Способ индикации резонансных частот

Изобретение относится к области измерительной техники. Заявленный способ индикации резонансных частот включает следующие этапы: закрепляют объект контроля на подвижной части вибростенда, которая приводится в колебательное движение с переменной частотой, и направляют на него излучение от источника света, причем на объект контроля направляют излучение от трех источников света: красного, синего и зеленого, с образованием при их смешении белого света, которым освещается объект контроля, при этом один источник света, например зеленый, подключают к источнику постоянного тока, а на остальные источники света подают стробирующие импульсы, затем, изменяя частоту вибрации подвижной части вибростенда, визуально фиксируют момент резонанса по появлению на объекте контроля разноцветных полос. Техническим результатом является повышение точности определения резонансных частот конструкции. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области измерительной техники, а конкретно к устройствам определения резонанса конструкции для выбора режима испытаний на вибропрочность, виброустойчивость и выбора дальнейших конструктивных решений.

Резонансной частотой конструкции является частота колебаний при условии, что частота возбуждающей системы совпадает с собственной частотой конструкции.

Классический метод определения резонансных частот заключается в установке на исследуемый объект пьезоэлектрических датчиков и анализ их сигналов по амплитуде. Недостаток этого метода заключается в том, что закрепленные датчики имеют массу, что вводит порой значительные искажения в их показания при установке на малогабаритные изделия, такие как микросхемы или транзисторы.

Известен способ определения резонансных частот конструкции (патент №US 5883715, 1999 г., патентообладатель BOSCH GMBH ROBERT), который реализуется устройством, состоящим из полупроводникового лазера, оптической системы, необходимой для формирования изучения и приема отраженного оптического сигнала. Гетеродинование отраженного сигнала с лазерным излучением и выделение разностного сигнала, пропорционального амплитуде вибрации точки, на которую падает излучение, позволяет определить критическую частоту.

К достоинствам способа следует отнести бесконтактное дистанционное измерение перемещений (вибрации) контролируемой точки поверхности, на которую падает лазерное излучение. Недостатком является очень высокая стоимость и относительно низкий динамический диапазон входного сигнала, а также большое время измерения.

Известен способ определения резонансных частот с использованием стробоскопа «Генкина М.Д. Вибрация в технике. Измерение и испытания. В 6-ти томах. Том 5. «Машиностроение», - М., 1981 г., стр. 125-126». Для решения такой проблемы существует установка, принцип действия которой основан на стробоскопическом эффекте, т.е. при циклическом перемещении объекта с частотой f1 в определенный момент времени происходит вспышка света с частотой f2=f1+4 Гц, где f1 - частота предполагаемого резонанса, при наличии резонанса, когда f1=f2 оптически видны высвечиваемые стробоскопом штрихи частотой приблизительно 4 Гц. Недостаток метода заключается в том, что при небольшой амплитуде визуально трудно определить момент возникновения резонанса и оценить его характер.

Наиболее близким, взятым в качестве прототипа, является способ определения резонансных частот (патент №2377509, 2008 г., патентообладатель Государственное образовательное учреждение высшего профессионального образования Московский государственный институт электронной техники (технический университет), заключающийся в закреплении объекта контроля на подвижной части вибростенда, которая приводится в колебательное движение с переменной частотой, и направлении на него излучения от источника света. Момент резонанса фиксируется по максимальной величине ширины линии, отраженной от объекта контроля. Недостатком известного способа является недостаточная точность и сложность используемой конструкции, которая должна иметь отражательную способность.

Задачей предлагаемого способа является повышение точности определения резонансных частот конструкции за счет улучшения разрешающей способности метода определения резонансных частот конструкции.

Поставленная цель достигается за счет того, что в известном способе измерения резонансных частот, заключающемся в закреплении объекта контроля на подвижной части вибростенда, которая приводится в колебательное движение с переменной частотой, и направлении на него излучения от источника света, согласно заявленному решению, на объект контроля направляют излучение от трех источников света: красного, синего и зеленого, с образованием при их смешении белого света, которым освещается объект контроля, причем один источник света, например зеленый, подключают к источнику постоянного тока, а на остальные источники света подают стробирующие импульсы, затем, изменяя частоту вибрации подвижной части вибростенда, визуально фиксируют момент резонанса по появлению на объекте контроля разноцветных полос.

Технический результат заявленного решения достигается за счет того, что в стробоскопическом свете, направленном на объект контроля от источников разного цвета, при совпадении резонансной частоты объекта контроля и частоты механических колебаний вибростенда, наблюдается разделение одной полосы белого цвета на три полосы разных цветов: красного, синего и зеленого. Визуально наблюдаемые оптические эффекты, представляющие устойчивые разноцветные полосы, позволяют с большой точностью фиксировать момент резонанса.

Заявленное решение характеризуется высокой разрешающей способностью определения резонансных частот конструкции и низкой стоимостью по сравнению с известными методами.

Заявленное решение поясняется графическими материалами, где:

На фиг. 1 изображена функциональная схема устройства, реализующего заявленный способ.

В качестве дополнительных материалов, иллюстрирующих заявленное решение, представлены фотографии проведенного эксперимента.

На фиг. 2 показан начальный период измерений.

На фиг. 3 показан момент резонанса.

На фиг. 4 показан экран осциллографа.

Установка для реализации способа содержит вибростенд 1 и систему управления вибростендом 2. На подвижной части вибростенда 1 закреплен исследуемый объект 3 (объект контроля). Перед объектом контроля 3 установлены три светодиода: светодиод красного цвета 4, светодиод синего цвета 5 и светодиод зеленого цвета 6. Светодиод красного цвета 4 соединен с генератором стробирующих импульсов 7, светодиод синего цвета 5 соединен с генератором стробирующих импульсов 8, а светодиод зеленого цвета 6 соединен с источником постоянного тока 9. Установка содержит 4-канальный цифровой осциллограф 10, по входам соединенный с системой управления вибростендом 2, с генератором стробирующих импульсов 7 и с генератором стробирующих импульсов 8.

Предложенный способ измерения резонансных частот заключается в следующем: объект контроля 3 закрепляется на подвижной части вибростенда 1, которая приводится в колебательное движение с переменной частотой. На объект контроля 3 направляют излучения от трех источников света: светодиода красного цвета 4, светодиода синего цвета 5 и светодиод зеленого цвета 6. В начале работы все три источника света настраиваются таким образом, чтобы при смешении трех цветов исследуемый объект подсвечивался белым цветом. При этом светодиод зеленого цвета 6 подключают к источнику постоянного тока 9, и он горит постоянно, а на светодиод красного цвета 4 и на светодиод синего цвета 5 подают стробирующие импульсы длительностью примерно 1/20 от периода сигнала, подаваемого на вибростенд 1. Затем начинают повышать частоту вибрации подвижной части вибростенда 1. При вхождении конструкции в резонанс на объекте контроля появляются красные, синие и зеленые полосы. За счет разницы цветов более четко видна амплитуда перемещения. Момент резонанса визуально фиксируют по появлению на объекте контроля разноцветных полос.

Для эксперимента на вибростенде 1 консольно закрепляется отрезок медного провода, после чего установка включается в режиме сканирования по частоте. При этом генератором можно подстраивать стробирующие импульсы под сигнал, подаваемый на вибростенд 1 и наблюдать их на осциллографе 10.

Для оценки пригодности использования заявленного дистробоскопического метода произведена оценка погрешности определения резонансной частоты. Для этого теоретически рассчитывают первую собственную частоту консольного прямолинейного жесткого стержня с жесткой заделкой левого конца. Для расчета используют формулу (1). Форма колебаний для этого случая представлена на фиг. 2.

Формула для определения первой собственной частоты консольного прямолинейного жесткого цилиндрического стержня с жесткой заделкой левого конца:

где Lст=98 мм - длина стержня;

Dст=1,3 мм - диаметр стержня;

Е=110 ГПа- модуль Юнга для меди;

ρ=8,92 г/см3 - плотность меди.

Расчетное значение резонансной частоты f p I = 66  Гц .

Измеренное значение составляет f и I = 60  Гц .

Далее определяют относительную погрешность измерения [4] первой собственной частоты по формуле (2)

Из расчетов видно, что дистробоскопический метод имеет большие преимущества и низкую стоимость по сравнению с другими методами, представленными в ГОСТ 20.57.406-81. Очень интересным представляется вариант объединения данного метода с распространенными пакетами компьютерного моделирования. В этом случае становится возможным сравнивать экспериментально полученные значения собственных частот различных конструкций и рассчитанные в программе, например, методом конечных элементов. На основе проведенного сравнения можно выбирать наиболее устойчивую к вибрации конструкцию того или иного узла. Также метод, при соответствующей модернизации, может быть использован для поиска слабых мест в уже изготовленных изделиях, так как наличие резонанса и его вид будет определятся по изменению цвета исследуемой области, что очень легко зафиксировать.

Заявленный способ определения резонансных частот конструкции обладает высокой разрешающей способностью, прост в применении и имеет низкую стоимость по сравнению с другими методами.

1. Способ индикации резонансных частот, при котором закрепляют объект контроля на подвижной части вибростенда, которая приводится в колебательное движение с переменной частотой, и направляют на него излучение от источника света, отличающийся тем, что на объект контроля направляют излучение от трех источников света: красного, синего и зеленого, с образованием при их смешении белого света, которым освещается объект контроля, при этом один источник света, например зеленый, подключают к источнику постоянного тока, а на остальные источники света подают стробирующие импульсы, затем, изменяя частоту вибрации подвижной части вибростенда, визуально фиксируют момент резонанса по появлению на объекте контроля разноцветных полос.

2. Способ индикации резонансных частот по п. 1, отличающийся тем, что на источник красного цвета и на источник синего цвета подают стробирующие импульсы длительностью 1/20 от частоты сигнала, подаваемого на вибростенд.



 

Похожие патенты:

Изобретение относится к измерительной технике. Способ измерения добротности резонансного контура заключается в возбуждении колебаний за счет положительной обратной связи в контуре, стабилизации этих колебаний за счет введения отрицательной обратной связи по их амплитуде с помощью схемы автоматического регулирования усиления с источником опорного сигнала.

Изобретение относится к измерительной технике и предназначено для высокоточного определения резонансной частоты с использованием цифровых методов обработки сигналов, а также определения величин, которые функционально связаны с резонансной частотой резонаторов, входящих в состав радиочастотных датчиков и применяемых в различных областях техники и научных исследованиях.

Изобретение относится к области измерительной техники и может быть использовано для контроля качества микромеханических элементов. Устройство измерения резонансных частот и добротности подвижных элементов микромеханических устройств включает в себя генератор, регулятор амплитуды, усилитель мощности, вибростенд, на подвижной части которого закрепляется исследуемый МЭМС, источник излучения.

Использование: для контроля добротности пьезорезонагоров. Сущность: возбуждают колебания пьезорезонатора в области резонанса путем воздействия на него электрическим синусоидальным напряжением с переменной частотой, одновременно выделяют активную составляющую проводимости и выполняют ее дифференцирование, на частотной характеристике производной от активной составляющей проводимости измеряют значение производной на частоте максимума, измеряют частоту максимума производной от активной составляющей проводимости и значение активной составляющей проводимости на частоте максимума производной, после чего вычисляют величину добротности в соответствии с определенным математическим выражением.

Изобретение относится к измерительной технике. .

Изобретение относится к энергомашиностроению и может быть использовано при прочностной аэродинамической доводке осевых турбин и компрессоров, а также при создании систем диагностики осевых турбомашин в авиации и энергомашиностроении.

Изобретение относится к области приборостроения и может быть использовано для оценки акустики объемных помещений. .

Изобретение относится к авиадвигателестроению и может быть использовано при диагностике колебаний вращающихся лопаток ротора турбомашин. .

Изобретение относится к области измерительной техники и может быть использовано для контроля качества микромеханических элементов. .

Изобретение относится к области машиностроения и может быть использовано для измерения резонансной частоты колебаний конструкции испытательных стендов, имитирующих инерционность объекта управления и упругость крепления привода в изделии и предназначенных для контроля динамических характеристик системы привод-объект управления. Предложенный способ заключается в следующем. В качестве вибровозбудителя используют испытуемый привод. Привод устанавливают в стенд, на вход привода подают гармонический управляющий сигнал и определяют фазовый сдвиг колебаний инерционной нагрузки в системе координат неподвижного основания стенда относительно колебаний выходного звена привода в системе координат корпуса привода, изменяют частоту управляющего сигнала, при этом резонансную частоту стенда определяют как частоту управляющего сигнала, при которой фазовый сдвиг колебаний инерционной нагрузки относительно колебаний штока привода равен 90°. Резонансная частота также стенда может быть определена согласно выражению ωр=1/Т, где Т - постоянная времени, полученная путем аппроксимации значений фазового сдвига колебаний инерционной нагрузки относительно колебаний выходного звена привода при разных частотах управляющего сигнала фазовой частотной функцией колебательного звена второго порядка. Технический результат заключается в исключении применения специального оборудования при измерении резонансной частоты колебаний конструкции испытательных стендов. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области приборостроения и может быть использовано в системах контроля технологических процессов. Система датчиков содержит технологический измерительный преобразователь, вибродатчик без внешнего питания и технологический трансмиттер. Технологический измерительный преобразователь расположен внутри термокармана и выполнен с возможностью выработки первого сигнала датчика. Вибродатчик без внешнего питания выполнен с возможностью выработки второго сигнала датчика, отражающего вибрацию термокармана. Технологический трансмиттер выполнен с возможностью приема, обработки и передачи первого и второго сигналов датчиков. Технический результат – повышение эффективности контроля технологического процесса за счет исключения повреждения термокармана, в котором установлен технологический измерительный преобразователь. 2 н. и 22 з.п. ф-лы, 3 ил.

Изобретение относится к метрологии, в частности к способу определения собственных частот колебаний механической системы. Способ определения собственных частот колебаний механической системы, заключающийся в том, что на исследуемую конструкцию закрепляется электродвигатель, на валу которого с помощью подшипника качения устанавливается с возможностью свободного вращения маятник с изменяемым моментом инерции его массы, и при вращении вала электродвигателя маятник за счет трения в опоре в зависимости от его моментов инерции начинает вращаться с разными угловыми скоростями (частотами) вращения и эти частоты вращения, которые измеряются оптическим тахометром, определяют собственные (резонансные) круговые частоты колебаний механической системы (конструкции). Собственные круговые частоты колебаний механической конструкции определяют по наступлению события, при котором угловая скорость вращения маятника отличается от угловой скорости вращения вала ротора электродвигателя, а затем, изменяя момент инерции массы маятника как в сторону увеличения, так и в сторону уменьшения путем навешивания или снятия грузиков со стержня маятника, определяют остальные круговые собственные частоты колебаний конструкции. Технический результат - возможность измерения собственных (резонансных) частот колебаний механических систем. 2 ил.

Система и способ контроля давления, температуры и/или вибрации при неблагоприятных окружающих условиях, не требующие применения активных электронных устройств или контура генератора в таких условиях. В предлагаемой системе и способе предусматривается получение информации от резонансного датчика (41) давления и резонансного или пассивного датчика (43) температуры, соединенных с линией (15/17) передачи и расположенных на глубине по меньшей мере 100 футов (30,48 м) от установленного на поверхности анализатора (23) цепи. В системе и способе для определения давления, температуры и/или вибрации используются частоты отраженных сигналов от датчиков. Если датчики объединены в одну схему линией (15/17) передачи или сетевым фильтром, отраженная часть энергии может содержать отраженную энергию передачи. Подаваемый сигнал и отраженная часть проходят по линии (15/17) передачи, импеданс которой, предпочтительно, соответствует импедансу системы. При использовании многожильного кабеля компенсация влияния длины и температуры кабеля в условиях эксплуатации осуществляется посредством тарировки. 2 н. и 20 з.п. ф-лы, 11 ил.
Наверх