетированием предварительно нагревают в подогревательной противоточной трубчатой печи до температуры 550-1000°С [RU 2240361, 20.11.2004].

Недостатком известного способа является то, что не полностью формируется необходимый восстановительный потенциал для высокой степени металлизации железа и содержание металлического железа в выгружаемых брикетах не достаточно, чтобы использовать их для прямой загрузки в сталеплавильные агрегаты, что снижает потребительскую стоимость продукта.

Известен способ переработки пыли металлургического производства, включающий окускование пыли совместно с углеродистым восстановителем с добавлением материала с содержанием MgO не менее 70%, сушку полученных окускованных материалов, их нагрев и обжиг при температуре 1200-1400°С совместно с дополнительным количеством углеродного материала, извлечение восстановленных металлов магнитной сепарацией [RU 2450065, 10.05.2012].

Недостатками указанного способа являются высокие энергозатраты, связанные с обеспечением высоких температур процесса.

Наиболее близким к заявляемому техническому решению является способ обработки пылевидных материалов или их смесей, содержащих соединения тяжелых металлов, включающий предварительное формирование жидких оксидных шлаков с основностью 1-1,4, подачу пылевидных материалов или их смесей с добавкой, например, угля, песка и/или бокситов на или в ванну из жидкого металла и жидких оксидных шлаков с выделением летучих соединений тяжелых металлов в газовую фазу и последующим выделением из газовой фазы, а соединения щелочных металлов переводят в оксидные шлаки [RU 2239662, 10.11.2004].

Недостатком указанного способа являются высокие энергозатраты при формировании жидких оксидных шлаков и сложность подачи пылевидного материала под или на слой жидкого шлака специальной пневмотранспортирующей установкой или с применением горячего дутья.

Задачей, на решение которой направлено изобретение, является снижение энергозатрат при получении из пылевидных отходов металлургического производства продукта с содержанием железа более 90% за счет использования тепла жидкого расплава шлака после слива в шлакоприемную чашу из плавильного агрегата и повышение степени восстановления оксидов металлов. Такой продукт может быть использован в сталеплавильном производстве взамен части металлолома или в доменных печах как железосодержащая добавка, а также для производства композиционных строительных материалов с высоким биологическим сопротивлением.

Поставленная задача решается следующим образом.

В способе переработки пылевидных отходов металлургического производства, включающем подачу пылевидных отходов металлургического производства с углеродным материалом на поверхность жидкого шлака, нагрев, восстановление оксидов металлов и их извлечение, согласно предлагаемому решению подачу пылевидных отходов металлургического производства и углеродного материала осуществляют послойно на поверхность жидкого шлака в шлакоприемную чашу после заполнения ее жидким шлаком из плавильного агрегата, при этом слой из пылевидных отходов металлургического производства располагают между слоями углеродного материала, а извлечение восстановленных металлов производят магнитной сепарацией в процессе последующей переработки шлака.

Для обработки пылевидных отходов металлургического производства заявленным способом может быть использована пыль металлургического производства, в частности пыль газоочистки электродуговых сталеплавильных печей (ЭДСП), содержащая оксиды железа (45-50%) и тяжелые металлы - цинк, никель, хром, медь и др. Усредненный химический состав пыли ЭДСП приведен в таблице 1.

Расход измельченного углеродного материала определяется по количеству содержащихся оксидов железа в исходном пылевидном отходе металлургического производства по материальному балансу восстановительных реакций

В связи с несовершенством контакта между материалами возможность непосредственного взаимодействия между углеродом и твердыми оксидами ограничена. Поэтому реакции прямого восстановления протекают преимущественно с участием газовой фазы и представляют собой результат последовательного протекания реакций косвенного восстановления

и взаимодействия углекислого газа с углеродом

Условия протекания реакций восстановления обеспечиваются за счет тепловой энергии расплава шлака после слива из плавильного агрегата с температурой 1600-1650°С. Применение углеродного материала только в количестве, рассчитанном по уравнению реакции (1), не позволяет получить высокую степень восстановления оксидов металлов в связи с вторичным окислением восстановленных металлов кислородом окружающего воздуха.

Для исключения вторичного окисления восстановленных металлов слой пылевидного отхода металлургического производства располагают между слоями углеродного материала. Углерод твердого материала слоя, расположенного на поверхности жидкого шлака, газифицируется углекислотой по реакции (3) и образующийся монооксид углерода под создавшимся давлением проникает в слой перерабатываемого пылевидного отхода, обеспечивая восстановление оксидов по реакции (2). Слой углеродного материала, расположенный над слоем перерабатываемого материала, препятствует проникновению атмосферного воздуха путем опережающего окисления (сжигания) кислорода воздуха и исключает вторичное окисление восстановленных металлов.

Отсутствие кислорода как в глубине слоя материала, так и на его поверхности является гарантией сохранения восстановленных металлов в обожженном материале, выгружаемом из печи.

В качестве углеродного материала могут использоваться измельченные кокс, уголь, антрацит и т.п. крупностью 1÷3 мм. При крупности частиц менее 1 мм будут снижаться пористость слоя и проходимость восстановительного газа. При крупности частиц восстановителя более 3 мм пыль будет проникать внутрь слоя углерода, что может привести к зашлакованности восстановленных металлов.

Пример реализации заявленного способа.

Согласно уравнению (1) для переработки 1 т пыли газоочистки (усредненный химический состав пыли представлен в таблице 1) необходимо 115 кг углеродного материала. Количество дополнительного углеродного материала, расположенного над слоем обрабатываемого вещества, целесообразно принять равным количеству угля в первом слое. Таким образом, высота слоя дополнительного углеродного материала при диаметре чаши 250 см составит 10 см.

Углеродный материал крупностью 1-3 мм в количестве 115 кг загружают на дно опрокидывающего или с открывающимся дном контейнера. Следующий слой формируют из перерабатываемой пыли (химический состав пыли представлен в таблице 1) в количестве 1 т. Сверху засыпают такой же углеродный материал в количестве 115 кг. Таким образом, при опрокидывании ковша на поверхность жидкого шлака слои будут располагаться в том же порядке. Общая масса материала выбрана из условия снижения температуры расплава шлака от 1600-1650°С до 1400°С.

За счет тепла расплава шлака температура слоев повышается до 1350-1400°С, происходит восстановление металлов по реакциям (1, 2, 3). Извлечение восстановленных металлов производят магнитной сепарацией в процессе последующей переработки шлака по известным из уровня техники технологиям.

1. Способ переработки пылевидных отходов металлургического производства, включающий подачу пылевидных отходов металлургического производства с углеродным материалом на поверхность расплава шлака, нагрев их теплом расплава шлака, восстановление оксидов металлов и извлечение восстановленных металлов, отличающийся тем, что подачу пылевидных отходов металлургического производства и углеродного материала осуществляют послойно на поверхность расплава шлака в шлакоприемную чашу после заполнения ее расплавом шлака из плавильного агрегата, при этом слой из пылевидных отходов металлургического производства располагают между слоями углеродного материала, а извлечение восстановленных металлов осуществляют магнитной сепарацией в процессе последующей переработки шлака.

2. Способ по п. 1, отличающийся тем, что в качестве углеродного материала используют измельченные кокс, уголь и антрацит крупностью 1÷3 мм.



 

Похожие патенты:

Изобретение относится к способу переработки шламов металлургических и горно-обогатительных комбинатов. Из исходного сырья при дезинтеграции удаляют негабаритные включения, из полученного продукта готовят пульпу и обрабатывают ее высокоамплитудными ультразвуковыми колебаниями, далее проводят гравитационную сепарацию, при которой образуется два потока, содержащих цинк- и свинецсодержащие продукты.

Изобретение относится к области получения и концентрирования рассеянных элементов из топочных отходов. Способ концентрирования рассеянных элементов, входящих в состав твердого полезного углеродсодержащего ископаемого, включает возгонку летучих рассеянных элементов при сжигании твердого углеродсодержащего ископаемого с получением первого возгона в виде обогащенной золы-уноса.
Изобретение относится к электросталеплавильному производству, в частности к составу смеси для выплавки стали в электродуговой печи. Смесь содержит, мас.%: пыль системы газоочистки электродуговой печи 60-90 и коксовую мелочь 10-40.
Изобретение относится к металлургии цветных металлов и может быть использовано для переработки цинксвинецоловосодержащих материалов, например, промпродуктов медной промышленности - цинксодержащих пылей медного производства.

Изобретение относится к способу извлечения галлия из летучей золы. Способ включает измельчение летучей золы, удаление Fe путем магнитной сеперации, затем растворение ее в соляной кислоте с получением продукта солянокислого выщелачивания.

Изобретение относится к способу извлечения галлия из летучей золы. Способ включает измельчение летучей золы и удаление Fе с помощью магнитной сепарации.

Изобретение относится к способам подготовки сырья к металлургическому переделу, и может быть использовано при утилизации пыли электросталеплавильных печей, уловленной в фильтрах.
Изобретение относится к области металлургии, в частности к способам переработки отходов металлургического производства. .

Изобретение относится к обработке отходов, таких как пыль сталеплавильной печи, содержащая летучие металлы, а также других материалов из вторичной окалины, шлама и пыли, образующейся в процессе гальванизации, аккумуляторов, в качестве сырья, содержащего железо и летучие металлы.

Изобретение относится к способу непрерывной переработки железоцинкосодержащих пылей и шламов. .
Изобретение относится к способу утилизации пыли отходящих газов металлургического производства и получения на этой основе композиций поливинилхлорида, пригодных для изготовления изделий строительного и декоративно-отделочного назначения. Способ утилизации пыли отходящих газов металлургического производства основан на предварительном смешивании пыли от сухой очистки технологических и аспирационных газов электросталеплавильного производства, которая служит наполнителем конечного продукта, с двумя дополнительными компонентами, при этом в качестве первого из них используют дробленые отходы поливинилхлорида низкого давления, которые служат связующим, а в качестве второго используют разбавленные спирто-толуольным растворителем эпоксидные смолы с добавлением микрофибрового волокна, в течение 15-20 минут до равномерного распределения компонентов, и получении конечного продукта путем основного смешивания в течение 10 минут с разогревом смеси в процессе смешивания до температуры 380-400°C. Технический результат заключается в расширении функциональных возможностей.

Изобретение относится к области металлургии и может быть использовано при обработке шлама из системы очистки дымового газа сталеплавильного конвертера и производимым изделиям из него. Система включает оборудование для разделения и обработки шлама для отделения по существу только микросфер металлического железа от материала, не относящегося к металлическому железу, при этом указанное оборудование для разделения содержит ультразвуковой очиститель для удаления поверхностных мелких фракций, связанных с микросферами металлического железа, с применением по меньшей мере двух различных частот возбуждения акустической кавитации для создания металлических микросфер с очищенной поверхностью, и формующее оборудование для размещения микросфер металлического железа с очищенной поверхностью, отделенных указанным оборудованием для разделения, и формования с его помощью окускованного материала, состоящего по существу из микросфер металлического железа. Окускованный материал применяют в качестве материала завалки при выплавке стали в сталеплавильном конвертере или дуговой печи. Изобретение позволяет использовать брикеты с высоким содержанием металлического железа в процессе сталеплавления в качестве материала завалки для кислородного конвертера или дуговой печи, и воду, используемую в системе, которую возвращают и повторно используют в системе, делая систему неопасной для окружающей среды, а также использовать шлам в виде окатышей и/или агломерата для производства чушкового чугуна 6 н. и 18 з.п. ф-лы, 16 ил.

Изобретение относится к переработке пылеотходов, полученных при прокаливании отходов бронзы, содержащих тяжелые цветные металлы. Способ заключается в растворении в 20-25% растворе серной кислоты пыли, уловленной при прокаливании отходов бронзы. В полученный сернокислый раствор добавляют гартцинк, осаждают и отделяют от суспензии пасту, содержащую оксиды меди и свинца. Отфильтрованный раствор сульфата цинка обрабатывают отходами кальцийсодержащих соединений в два этапа. На первом этапе к раствору добавляют хлорид кальция для перевода сульфата цинка в хлорид и отделяют от суспензии образовавшийся гипс. На втором этапе раствор нейтрализуют пылью-уносом, получаемой при прокаливании известняка, отделяют и промывают на поверхности вакуум-фильтра пасту оксида цинка химочищенной водой от хлорида кальция, после чего сушат и измельчают полученные цинковые белила в комбинированной распылительной сушилке при температуре 110-120°C. Техническим результатом является снижение энергетических и сырьевых затрат в процессе переработки пылеотходов с получением целевого продукта - цинковых белил. 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к способу извлечения рения и других ценных сопутствующих элементов из вулканических газов. Способ включает сбор вулканического газа, его охлаждение и улавливание полученных соединений. При этом сконденсированные соединения рения и других элементов улавливают из охлажденного до температуры в диапазоне 150-250°С вулканического газа. Улавливание коллективного концентрата осуществляют в рукавном фильтре. При этом охлаждение вулканического газа могут осуществлять в два этапа, при последовательном использовании охлаждения за счет естественной теплоотдачи и приведения температуры вулканического газа к контролируемой итоговой температуре в теплообменнике. Техническим результатом являются снижение энергопотребления и упрощение эксплуатации оборудования, а также повышение извлечения соединений рения и других элементов из вулканического газа.1 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к устройству для селективного получения цинка и свинца из пыли электросталеплавильного производства из пыли металлургического производства. Устройство содержит последовательно расположенные две реакционные камеры для испарения свинца и испарения цинка, при этом над реакционной камерой испарения свинца расположен бункер со шнековым питателем с двигателем и шлюзовым питателем, одна стенка камеры имеет наклон 51°, напротив размещен первый водоохлаждаемый плазмотрон, в верхней части камеры расположена система улавливания паров свинца, в нижней части камеры установлен секторный питатель, соединенный с реакционной камерой испарения цинка, имеющей одну стенку с наклоном 51°, расположенный напротив второй водоохлаждаемый плазмотрон, и систему улавливания паров цинка в верхней части камеры. Обеспечивается возможность селективного последовательного извлечения свинца, затем цинка при контролировании состава атмосферы в реакционных камерах. 2 ил.

Изобретение относится к черной и цветной металлургии. Железо- и цинксодержащую пыль, прокатную окалину, углеродистый восстановитель и шлакообразующие компоненты смешивают, окусковывают, сушат и осуществляют термообработку в печи с вращающимся подом. Цинковые возгоны улавливают, отходящие газы охлаждают. Осуществляют окисление и конденсирование оксида цинка в виде пыли и улавливание пыли, содержащей оксид цинка. Охлаждают и разделяют гранулированный чугун и шлак. Соотношение пыли и окалины устанавливают с обеспечением общего содержания железа в смеси не менее 50%. Шлакообразующие компоненты вводят в количестве, обеспечивающем основность CaO/SiO2 в пределах 0,6-1,6 и содержание серы в чугуне не более 0,09. Углеродистый восстановитель вводят в количестве, обеспечивающем содержание углерода в чугуне в пределах от 1,0 до 4,5%. Термообработку осуществляют двухстадийным нагревом: при 1200-1300°C, затем при температуре, увеличенной на 80-200°C. Изобретение обеспечивает повышение содержания окиси цинка в концентрате, выделяемой из пыли и окалины, получение чугуна с содержанием металлического железа 94% и более, снижение расхода восстановителя и топлива. 2 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к способам обработки материалов промышленных отходов, а именно к способам обработки летучей золы. Способ включает выщелачивание летучей золы с использованием HCl с получением продукта выщелачивания, содержащего ионы алюминия, ионы железа и твердое вещество, и отделение указанного твердого вещества от продукта выщелачивания. Затем осуществляют реакцию продукта выщелачивания с HCl с получением жидкости, содержащей ионы железа, и осадка, содержащего ионы алюминия в форме AlCl3. Отделяют осадок от жидкости. Нагревают осадок в условиях, обеспечивающих превращение AlCl3 в Al2O3, и необязательно извлекают образующийся при этом газообразный HCl. Обеспечивается экономичный способ получения чистого оксида алюминия с одновременным получением других продуктов высокой степени чистоты и высокого качества. 3 н. и 250 з.п. ф-лы, 7 ил., 38 табл., 10 пр.
Изобретение может быть использовано для выделения соединений рения и сопутствующих элементов из сильно обводненных природных вулканических газов. Вулканические газы с температурой до 600°С собирают в сборнике, охлаждают в противоточном холодильнике. В качестве охлаждающего агента используют водоорганический раствор с температурой кипения выше 100°С, нагретый до температуры от выше 100°С до ниже 110°С. Сконденсированные из вулканических газов соединения рения и сопутствующие элементы улавливают в системе газоочистки. Способ позволяет предотвратить конденсацию смеси кислот, присутствующих в вулканических газах кислотообразующих газов, и, как следствие, коррозию, а также повысить комплексность использования вулканических газов за счет утилизации тепла с получением энергетического пара для производства электроэнергии. 1 з.п. ф-лы.
Изобретение относится к переработке сильно обводненных природных вулканических газов, включающий выделение рения и сопутствующих ценных элементов. Способ включает сбор вулканического газа, его охлаждение и улавливание полученных соединений. Вулканические газы собирают в сборнике с подачей в него воздуха в количестве в 1,5-2,0 раза выше необходимого для полного окисления содержащегося в газах сероводорода. Затем газы охлаждают до температуры 105-110°С, после чего соединения рения и сопутствующих ценных элементов улавливают в системе тонкой газоочистки. Технический результат состоит в наиболее полном извлечении ценных металлов из вулканических газов в максимально богатые ими концентраты при использовании простого по конструкции и удобного в эксплуатации оборудования. 1 з.п. ф-лы, 2 пр.
Наверх