Способ ультразвукового измерения расхода жидкостей и газов

Изобретение относится к измерительной технике, а именно к способам измерения расхода жидкостей и газов в трубопроводах без контакта с контролируемой средой. Изобретение может быть использовано во многих областях промышленности и жилищно-коммунального хозяйства (ЖКХ), в том числе там, где требуется измерение расхода на коротких прямых участках трубопровода. Способ ультразвукового измерения основан на учете изменения скорости звука в среде, вызванного колебаниями температуры и иными внешними условиями; автоматическом учете внутреннего диаметра трубопровода в направлении измерений, который может отличаться от паспортных данных из-за наличия отложений на стенках трубопровода, неидеально круглой формы в сечении, шероховатости поверхности; автоматическом учете взаимных позиций пьезопреобразователей друг относительно друга, что позволяет снизить влияние неточности монтажа (учет Δ в расчетах) и время на установку в переносных расходомерах, основанных на данном способе измерений, а также возможности реализации многоплоскостного бесконтактного расходомера. Технический результат - повышение точности измерения и удобства системы в эксплуатации. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к измерительной технике, а именно к способам измерения расхода жидкостей и газов в трубопроводах без контакта с контролируемой средой.

Изобретение может быть использовано во многих областях промышленности и жилищно-коммунального хозяйства (ЖКХ), в том числе там, где требуется измерение расхода на коротких прямых участках трубопровода.

Общей проблемой измерения жидкости и газа является их бесконтактный контроль, особенно это относится к контролю в сложных конфигурациях трубопроводов.

Общеизвестны расходомеры жидкостей и газа, применяемые в ЖКХ для измерения расходов горячей и холодной воды, см. П.П. Кремлевский. «Расходомеры и счетчики количества веществ». Изд. Политехника, С.-Петербург, 2004, стр. 5-36.

Недостатки: нужна врезка в трубопровод, замена раз в 3-4 года, погрешность измерения до 3,5%.

Известен способ по патенту РФ, «Расходомер жидких и газовых сред в напорных трубопроводах», №2411456 C1, в котором измерения расхода жидкости и газов производятся при помощи накладных расходомеров, и оба преобразователя размещены на поверхности трубы в диаметрально противоположных точках. Излучающий преобразователь содержит элемент излучения объемных ультразвуковых волн, выполненный в виде упругого стержня (или трубки, заполненной жидкостью), с изгибом в плоскости осевого сечения трубы по форме дуги, кривизна которой пропорциональна скорости потока в заданном диапазоне скоростей. К концам элемента излучения подключены управляемые линии задержки ультразвуковых импульсов, идущих от генераторов сигналов, размещенных в электронном блоке. Приемный преобразователь выполнен из пьезоэлемента, который имеет звуковой контакт с трубой в точках выхода ультразвуковых импульсов, проходящих через среду в трубе, а также по стенке трубы в поперечном ее сечении. Причем используется вертикальное зондирование двух лучей, которое в случае отсутствия течения попадает на приемный элемент после прохождения через контролируемую среду. В случае присутствия потока времена между излучениями источником двух волн варьируются так, чтобы результирующее колебание, после прохождения через среду, оказалось в точке входа приемного устройства.

Недостатком является то, что измерения с заявленной точностью могут быть проведены только на достаточно длинных прямых участках трубопровода. Принцип работы устройства не позволяет учитывать неравномерный профиль потока, что ведет к снижению точности устройства в условиях сложных конфигураций трубопровода. Данный недостаток обусловлен отсутствием возможности реализации многоплоскостной расходометрии.

Наиболее близким из известных устройств ультразвукового измерения расхода, принятым за прототип, является устройство, связанное, как минимум, с двумя обратимыми электроакустическими преобразователями, каждый из которых имеет диаграмму направленности с углом раствора не менее 60° в разных плоскостях сечения и расположенный таким образом, чтобы ось диаграммы направленности была перпендикулярна к продольной оси трубопровода. Причем внешняя излучающая поверхность каждого электроакустического преобразователя совмещена с внутренней поверхностью трубопровода. Измерения расхода проводят как минимум при помощи двух электроакустических преобразователей. Преобразователи могут быть расположены как друг напротив друга, так и иным образом, например таким, чтобы ломаная линия проходила от одного преобразователя до другого с точками излома на внутренней поверхности трубопровода (см. патент РФ №2264602, «Ультразвуковой способ измерения расхода жидких и/или газообразных сред и устройство для его осуществления», кл. G01F 1/66, от 20.11.2005, Бюл. №32).

Недостаток прототипа в том, что предполагается контакт излучающей поверхности преобразователя с контролируемой средой. Это не позволяет применять его в качестве переносного, так как при использовании накладных преобразователей возникла бы неконтролируемая погрешность их взаимного позиционирования, величина которой зависит от их количества. Также это бы сказалось на времени и сложности монтажа.

Другой недостаток состоит в том, что из-за использования врезных датчиков возникают ограничения на область применения устройств, не позволяя применять способ в случае высоких температур контролируемого вещества или, например, агрессивных сред.

Технической задачей изобретения является повышение точности измерения и удобства системы в эксплуатации.

Технический результат достигается за счет использования бесконтактных ультразвуковых многоплоскостных кластерных ячеек (обратимых пьезопреобразователей), что позволяет автоматически учесть в расчетах диаметр трубопровода, скорость звука в среде, взаимные позиции пьезопреобразователей друг относительно друга.

Для решения поставленной задачи предлагается способ ультразвукового измерения расхода жидкости и газа, основанный на применении ультразвуковых волн, причем цикл измерения состоит из восьми составляющих: четыре измерения по потоку, а четыре против потока, для чего применены четыре обратимых пьезопреобразователя, расположенные по два с каждой стороны трубопровода по диаметру или хорде и строго ориентированы между собой, причем каждый пьезопреобразователь поочередно испускает ультразвуковой импульс, который принимается двумя пьезопреобразователями с противоположной стороны трубопровода, при этом определяется время прохождения ультразвукового импульса через трубопровод и по нему определяется расход потока по формуле:

,

где:

Q - расход потока на исследуемом участке;

k - поправочный коэффициент, зависящий от числа Рейнольдса для потока, а также от конфигурации трубопровода;

S - площадь сечения трубопровода;

v - скорость потока;

d - внутренний диаметр трубопровода;

π - число, π =3.1415…;

предварительно рассчитывается скорость потока и внутренний диаметр по системам уравнений.

Производится восемь измерений по числу включенных пьезопреобразователей и по ним определяется расход потока, внутренний диаметр, скорость звука и смещение пьезопреобразователей одной стороны относительно другой.

На чертеже показана структурная электрическая схема способа, а именно кластерная ультразвуковая ячейка, на которой изображено:

1-4 - пьезопреобразователи (ПЭП), 5 - трубопровод, 6 - направление потока жидкости или газа, D - внутренний диаметр трубопровода, B - расстояние между ПЭПами (входной параметр), c - скорость звука в среде, v - скорость потока, Δ - смещение первичных преобразователей на одной стороне относительно другой (между точками b и g (тоже между f и d)), t13-t31, t14-t41, t23-t32, t24-t42 - ход прямых лучей между ПЭПами.

Из чертежа видно, что ячейка состоит из 4-х пьезопреобразователей (ПЭП1-ПЭП4), выступающих попеременно источником и приемником УЗ-колебаний. Причем входным параметром для вычислений является только расстояние между преобразователями (B). В ходе работы системы вычисляются времена задержки от излучения сигнала одним из 4-х ПЭПов до другого. В один момент в системе должен иметься только один излучатель, а ПЭПы на противоположной стороне должны выступать в качестве приемников, причем оба, таким образом, в системе должно быть два приемных канала и система должна иметь достаточные паузы между излучениями для того, чтобы в них укладывалось затухание каждой излученной волны. Расстояние B должно быть задано из соображений угла раскрытия диаграммы направленности.

Кластерная ячейка работает следующим образом. Вычисляемыми параметрами в системе являются D, Δ, c и v. Соответственно, для их вычисления требуется наличие 4-х уравнений типа:

,

где αij - угол, образованный продольной осью трубопровода и линией, соединяющей соответственно i и j ПЭП. Само значение угла зависит от многих факторов, в том числе температуры и давления контролируемой среды и трубопровода, материалов трубопровода и т.п., таким образом, точное его значение заранее рассчитано быть не может, однако угол может быть выражен через искомые величины следующим образом:

В предложенной системе уравнений типа (2) может быть 8 уравнений, соответствующих восьми измерениям, однако t13=t24; t31=t42, поэтому независимых уравнений шесть. Таким образом, все четыре искомые величины могут быть вычислены из трех систем уравнений типа:

Расчету подлежат все три системы уравнений, при помощи которых усреднением определяются искомые величины и затем рассчитывается само значение расхода потока по формуле (1).

Преимуществом предложенного способа измерений является автоматический учет таких факторов, влияющих на погрешность показаний, как:

- изменение скорости звука в среде, вызванное колебаниями температуры и иными внешними условиями;

- автоматический учет внутреннего диаметра трубопровода в направлении измерений, который может отличаться от паспортных данных из-за наличия отложений на стенках трубопровода, неидеально круглая форма в сечении, шероховатость поверхности;

- автоматический учет взаимных позиций пьезопреобразователей друг относительно друга, что позволяет снизить влияние неточности монтажа (учет Δ в расчетах) и время на установку в переносных расходомерах, основанных на данном способе измерений, а также возможности реализации многоплоскостного бесконтактного расходомера.

Ошибка измерения в предложенной схеме зависит только от точности определения расстояния между первичными преобразователями с каждой стороны и от точности измерения времен прохождения сигналов.

1. Способ ультразвукового измерения расхода жидкости и газа, основанный на применении ультразвуковых волн, отличающийся тем, что цикл измерения состоит из восьми составляющих: четыре измерения по потоку, а четыре против потока, для чего применены четыре обратимых пьезопреобразователя, расположенные по два с каждой стороны трубопровода по диаметру или хорде и строго ориентированы между собой, причем каждый пьезопреобразователь поочередно испускает ультразвуковой импульс, который принимается двумя пьезопреобразователями с противоположной стороны трубопровода, при этом определяется время прохождения ультразвукового импульса через трубопровод и по нему определяется расход потока по формуле: , где:
Q - расход потока на исследуемом участке;
k - поправочный коэффициент, зависящий от числа Рейнольдса для потока, а также от конфигурации трубопровода;
S - площадь сечения трубопровода;
v - скорость потока;
d - внутренний диаметр трубопровода;
π - число, π=3.1415…;
предварительно рассчитывается скорость потока и внутренний диаметр по системам уравнений.

2. Способ по п. 1, отличающийся тем, что по 8-и измерениям по числу включенных пьезопреобразователей определяется расход потока, внутренний диаметр, скорость звука и смещение пьезопреобразователей одной стороны относительно другой.



 

Похожие патенты:

Использование: для измерения расхода высокотемпературной текучей среды. Сущность изобретения заключается в том, что ультразвуковой датчик содержит пьезоэлектрический вибратор, выполненный из ниобата лития и имеющий в качестве поверхности выхода поверхность, полученную путем поворота поверхности, перпендикулярной оси Υ кристалла ниобата лития, на угол 36°±2° вокруг оси X; демпфер, выполненный из титана; и соединяющий слой для соединения одной поверхности демпфера с поверхностью выхода; при этом соединяющий слой выполнен из серебра и стеклянной фритты, причем стеклянная фритта имеет коэффициент линейного расширения в диапазоне от 5×10-6 K-1 до 15×10-6 K-1.

Использование: для измерения потока. Изобретение относится к измерению потока, в частности к системе измерения потока путем пространственного пересечения множества путей приема-передачи друг с другом внутри трубопровода.

Предложены система и способ ультразвукового измерения расхода. В одном варианте реализации ультразвуковая измерительная система для измерения расхода содержит канал для потока текучей среды и множество ультразвуковых расходомеров.

Изобретение относится к измерительной технике и может найти применение для измерения расхода сред в различных отраслях промышленности, связанных с транспортировкой жидких и газообразных сред по трубопроводам, например в нефтеперерабатывающей, нефтегазодобывающей отраслях, в системах ЖКХ, энергетике.

Изобретение относится к ультразвуковым расходомерам для измерения расхода жидкости и газа. Расходомер содержит основной корпус расходомера, кожух, камеру, расположенную между кожухом и основным корпусом расходомера, охватывающий корпус, соединенный с основным корпусом расходомера и выполненный с возможностью размещения электронных средств.

Изобретение относится к блоку из ультразвукового преобразователя и держателя преобразователя. Блок из ультразвукового преобразователя (1) и держателя (2) преобразователя, причем ультразвуковой преобразователь (1) имеет корпус (3) преобразователя и преобразовательный элемент (4), причем корпус (3) преобразователя имеет ультразвуковое окно (5), корпусную трубку (6) и корпусный фланец (7), причем преобразовательный элемент (4) предусмотрен либо вблизи от ультразвукового окна (5) корпуса преобразователя или на удалении от ультразвукового окна корпуса преобразователя, причем держатель (2) преобразователя имеет фланец (8) держателя, и причем корпусный фланец (7) корпуса (3) преобразователя с помощью контрфланца (9) с промежуточным включением уплотнительного кольца (10) прижат к фланцу (8) держателя держателя (2) преобразователя.

Изобретение относится к ультразвуковому преобразователю. Ультразвуковой преобразователь как существенная часть ультразвукового расходомера, с корпусом преобразователя, имеющим ультразвуковое окно, корпусную трубку и корпусный фланец, и преобразовательным элементом, выполненным для передачи и приема ультразвуковых волн и предусмотренным либо вблизи ультразвукового окна корпуса преобразователя, либо на удалении от ультразвукового окна корпуса преобразователя, причем предусмотрена относительно мягкая механическая система сопряжения, предпочтительно имеющая по меньшей мере один слабо связанный механический резонатор или по меньшей мере два слабо связанных механических резонатора, отличается тем, что предусмотрена вторая мягкая механическая система сопряжения, причем из двух систем сопряжения одна система сопряжения расположена с ближней к ультразвуковому окну стороны корпусного фланца, а другая система сопряжения расположена с дальней от ультразвукового окна стороны корпусного фланца, при этом система сопряжения, предусмотренная с ближней к ультразвуковому окну стороны корпусного фланца, на своем ближнем к ультразвуковому окну конце соединена с корпусной трубкой, а на своем удаленном от ультразвукового окна конце соединена с корпусным фланцем, и система сопряжения, предусмотренная с дальней от ультразвукового окна стороны корпусного фланца, на своем удаленном от ультразвукового окна конце соединена с корпусной трубкой, а на своем ближнем к ультразвуковому окну конце соединена с корпусным фланцем.

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля и измерения расхода диэлектрических материалов, перемещаемых воздухом по металлическому трубопроводу.

Изобретение относится к средствам измерения скорости транспортируемой по трубопроводу текучей среды. Устройство для измерения скорости текучей среды в трубопроводе содержит измерительную вставку, оснащенную концевыми патрубками с фланцами, между которыми расположен мерный участок, выполненный в виде измерительной секции трубопровода из диэлектрического композиционного материала, закрепленной на указанных патрубках.

Изобретение относится к системам водоотведения. В системе, включающей модуль перекачки воды, содержащий насосы, приемный резервуар с подводящим трубопроводом, модуль анализа диагностируемых параметров, модуль контрольно-измерительных приборов, блок ввода объемов приемного резервуара, блок анализа водопритока, модуль анализа диагностируемых параметров, снабженный блоками ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода, анализа откачки воды из приемного резервуара, модуль контрольно-измерительных приборов снабжен датчиками уровня воды, установленными на подводящем трубопроводе и в приемном резервуаре, модуль перекачки воды снабжен запорно-регулирующим устройством с исполнительным органом, установленным на подводящем трубопроводе, устройством управления, при этом выходы блоков ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода и блока анализа откачки воды из приемного резервуара подключены к входу блока анализа водопритока.

Изобретение относится к измерительной технике и может быть использовано в устройствах для измерений расхода газа в трубопроводах. Заявлен способ измерения расхода газа в трубопроводах и устройство для его осуществления. Особенность заявленного способа заключается в том, что возбуждают волну Лэмба кольцевой структуры с круговой симметрией относительно оси трубы, которая излучает продольную волну в газе, также симметричную относительно оси; особенностью заявленного устройства является то, что пьезопластины и звукопроводы имеют кольцевую конструкцию, а звукопроводы состоят из цилиндрической части, торцевая поверхность которой сопрягается с рабочей плоскостью пьезопластины, и конусной части, обеспечивающей поворот цилиндрического ультразвукового пучка и ввод его в стенку трубы под необходимым углом. Техническим результатом является повышение точности измерения расхода. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения прохождения сигналов через контролируемую среду в трубопроводе. Способ прохождения сигналов через контролируемую среду заключается в том, что формируют исходный сигнал, обеспечивают его передачу в прямом направлении через контролируемую среду, как минимум, по одной передающей электрической цепи, принимают сигнал, прошедший в прямом направлении через контролируемую среду, как минимум, по одной приемной электрической цепи, обеспечивают передачу сформированного исходного сигнала в обратном направлении через контролируемую среду, как минимум, по одной приемной электрической цепи, принимают сигнал, прошедший в обратном направлении через контролируемую среду, как минимум, по одной передающей электрической цепи и обеспечивают, таким образом, прохождение сигналов через контролируемую среду. Технический результат заключается в возможности получения сигналов, прошедших через контролируемую среду, с высокой степенью идентичности. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких и сыпучих сред в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких и сыпучих сред содержит генератор СВЧ, соединенный с его выходом делитель мощности, два циркулятора, первые выводы циркуляторов соединены с выходами делителя мощности, вторые выводы соединены с приемо-передающими антеннами, направленными под одинаковым углом по направлению потока и против него, третьи выводы соединены с входами смесителя, выход смесителя соединен с вычисляющим устройством. Технический результат - повышение чувствительности измерения скорости потока. 1 ил.

Изобретение относится к акустическим расходомерам для неинвазивного определения потока или интенсивности расхода в проточных для сред электропроводящих объектах, прежде всего в трубах или трубопроводах. Акустический расходомер содержит передающий преобразователь для создания в объекте по меньшей мере одной ультразвуковой волны, вводимой в среду на обращенной к среде внутренней стороне объекта в виде продольной волны, и принимающий преобразователь для обнаружения в объекте ультразвукового сигнала, по меньшей мере частично возникающего за счет продольной волны. Передающий преобразователь выполнен в виде высокочастотной индукционной катушки с отказом от акустической связи передающего преобразователя с поверхностью объекта для создания в близкой к поверхности области объекта, прежде всего металлического объекта, варьирующегося магнитного поля. За счет взаимодействия магнитного поля со статическим или квазистатическим магнитным полем в этой области создается ультразвуковая волна. Отличительной особенностью является то, что передающий преобразователь выполнен для генерации направленных волн. Технический результат - снижение требования к точности взаимного расположения передающего и принимающего преобразователей и обеспечение более равномерного распределения мощности прозвучивания среды в направлении потока среды через объект. 18 з.п. ф-лы, 22 ил.

Изобретение в целом относится к расходомерам для измерения расхода жидкости и газа. Более конкретно, оно относится к устройству и к системе для защиты кабелей, отходящих от ультразвуковых расходомеров. Предложен расходомер, который содержит корпус, охваченный кожухом, содержащим податливый пояс, расположенный по меньшей мере частично вокруг корпуса. Кожух защищает приемопередатчики и кабели приемопередатчиков. Кожух образует камеру между этим кожухом и корпусом и содержит съемную часть для обеспечения доступа в камеру. Технический результат - повышение зашиты кабелей от повреждений с одновременным упрощением доступа к ним. 4 н. и 25 з.п. ф-лы, 24 ил.

Устройство и способы для проверки измерений температуры в ультразвуковом расходомере. В одном варианте реализации измерительная система для ультразвукового измерения расхода содержит канал для потока текучей среды, датчик температуры и ультразвуковой расходомер. Датчик температуры размещен для измерения температуры текучей среды, протекающей в канале. Ультразвуковой расходомер содержит множество пар ультразвуковых преобразователей и управляющие электронные устройства. Каждая пара преобразователей выполнена с возможностью формирования хордальной траектории сквозь канал между преобразователями. Управляющие электронные устройства соединены с ультразвуковыми преобразователями. Управляющие электронные устройства выполнены с возможностью измерения скорости звука между каждой парой преобразователей на основании ультразвуковых сигналов, проходящих между преобразователями пары. На основании измеренных скоростей определяют наличие градиента температуры, на основании которого определяют, точно ли измеренное значение температуры, выданное датчиком температуры, отражает температуру текучей среды, протекающей в канале. Технический результат - повышение точности определения расхода среды. 3 н. и 19 з.п. ф-лы, 8 ил.

Изобретение относится к измерительной технике, а именно к способам измерения расхода жидкостей и газов в трубопроводах без контакта с контролируемой средой. Система определения расхода жидкости и газа при помощи ультразвука содержит источник и приемник ультразвука, устройство управления и блок измерения. Дополнительно в систему введены две пьезоячейки, блок автоматического контроля взаимных позиций первичных преобразователей, блок коммутации преобразователей, усилитель, АЦП, блок обработки и анализа сигналов и толщиномер со следующими соединениями: входы/выходы пьезоячеек через информационную шину М соединены с блоком коммутации преобразователей, который через усилитель и АЦП соединен с информационным выходом блока обработки и анализа сигналов, выход последнего при помощи двухсторонней шины связан с блоком автоматического контроля взаимных позиций первичных преобразователей. Первая пьезоячейка состоит из четырех обратимых пьезопреобразователей, расположенных по два на разных концах сечения, перпендикулярного продольному направлению трубопровода. Вторая пьезоячейка состоит из шести обратимых пьезопреобразователей, расположенных: два в общей точке хорд и четыре - по два на каждой хорде и смещенных друг относительно друга по вертикальной оси на определенную величину. Расстояние между двумя пьезопреобразователями с каждой стороны трубопровода строго ориентировано и определяется углами раскрытия диаграммы направленности. Технический результат - повышение точности измерения и удобства системы в эксплуатации. 1 з.п. ф-лы, 3 ил.

Изобретение относится к ультразвуковым расходомерам-счетчикам для безнапорного потока сточных вод и может быть использовано в других безнапорных потоках. Ультразвуковой расходомер-счетчик включает коллектор, датчики скорости и глубины потока, установленные на вершине перекатной вставки, закрепленной на дне коллектора. Перекатная вставка сжимает безнапорный поток снизу, и на вершине переката поток становится чистым от илистых частиц, и результаты измерения расхода потока существенно повышаются. Перекатная вставка с датчиками на вершине легко устанавливается в коллекторе и легко перемешивается по дну коллектора при необходимости в любые сечения его. Технический результат - повышение точности измерения скорости потока с погрешностью менее 1%. 1 ил.

Изобретение относится к системе и способу ультразвукового измерения расхода. В одном варианте реализации измерительная система для ультразвукового измерения расхода содержит множество ультразвуковых расходомеров. Каждый из ультразвуковых расходомеров содержит устройство обработки данных потока. Устройство обработки данных потока выполнено с возможностью сохранения множества интервалов скорости, каждый из которых соответствует диапазону скоростей потока расходомеров. Устройство обработки данных потока также выполнено с возможностью сохранения, в пределах каждого из интервалов, значения, характеризующего предыдущую среднюю скорость потока текучей среды через данный расходомер из расходомеров, связанный с данным интервалом из указанных интервалов. Устройство обработки данных потока дополнительно выполнено с возможностью определения, в качестве реакции на неисправность одного из расходомеров, ожидаемой средней скорости потока текучей среды через систему на основании значений, сохраненных в интервалах. Технический результат - улучшение точности измерения потока и защита от неисправностей. 3 н. и 27 з.п. ф-лы, 7 ил., 3 табл.

Изобретение относится к системам водоотведения. В системе, включающей модуль перекачки воды, содержащий насосы, приемный резервуар с подводящим трубопроводом, модуль анализа диагностируемых параметров, модуль контрольно-измерительных приборов, блок ввода объемов приемного резервуара, блок анализа водопритока, модуль анализа диагностируемых параметров, снабженный блоками ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода, анализа откачки воды из приемного резервуара, модуль контрольно-измерительных приборов снабжен датчиками уровня воды, установленными на подводящем трубопроводе и в приемном резервуаре, модуль перекачки воды снабжен запорно-регулирующим устройством с исполнительным органом, установленным на подводящем трубопроводе, устройством управления, при этом выходы блоков ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода и блока анализа откачки воды из приемного резервуара подключены к входу блока анализа водопритока. Технический результат - возможность использования системы для решения задач по диагностике расхода воды. 4 з.п. ф-лы, 3 ил.
Наверх