Устройство определения тяги двигателей самолета

Изобретение относится к испытательной технике и может быть использовано для измерения эффективной тяги двигателей самолета. Устройство содержит измеритель скоростного напора воздушного потока, датчик угла атаки, датчик перегрузки, задатчик размера матриц, три блока формирования матриц, блок вычитания матриц, блок транспонирования матрицы, блок обращения матрицы, три блока умножения матриц, соединенных между собой определенным образом. Технический результат заключается в повышении точности измерений, упрощении конструкции. 1 ил.

 

Изобретение относится к испытательной технике и может быть использовано для измерения эффективной тяги двигателей самолета, которая является равнодействующей сил давления и трения, приложенных ко всем поверхностям силовой установки как со стороны газового потока, протекающего внутри двигателя, так и со стороны потока воздуха, обтекающего силовую установку снаружи.

Известны способ измерения скоростного напора газового потока и устройство для измерения тяги реактивного двигателя, описанные в патенте RU 2100788, МПК G01L 5/13, G01M 15/00, опубликованном 27.12.1997 г., принятом нами за прототип.

Описанное в патенте устройство предназначено для измерения тяги реактивного двигателя путем измерения скоростного напора газового потока, который измеряют двумя зондами с различными коэффициентами аэродинамического сопротивления, размещенными в газовом потоке вблизи измеряемой зоны, и определяют параметр, характеризующий отношение измеренных зондами усилий, по которому с учетом числа Маха потока или разницы коэффициентов аэродинамического сопротивления зондов определяют скоростной напор газового потока. Каждый из зондов может быть выполнен в виде жестко закрепленного на двигателе стержня, на закрепленном конце которого размещено силоизмерительное устройство, выполненное в виде калиброванной балки с тензорезисторами.

Однако известные способ и устройство обладают рядом недостатков. Так, коэффициент сопротивления стержня на околозвуковых и трансзвуковых скоростях потока является нелинейным, неоднозначным, зависящим от числа М, что снижает точность измерения импульса тяги. Устройство является сложным, громоздким, приводит к увеличению габаритов двигателя и изменению его конструкции.

Целью изобретения является создание устройства определения эффективной тяги двигателей самолета на различных режимах эксплуатации, позволяющего повысить точность измерения тяги без усложнения конструкции и процесса эксплуатации двигателя, при уменьшении объема трудозатрат.

Поставленная цель достигается за счет того, что в устройство определения тяги двигателей самолета, содержащее измеритель скоростного напора воздушного потока, дополнительно введены датчик угла атаки, датчик перегрузки, задатчик размерности матрицы, три блока формирования матриц, блок вычитания матриц, блок транспонирования матриц, последовательно соединенные первый блок умножения матриц, блок обращения матрицы, второй блок умножения матриц и третий блок умножения матриц, причем выход измерителя скоростного напора воздушного потока подключен к первому входу первого блока формирования матрицы, первый выход которого подключен к первому входу первого блока умножения матриц, второй выход подключен к входу блока транспонирования матриц, первый и второй выходы которого подключены соответственно ко второму входу первого блока умножения матриц и к входу второго блока умножения матриц, выход датчика угла атаки подключен ко второму и первому входам первого и второго блоков формирования матриц соответственно, выход датчика перегрузки подключен к первому входу третьего блока формирования матрицы, при этом третьи и четвертые входы блоков формирования матриц являются входами для сигналов, соответствующих константам, характеризующим конструкцию и аэродинамику самолета, выход задатчика размерности матрицы подключен к пятому входу первого блока формирования матрицы и ко вторым входам второго и третьего блоков формирования матрицы, выходы которых подключены к соответствующим входам блока вычитания матриц, выход которого подключен ко второму входу третьего блока умножения, выход которого является выходом устройства.

Сущность изобретения поясняется чертежом, на котором представлена структурная схема заявляемого устройства.

Предлагаемое устройство определения эффективной тяги двигателя самолета содержит измеритель 1 скоростного напора воздушного потока, датчик 2 угла атаки, датчик 3 перегрузки, задатчик 4 размера матриц, первый, второй и третий блоки 5, 6 и 7 формирования матриц X, А и В соответственно, блок 8 вычитания матриц, блок 9 транспонирования матрицы, последовательно соединенные первый блок 10 умножения матриц, блок 11 обращения матрицы, второй и третий блоки умножения матриц 12 и 13 соответственно.

Искомое значение эффективной тяги двигателя получается в результате решения задачи параметрической идентификации. Наблюдаемость достигается за счет выполнения специального тестового маневра, обеспечивающего малые приращения скорости полета при постоянном режиме работы двигателя. При этом сила аэродинамического сопротивления пропорциональна скоростному напору, то есть квадрату скорости, тяга двигателя принимается постоянной (в силу малой величины приращений скорости). Это позволяет получить установившееся значение эффективной тяги, поскольку квадратичная функция и константа линейно независимы.

Главная особенность предлагаемого подхода заключается в том, что для получения оценок тяги и сопротивления используются только измерения основных полетных параметров, таких как продольная перегрузка, воздушная скорость, высота и угол атаки.

Рассмотрим следующую модель объекта. Сила аэродинамического сопротивления направлена вдоль оси Oxe

где q = ρ H V ист 2 2 - скоростной напор, Па;

S - эквивалентная площадь крыла, м2;

ρH - плотность воздуха на высоте полета H, кг/м3;

Vист - истинная воздушная скорость.

Аэродинамические коэффициенты в связанной системе координат определяются выражением

где α - угол атаки, градус.

Значения аэродинамических коэффициентов и геометрических параметров зависят от типа самолета.

Учтем, что входной импульс Рвх направлен вдоль связанной оси, а выходной Рвых - вдоль оси двигателя, которая отклонена относительно связанной оси на угол установки двигателя φдв.

Проекция аэродинамических сил входного и выходного импульсов на продольную ось определяется выражением

Проекция перегрузки на ось X

Окончательные выражения для проекции перегрузки на продольную ось:

Учитывая, что cos(φдв+α)=cosφдвcosα-sinφдвsinα и раскладывая cosα и sinα в ряд относительно α0=0, получим cosα 1 1 2 α 2 ; sinα≈ α. Тогда для малых углов атаки

Последние два слагаемых целесообразно учесть в явном виде, используя априорную информацию о Рвых. Объединим составляющие тяги

Тогда выражение (1) принимает вид:

слагаемое, зависящее от априорного значения выходного импульса Pвых0.

Расчетами установлено, что если погрешность априорного значения параметра не превышает 10%, ее влияние на погрешность остальных параметров не превышает 0,25%.

Вектор определяемых параметров

Идентификация выполняется по методу наименьших квадратов (МНК) на основе уравнения (2).

С учетом того, что бортовые измерения выполняются в дискретные моменты времени

где N - число измерений на участке идентификации.

Для нахождения оценок согласно МНК формируются вектор Y размерности N и матрица X размерности N×N:

Тогда вектор определяемых параметров находится следующим выражением

Анализ выражений (4)-(7) показывает, что для обеспечения наблюдаемости необходимо изменять скорость полета, однако изменения относительно установившегося значения должны быть малы (точное значение зависит от типа двигателя и режима полета), чтобы выполнялось условие постоянства силы тяги двигателей на интервале обработки. Скорость изменяется при постоянном режиме работы двигателей за счет последовательного выполнения пикирований и кабрирований с малыми углами наклона траектории. Изменения угла атаки при переходных процессах достаточны для обеспечения наблюдаемости всей системы, однако целесообразно включить дополнительно тестовые движения ручкой управления самолетом (РУС) в канале тангажа.

В соответствии с общим подходом к оцениванию характеристик самолетов в летных испытаниях указанный маневр необходимо выполнить во всем эксплуатационном диапазоне высот и скоростей полета.

На высоте Н=3000 м и скорости полета, соответствующей М=0,4 (Vпр=410 км/ч), осуществляют балансирование самолета в прямолинейном горизонтальном полете (ПГП) с постоянной скоростью, запоминают при этом угол атаки α0. Выполнить движение РУС по тангажу "от себя" и "на себя" длительностью 2…2,5 с так, чтобы приращения угла атаки составили ±(1…2) градуса. Восстановить ПГП на той же высоте и с тем же числом М и углом атаки. Не изменяя режим работы двигателей, перевести самолет в пикирование с малым приращением угла тангажа так, чтобы приборная скорость полета постепенно увеличилась на 10 км/ч до 420 км/ч (число М увеличилось на 0,01 до М=0,41). Затем перевести самолет в режиме прямолинейного набора высоты так, чтобы скорость с тем же темпом уменьшилась на 10 км/ч от исходного значения, то есть до 400 км/ч (число М уменьшилось на 0,01 от исходного до М=0,39). Далее снова перевести самолет в пикирование и увеличить скорость с тем же темпом до исходного значения 410 км/ч (М=0,4). Восстановить ПГП с М=0,4 (Vпр=410 км/ч) на исходной высоте в пределах Н0±250 м. Выполнить движение РУС по тангажу "от себя" и "на себя" длительностью 2…2,5 с так, чтобы приращения угла атаки составили ±(1…2) градуса.

При выполнении режима угол атаки выдерживать в диапазоне α0±(1…2)° при переводах в пикирование и кабрирование допускается превышение этого ограничения.

Таким образом, требуется при постоянном режиме работы двигателя выполнить плавное колебание по приборной скорости ±10 км/ч (dM=±0,01) за счет малых изменений угла наклона траектории. Повторить режим.

Выполнить аналогичный режим, создавая приращения по приборной скорости±15 км/час (dM=±0, 015). Повторить режим.

Устройство определения эффективной тяги двигателей работает следующим образом: по измеренным сигналам датчика 2 угла атаки, используя сигнал с задатчика 4 размера матрицы и константы φ и Рвых0 в блоке 6 формирования матрицы, формируется матрица А, элементы матрицы определяются согласно выражению (3).

Матрица В формируется в блоке 7 формирования матрицы по измеренным сигналам датчика 3 перегрузки, используя сигналы задатчика 4 размера матрицы, констант m и g, элементы которой определяются левой частью выражения (2). В блоке 8 вычитания матриц определяется разность матриц А и В.

Полученная в результате матрица Y является наблюдением для определения оценки эффективной тяги согласно выражению (5).

Матрица X формируется в блоке 5 формирования матрицы по измеренным сигналам датчика 2 угла атаки, используя константы S и "1", сигнал измерителя 1 скоростного напора воздушного потока q(t) и сигнал задатчика 4 размера матрицы согласно выражению (6). В первом блоке 10 умножения матриц, матрица X умножается на свое же значение, транспонированное в блоке 9 транспонирования матрицы. Полученная матрица (ХТХ) в блоке 11 обращения матрицы обращается в (ХТХ)-1 и во втором блоке 12 умножения матриц умножается на транспонированную матрицу ХT. Полученная матрица в третьем блоке 13 умножения матриц умножается на матрицу Y с выхода блока 8 вычитания матриц, согласно выражению (7).

Таким образом, на выходе устройства получаем значения вектора а, который содержит искомую величину Рэф.

Техническим результатом является возможность определения силы тяги реактивного двигателя самолетов путем использования измеренных значений параметров полета самолета и априорных значений констант, характеризующих параметры летательного аппарата, таких как эквивалентная площадь крыла самолета S, угол отклонения оси двигателя от продольной оси самолета φдв, выходной импульс двигателя Рвых0, ускорение свободного падения g, массы самолета m. Значения констант определяются при продувках полномасштабной модели воздушного судна в аэродинамических трубах и путем взвешиваний и юстировки при изготовлении самолета.

Заявляемое устройство является простым в реализации и может быть использовано на всех типах самолетов, независимо от используемого двигателя. В качестве датчиков перегрузки выбираются имеющиеся на борту акселерометры БИНС, при этом элементы операций с матрицами могут быть реализованы на стандартных элементах вычислительной техники.

Устройство определения тяги двигателей самолета, содержащее измеритель скоростного напора воздушного потока, отличающееся тем, что в него дополнительно введены датчик угла атаки, датчик перегрузки, задатчик размерности матрицы, три блока формирования матриц, блок вычитания матриц, блок транспонирования матриц, последовательно соединенные первый блок умножения матриц, блок обращения матрицы, второй блок умножения матриц и третий блок умножения матриц, причем выход измерителя скоростного напора воздушного потока подключен к первому входу первого блока формирования матрицы, первый выход которого подключен к первому входу первого блока умножения матриц, второй выход подключен к входу блока транспонирования матриц, первый и второй выходы которого подключены соответственно ко второму входу первого блока умножения матриц и к входу второго блока умножения матриц, выход датчика угла атаки подключен ко второму и первому входам первого и второго блоков формирования матриц соответственно, выход датчика перегрузки подключен к первому входу третьего блока формирования матрицы, при этом третьи и четвертые входы блоков формирования матриц являются входами для сигналов, соответствующих константам, характеризующим конструкцию и аэродинамику самолета, выход задатчика размерности матрицы подключен к пятому входу первого блока формирования матрицы и ко вторым входам второго и третьего блоков формирования матрицы, выходы которых подключены к соответствующим входам блока вычитания матриц, выход которого подключен ко второму входу третьего блока умножения, выход которого является выходом устройства.



 

Похожие патенты:

Изобретение относится к испытательной технике и может быть использовано для определения эффективной тяги двигателей самолета. Способ основан на измерении скоростного напора воздушного потока, включает в себя измерение угла атаки самолета и перегрузку вдоль продольной оси самолета.

Группа изобретений относится к испытанию и техническому диагностированию транспортных машин, в частности к способу и устройству испытания машин, преимущественно трактора, при трогании с места под нагрузкой.

Описан способ проверки правильности определения вращающего момента двигателя, включающий: определение вращающего момента двигателя по количеству топлива, впрыскиваемого в двигатель, причем вращающий момент двигателя получают из таблицы впрыскивания топлива; вычисление первой величины веса транспортного средства по его ускорению и полученному вращающему моменту двигателя; определение вращающего момента вспомогательного тормозного устройства с использованием таблицы вспомогательного тормозного устройства; вычисление второй величины веса транспортного средства по полученному тормозному моменту вспомогательного тормозного устройства и сравнение первой и второй величин веса транспортного средства.

Изобретение относится к области сельскохозяйственного и лесохозяйственного машиностроения, в частности к конструкциям измерительных приборов, и может быть использовано для изучения силовых характеристик рабочих органов почвообрабатывающих орудий.

Изобретение относится к испытанию и техническому диагностированию машин, в частности к устройствам для измерения силы тяги на крюке транспортной машины. Динамометр для тяговых испытаний машин содержит опорный и прижимной диски с проушинами, цилиндр с размещенной в нем камерой сжатия, заполненной маслом, поршень со штоком, манометр и датчик давления.

Изобретение относится к области сельскохозяйственного и лесохозяйственного машиностроения, в частности к конструкциям измерительных приборов, и может быть использовано для изучения силовых характеристик рабочих органов почвообрабатывающих орудий.

Изобретение относится к испытанию и техническому диагностированию машин, в частности к способу тяговых испытаний транспортных машин (преимущественно трактора) при трогании с места под нагрузкой.

Изобретение относится к оборудованию для испытания колесных транспортных средств. .

Изобретение относится к испытанию и техническому диагностированию машин, в частности к способу определения номинальной тяговой мощности транспортной машины (преимущественно трактора).

Изобретение относится к области сельхозмашиностроения, в частности к устройствам для испытаний почвообрабатывающих рабочих органов. .

Изобретение относится к области транспортного машиностроения. Способ измерения тяговых усилий трактора заключается в том, что создают регулируемое усилие сопротивления движению испытуемого трактора. Фиксируют значения полученных нагрузочных показателей. Для определенного типа трактора одновременно для каждого из нагрузочных показателей измеряют максимальную температуру поверхности выпускной трубы, показатели микроклимата и силу тяги на крюке трактора. Строят номограмму зависимости температуры выпускной трубы от нагрузочных показателей, индекса тепловой нагрузки внешней среды и силы тяги на крюке трактора. В полевых условиях измеряют максимальную температуру поверхности выпускной трубы и по номограмме определяют фактические тяговые усилия трактора. Достигается уменьшение времени на определение фактической загрузки трактора. 2 ил.

Изобретение относится к области сельскохозяйственного машиностроения, в частности к конструкциям измерительных приборов, и может быть использовано для изучения силовых характеристик рабочих органов почвообрабатывающих орудий. Задачей технического решения является разработка конструкции установки для объемного тензометрирования, одновременно измеряющей все три составляющих силы сопротивления, что позволит более глубоко изучить влияние конструктивных параметров рабочих органов на их силовые параметры. Для этого в установке для объемного тензометрирования, включающей две рамки, кронштейны крепления к навесной системе, механизм крепления рабочего органа, три тяги, на каждой из которых установлены измерительные звенья, согласно изобретению, рамки соединены при помощи трех параллельных тяг, концы которых закреплены посредством карданных шарниров, причем схема расположения тяг обеспечивает перемещение подвижной рамки в поперечно-вертикальной плоскости, а использование карданных шарниров позволяет избежать скручивания подвижной рамки относительно неподвижной, при этом на измерительные звенья передаются сжимающие и растягивающие силы, параллельные направлению тяг. Для обеспечения жесткости системы точки крепления параллельных тяг к рамкам расположены в вершинах равнобедренных треугольников, вписанных в боковые грани параллелограмма. 1 з.п. ф-лы, 1 ил.

Изобретение относится к установкам для проведения тяговых испытаний, а именно к стендам для проведения тяговых испытаний колесных землеройно-транспортных машин. Стенд содержит раму, датчики опорных и горизонтальных реакций, блок контроля параметров испытаний, опорные площадки со сменными имитаторами опорной поверхности и стопорящее устройство с возможностью возвратно-поступательного перемещения в горизонтальном направлении по ходу движения землеройно-транспортной машины. Достигается расширение диапазона имитации рабочих нагрузок за счет использования опорных площадок со сменными имитаторами опорной поверхности. 1 ил.

Изобретение относится к испытательной технике и может быть использовано для определения приращения эффективной тяги двигателей самолета как в полете, так и на земле. Способ предусматривает измерение угла атаки самолета и перегрузки вдоль продольной оси самолета и на основании полученных измерений, используя константы, характеризующие конструкцию и аэродинамические характеристики испытуемого самолета, такие как эквивалентная площадь крыла самолета S, угол отклонения оси двигателя от продольной оси самолета φдв, априорно известные входной Рвх0 и выходной Рвых0 импульсы двигателя, ускорение свободного падения g, масса самолета m, и применяя метод наименьших квадратов, определение приращения эффективной тяги двигателя. Причем процесс определения осуществляют при последовательно выполняемых маневрах, обеспечивающих при изменении режима работы двигателей примерное постоянство числа М, высоты, угла атаки, то есть постоянство параметров полета, влияющих на тягу двигателя. Сущность изобретения заключается в том, что тестовый режим выполняется таким образом, что из прямолинейного горизонтального полета (ПГП) выполняется ступенчатое отклонение ручек управления двигателем (РУД), после чего изменение тяги компенсируется изменением траектории полета. В этом случае число маха М и угол атаки остаются приблизительно неизменными, высота изменяется незначительно (100…200 м), существенно изменяется только эффективная тяга Рэф и выходной импульс Рвых. Устройство, реализующее способ, включает в себя датчик угла атаки, датчик перегрузок, блок возведения в квадрат, два блока формирования матрицы, три блока умножения матриц, блок транспонирования матрицы, блок обращения матрицы, блок определения погрешности, два умножителя и четыре сумматора. Наличие данных элементов и соответствующих связей между ними обеспечивает возможность определения приращения тяги двигателя с высокой точностью без усложнения конструкции и процесса эксплуатации двигателей, при уменьшении объема трудозатрат во время проведения испытаний. 2 н.п. ф-лы, 1 ил.

Изобретение относится к сельскому хозяйству, в частности к сельскохозяйственному приборостроению. При реализации способа при движении трактора без нагрузки за счет снижения подачи топлива достигают частоты вращения коленчатого вала, соответствующей максимальному крутящему моменту. Мгновенно увеличивают подачу топлива до максимальной. При достижении номинальной частоты вращения коленчатого вала двигателя во время разгона трактора прибором типа ИМД измеряют угловое ускорение коленчатого вала. Аналогично измеряют ускорение коленчатого вала при разгоне трактора с дополнительной (эталонной) массой, а также при разгоне трактора с сельскохозяйственной машиной. По формулам, полученным из уравнений движения трактора без нагрузки и с дополнительной (эталонной) массой, определяют приведенную массу трактора. По формулам, полученным из уравнений движения трактора без нагрузки и с сельскохозяйственной машиной, определяют силу сопротивления рабочей машины. Технический результат заключается в упрощении измерения и снижении трудоемкости.

Изобретение относится к области сельскохозяйственного машиностроения, в частности к устройству для определения тягового усилия, прикладываемого к навесному устройству трактора. Механизм измерения тяги содержит тяговую раму, выполненную с возможностью прикрепления к раме транспортного средства. Тяговая рама имеет левую и правую опоры, выполненные с возможностью соединения с соответствующими левой и правой продольными тягами. Тяговая накладка имеет левый конец, прикрепленный к передней стороне левой опоры, и правый конец, прикрепленный к передней стороне правой опоры. Тяговая накладка может деформироваться в ответ на тяговые усилия, прикладываемые к левой и правой опорам. К тяговой накладке прикреплен датчик тяги. Датчик генерирует сигнал тяги в ответ на деформацию тяговой накладки. Таким конструктивным решением обеспечивается надежность и упрощение его конструкции. 2 н. и 6 з.п. ф-лы, 2 ил.
Изобретение относится к сельскому хозяйству, в частности к сельскохозяйственному приборостроению. При движении трактора без нагрузки за счет снижения подачи топлива достигают частоты вращения коленчатого вала, соответствующей максимальному крутящему моменту. Мгновенно увеличивают подачу топлива до максимальной. При достижении номинальной частоты вращения коленчатого вала двигателя во время разгона трактора измеряют угловое ускорение путеизмерительного колеса. Аналогично измеряют угловое ускорение путеизмерительного колеса при разгоне трактора с сельскохозяйственной машиной. По формулам, полученным из уравнений движения трактора без нагрузки и с сельскохозяйственной машиной, определяют силу сопротивления рабочей машины. Технический результат заключается в упрощении измерений и снижении их трудоемкости.
Наверх