Плазменная антенна



H05H1/00 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2582491:

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к антенной технике. Плазменная антенна содержит плазменный генератор, формирующий плазменное образование, и первичный источник электромагнитных волн, при этом анод плазменного генератора выполнен в виде конического диффузора, состоящего из корпуса и конической вставки, диэлектрически соединенной с подводящим патрубком, поверхность которого выполнена перфорированной, кроме того, первичный источник радиоволн установлен на оси антенны на расстоянии от точки генерации плазменного образования, где γ=2,8…3,0 - постоянная величина, k - волновое число, b - максимальное расстояние от плазменного генератора до границы области с критической концентрацией электронов, θк - угол между осью антенны и направлением распространения плазмы с максимальной скоростью. Технический результат заключается в обеспечении возможности снижения уровня боковых лепестков диаграммы направленности. 2 ил.

 

Изобретение относится к области антенной техники и может быть использовано для изучения радиоволн в длинноволновом диапазоне с борта космического аппарата в ионосфере.

Известна лазерная антенна (аналог), в которой излучающим элементом является ионизированный столб воздуха, создаваемый лазерным лучом и аналогичный излучающему металлическому стержню. Лазерная антенна состоит из лазера, который предназначен для создания лазерного луча, фокусирующего устройства и цепи для соединения источника сигналов с основанием ионизированного столба воздуха [1. США, патент №3404403, 343-700, 1968 г.].

Недостатком известной лазерной антенны является высокий уровень боковых лепестков диаграммы направленности.

Наиболее близкая по технической сущности и достигаемому техническому результату (прототип) известна плазменная приемопередающая антенна, представляющая собой излучающий элемент в виде плазменного образования, которое размещено внутри анода плазменного генератора. Указанный электрод выполнен в виде волновода цилиндрической формы. Источник информационных сигналов (радиоволн) через устройство развязки подключен к анодному выходу плазменного генератора [2. Россия, патент №2255394, H01Q 1/00, 2005].

Недостатком известной плазменной приемопередающей антенны является высокий уровень боковых лепестков диаграммы направленности.

Технической задачей данного изобретения является снижение уровня боковых лепестков диаграммы направленности антенны.

Технический результат достигается за счет того, что в известной плазменной антенне, содержащей плазменный генератор, формирующий плазменное образование, и первичный источник радиоволн, анод плазменного генератора выполнен в виде конического диффузора, состоящего из корпуса и конической вставки, диэлектрически соединенной с подводящим патрубком, поверхность которого выполнена перфорированной, кроме того, первичный источник радиоволн установлен на оси антенны на расстоянии от точки генерации плазменного образования, где γ=2,8…3,0 - постоянная величина, k - волновое число, b - максимальное расстояние от плазменного генератора до границы области с критической концентрацией электронов, θк - угол между осью антенны и направлением распространения плазмы с максимальной скоростью.

Известно [3. Колычев С.Α., Ярыгин А.П. Плазменные антенны космического базирования с управляемыми характеристиками // Радиотехника. 2006, №6. С. 74-77], что при взаимодействии радиоволн с плазменным образованием проявляются две области: с концентрацией электронов N выше и ниже критической. Граница между этими областями определяется соотношением длины радиоволны λ и критической концентрацией электронов в плазменном образовании . При этом область плазменного образования с концентрацией электронов N выше критической обладает экранирующим эффектом - диэлектрическая проницаемость, при Ν=Νkp, ε=0), то есть происходит отражение радиоволн, а в области плазменного образования с концентрацией электронов N ниже критической происходит изменение направления распространения радиоволн в сторону с более низкой концентрацией электронов.

Сущность изобретения поясняется фиг. 1 и фиг. 2, на которых представлены сечения анода плазменного генератора и неоднородного плазменного образования, формируемого им. На фиг. 1 обозначено: 1 - корпус анода, 2 - коническая вставка, 3 - подводящий патрубок, 4 - зазор между корпусом анода и конической вставкой.

На фиг. 2 обозначено: 5 - плазменный генератор; 6 - область неоднородного плазменного образования с концентрацией электронов N выше критической Nkp; 7 - область неоднородного плазменного образования с концентрацией электронов ниже критической; b - максимальное расстояние от плазменного генератора до границы области с критической концентрацией электронов, θк - угол между осью антенны и направлением распространения плазмы с максимальной скоростью; 8 - первичный источник радиоволн, установленный на оси антенны ΟΖ на расстоянии R от плазменного генератора О; кроме того, схематично изображена геометрия лучей, по которым распространяется энергия первичного источника радиоволн.

Выполнение анода в виде конического диффузора, состоящего из корпуса 1 и конической вставки 2, обеспечивает формирование плазменного образования воронкообразной формы (фиг. 2). Направление распространения плазмы с максимальной скоростью будет определяться формой зазора 4 между корпусом 1 и конической вставкой 2. Кроме того, очень незначительное количество плазмы будет «затекать» на большее основание конической вставки 2. Поэтому плазменное образование будет иметь воронкообразную форму. Неоднородность плазменного образования (наличие областей с разной концентрацией электронов) обусловлена тем, что электронная концентрация вне области непосредственной генерации плазмы уменьшается обратно пропорционально квадрату расстояния от этой области (как для любого потока материальных объектов из локализованного источника).

На оси антенны плазма отсутствует или имеет минимальную концентрацию. С увеличением угла отклонения от оси антенны (на фиксированных расстояниях от области генерации плазмы) концентрация возрастает, достигая своего максимального значения при угле отклонения θк, соответствующем максимальной скорости истечения плазмы из плазменного генератора.

Подводящий патрубок 3 выполняет две функции: распыление через перфорированную поверхность газообразного легко ионизированного вещества и крепление конической вставки 2 внутри корпуса анода 1.

Внутри неоднородного плазменного образования воронкообразной формы на оси антенны ΟΖ размещают первичный источник радиоволн 8 на заданном расстоянии R от точки генерации плазмы в фокусе плазменной антенны.

Внутри «неоднородной плазменной воронки» ось антенны ΟΖ оказывается окруженной средой с большей, чем на самой оси, оптической плотностью. В результате излучение первичного источника будет отклоняться в направлении оси антенны ОΖ (явление рефракции), что позволяет получить практически однолепестковую диаграмму направленности антенны с очень низким уровнем боковых лепестков, в предельном случае без боковых лепестков.

Изобретение может быть реализовано с помощью известных антенн и устройств для генерации плазмы, выпускаемых промышленностью.

В качестве первичного источника электромагнитных волн могут применяться различные облучатели апертурных антенн [Д.И. Воскресенский, В.Л. Гостюхин, В.М. Максимов, Л.И. Пономарев. Устройства СВЧ и антенны. Под ред. Д.И. Воскресенского. - М.: Радиотехника, 2006, стр. 280]. Плазменные генераторы описаны в патенте [Россия, патент №2255394, H01Q 1/00, 2005].

Плазменная антенна работает следующим образом. Через подводящий патрубок в полость корпуса анода вводятся пары легкоионизирующегося вещества, которое ионизируется, за счет разности потенциалов между анодом и катодом. Форма плазменного образования формируется, за счет выполнения анода плазменного генератора в виде конического диффузора, состоящего из корпуса 1 и конической вставки 2. Неоднородное плазменное образование воронкообразной формы экранирует распространение радиоволн от первичного источника радиоволн 8 во все направления, кроме направления вдоль оси антенны OZ, и одновременно отклоняет эти радиоволны в направлении вдоль оси антенны. Тем самым достигается указанный в изобретении технический результат.

Плазменная антенна, содержащая плазменный генератор, формирующий плазменное образование, и первичный источник радиоволн, отличающаяся тем, что анод плазменного генератора выполнен в виде конического диффузора, состоящего из корпуса и конической вставки, диэлектрически соединенной с подводящим патрубком, поверхность которого выполнена перфорированной, а первичный источник радиоволн установлен на оси антенны на расстоянии R = γ k b θ к от плазменного генератора, где γ=2,8…3,0 - постоянная величина, k - волновое число, b - максимальное расстояние от плазменного генератора до границы области с критической концентрацией электронов, θк - угол между осью антенны и направлением распространения плазмы с максимальной скоростью.



 

Похожие патенты:

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для нанесения защитных покрытий.

Группа изобретений относится к медицинской технике. Устройство для генерирования потока нетеплового газообразного компонента выполнено с возможностью обработки ротового участка тела человека или животного посредством отбеливания или чистки зубов.

Изобретение относится к области обработки материалов нейтральным пучком Способ обработки поверхности заготовки содержит этапы, на которых обеспечивают камеру пониженного давления; формируют пучок газовых кластерных ионов, содержащий газовые кластерные ионы внутри данной камеры пониженного давления; ускоряют газовые кластерные ионы, чтобы сформировать пучок ускоренных газовых кластерных ионов вдоль траектории пучка внутри камеры пониженного давления; стимулируют фрагментацию и/или диссоциацию, по меньшей мере, части ускоренных газовых кластерных ионов вдоль траектории пучка посредством увеличения интервала скоростей ионов в пучке ускоренных газовых кластерных ионов; удаляют заряженные частицы из траектории пучка, чтобы сформировать ускоренный нейтральный пучок вдоль траектории пучка в камере пониженного давления; удерживают заготовку на траектории пучка; и обрабатывают, по меньшей мере, часть поверхности заготовки путем ее облучения ускоренным нейтральным пучком.

Изобретение относится к космической технике, к классу электрореактивных двигателей. Двигатель содержит автономный источник низкотемпературной плазмы, систему улавливания нейтральных частиц и регенерации ионов, разделитель потоков электронов и ионов, плазменный ускоритель.

Изобретение относится к области электрофизики, а именно к электродуговым устройствам для получения низкотемпературной плазмы (плазмотронам). Электродуговой трехфазный плазмотрон содержит три осесимметричные дуговые камеры, объединенные общей смесительной камерой, снабженной соплом, и коллектор подачи рабочего газа.

Изобретение относится к области плазменно-электромагнитного воздействия на различные виды материальной среды, расположенной как на близком, так и значительном расстояниях от излучателя.

Изобретение относится к области авиационной техники. Электрохимический генератор низкотемпературной плазмы для поджига, стабилизации и оптимизации работы сверхзвуковой камеры сгорания содержит термохимический реактор со штуцером для подвода газа с химически активным компонентом.

Изобретение относится к области переработки твердых отходов и может быть использовано на промышленных предприятиях, а также в коммунальном хозяйстве. Электродуговой плазмотрон постоянного тока для установок плазменной переработки отходов включает соосные полые цилиндрические водоохлаждаемые электроды (анод и катод), выполненные с возможностью вихревой подачи плазмообразующего газа в зазор между анодом и катодом через форсунку, выполненную из изолирующего термостойкого материала, соосной с анодом и катодом с отверстиями для подачи газа, при этом отверстия выполнены в плоскости, перпендикулярной оси электродов по касательной к внутренней поверхности форсунки.

Изобретение относится к измерительной технике и может быть использовано для диагностики неоднородного слоя плазмы, контроля параметров плазмы в технологических установках, в исследованиях по моделированию плазмы ионосферы.

Изобретение относится к области электротехники, конкретно к плазменным источникам электрической энергии, использующим воду и/или дымовые (СО2 - 80%) газы в качестве рабочего вещества.

Изобретение относится к радиотехнике СВЧ и предназначено для ретрансляции высокочастотного сигнала системы телеметрии ракеты-носителя на наземный измерительный пункт.

Изобретение относится к технике связи и предназначено для определения местонахождения железнодорожного транспортного средства (V) вдоль железнодорожного пути (VF) при помощи ряда сигнальных маяков, которые взаимодействуют с антенной, установленной на железнодорожном транспортном средстве.

Изобретение относится к полевым устройствам, используемым в системах управления и мониторинга производственными процессами, и, в частности, к полевым устройствам, которые используют беспроводную передачу данных.

Изобретение предназначено для борьбы с беспилотными летательными аппаратами (БЛА) ближнего и малого радиуса действия. Техническим результатом является повышение эффективности поражения БЛА.

Настоящее изобретение относится к антенному устройству для установки на стекле. Технический результат изобретения заключается в том, что заявленная антенна принимает высокочастотный сигнал и при расположении в стекле автомобиля не оказывает отрицательного воздействия на видимость для водителя.

Изобретение относится к радиотехнике и может быть использовано для определения радиотехнических характеристик крупногабаритных антенн для космических аппаратов без их непосредственных измерений.

Изобретение относится к области радиотехники и может использоваться при проектировании и эксплуатации комплексов радиопеленгации или систем радиосвязи портативного, мобильного (бортового) и стационарного базирования.

Изобретение относится к антенным технологиям. Технический результат - повышение пропускной способности и упрощение устройства.

Изобретение относится к области радиолокации и гидролокации и предназначено для сканирования пространства, а также непрерывного слежения за статическими и динамическими характеристиками объектов посредством преобразования волн любой физической природы в электрические сигналы.

Изобретение относится к антенной технике, в частности к конструкции микрополосковых антенных устройств, и может быть использована как в системах спутниковой навигации, в частности, GPS-ГЛОНАСС, так и в системах связи, передачи информации, а также в качестве элемента антенной решетки.

Использование: изобретение относится к области гидроакустики и может быть применено при разработке гидроакустических антенн произвольной формы и назначения. Сущность: устройство содержит преобразователь давления в электрический сигнал, усилитель, аналого-цифровой преобразователь, сдвиговый регистр, параллельный вход которого соединен с выходом аналого-цифрового преобразователя, а последовательные вход и выход являются внешними входом и выходом приемника. Сдвиговые регистры всех приемников антенны последовательно соединяются, образуя в совокупности один общий регистр, принимающий одномоментные отсчеты всех приемников антенны. Технический результат: сокращение габаритов и энергопотребления, а также повышение пропускной способности линии связи между приемниками и концентратором. 2 ил.
Наверх