Газожидкостный сепаратор

Изобретение относится к созданию оборудования для разделения многофазных смесей, в частности к сепараторам газ/жидкость, действие которых основано на разности плотностей фаз. Газожидкостный сепаратор содержит вертикальный цилиндрический корпус с патрубком подачи газожидкостной смеси, внутренний цилиндр с каналом, сообщенным рядом отверстий, выполненных вдоль центральной оси, с полостью канала и с полостью под нижней поверхностью направляющего аппарата и патрубком для отвода газа, винтовой направляющий аппарат, размещенный между ними и образующий в спиральном канале в потоке газожидкостной смеси участки с флуктуациями в скорости, камеру расширения с патрубком для отвода дегазированной жидкости в нижней части корпуса. Газожидкостный сепаратор снабжен диспергирующим элементом с по меньшей мере одним участком сопротивления, образующим в газожидкостной смеси участок с флуктуациями в скорости потока, участок сопротивления выполнен в виде перфорации или перфорации и выступов или перфорации и впадин на диспергирующем элементе. При этом диспергирующий элемент установлен первым со стороны патрубка подачи газожидкостной смеси над направляющим аппаратом с образованием между ними спирального канала. Техническим результатом является повышение степени отделения газа от жидкости. 1 ил., 1 табл.

 

Изобретение относится к созданию оборудования для разделения многофазных смесей, в частности к сепараторам газ/жидкость, основанным на разности плотностей фаз. Такое оборудование особенно применимо для смесей газов в жидкостях и основано на совместном действии центробежной силы и силы тяжести, и одновременно конструктивных средств и условий позволяющих организовывать прерывистый поток, что создает флуктуации в скорости потока, которые способствуют диспергации, растворенного в жидкой фазе газа и выделению его в виде мелких пузырьков.

Наиболее близким по назначению и достигаемому результату, является газожидкостный сепаратор, содержащий вертикальный цилиндрический корпус с патрубком подачи газожидкостной смеси, внутренний цилиндр с каналом, сообщенным рядом отверстий, выполненных вдоль центральной оси с полостью канала и с полостью под нижней поверхностью направляющего аппарата и патрубком для отвода газа, винтовой направляющий аппарат, размещенный между ними и образующий в спиральном канале в потоке газожидкостной смеси участки с флуктуациями в скорости, патрубок для подвода газожидкостной смеси в верхней части корпуса и камеру расширения с патрубком для отвода дегазированной жидкости в нижней части корпуса /RU №2185872 МПК B01D 19/00 опубл. 27.07.2002/.

В известном сепараторе не гарантируется эффективное выделение пузырьков газа из жидкости, поскольку не обеспечена реализация самотечного течения газожидкостной смеси ни на одном участке винтовой поверхности. Самотечный расход однозначно определяется параметрами винтового канала, (внутренним и внешним диаметрами, шагом винтовой поверхности, определяющими уклон винтовой поверхности). Отделяемая от газа жидкость может обладать различной вязкостью и плотностью, что затрудняет настройку сепаратора и его ремонт. При задании размеров винта для случая расхода, меньшего, чем максимальный, в камере расширения может образовываться избыточный уровень жидкости, что приводит к "запиранию" жидкостью переходной области винта и может приводить к переносу жидкости в газовую линию.

Задачей изобретения является повышение эффективности газожидкостного сепаратора.

Технический результат - повышение степени отделения газа от жидкости, снижение веса, трудозатрат на ремонт и настройку.

Технический результат достигается тем, что в известный газожидкостный сепаратор, содержащий вертикальный цилиндрический корпус с патрубком подвода газожидкостной смеси, внутренний цилиндр с каналом, сообщенным рядом отверстий выполненных вдоль центральной оси с полостью канала и с полостью под нижней поверхностью направляющего аппарата и патрубком для отвода газа, винтовой направляющий аппарат, размещенный между ними, образующий в спиральном канале в потоке газожидкостной смеси участки с флуктуациями в скорости, и камеру расширения с патрубком для сбора и отвода дегазированной жидкости в нижней части корпуса, по предложению, он снабжен диспергирующим элементом с, по меньшей мере, одним участком сопротивления, образующим в газожидкостной смеси участок с флуктуациями в скорости потока, участок сопротивления выполнен в виде перфорации или перфорации и выступов или перфорации и впадин на диспергирующем элементе, при этом диспергирующий элемент установлен первым со стороны патрубка подачи газожидкостной смеси над направляющим аппаратом с образованием между ними спирального канала.

Устройство предусматривает принудительную турбулизацию потока, введением в него диспергирующего элемента с участками торможения. Диспергирующий элемент с участками торможения в виде перфорации диаметром до 5 мм или перфорации и выступов или перфорации и впадин располагают над поверхностью направляющего аппарата на некотором расстоянии, на пути набегающего потока.

Сепаратор выполнен в виде винтовой поверхности с равной величиной уклона, расположенной между двумя цилиндрами. При этом пленка жидкости с распределенными пузырьками газа стекает вниз по винтовой траектории, заданной совместным действием центробежной и гравитационной сил. Наличие диспергирующего элемента способствует большей турбулизации потока и дополнительному отделению пузырьков газа, распределенных в пленке жидкости. Выделяющийся из жидкости газ выводится в полость через отверстия в центральном цилиндре.

Самотечный расход жидкости в прямоугольном турбулизированном винтовом канале, при котором сохраняется образующаяся газовая полость, а поток жидкости различной плотности и вязкости, например: масла не замыкается, достигается при соблюдении в сечениях канала следующих условий.

Сведения получены в результате экспериментов и связывают течение потоков в прямоугольных каналах с искусственной шероховатостью и встроенными, в поток дополнительными диспергаторами.

Размещение на диспергаторе одного или более участков сопротивления, выполненных в виде перфорации или перфорации и выступов или перфорации и впадин на диспергирующем элементе участков сопротивления, позволяет поддерживать толщину стекаемого потока при дополнительной деспергации газа. Предварительная турбулизация подавляющей части потока, позволяет получить практически полную дегазацию от масла, а создание в дальнейшем, условий для ламинарного протекания жидкости по поверхности в зазоре между диспергирующим элементом и поверхностью направляющего аппарата способствует сохранению условий диспергации жидкости.

Спиральный канал при той же эквивалентной длине сепарации, что и в прямолинейной наклонной трубе, имеет значительно меньшие габариты. Кроме того, из-за криволинейного движения жидкости в спиральном канале возникает центробежное ускорение, которое, складываясь с земной гравитацией, повышает выталкивающую силу, действующую на газовые включения, а участок сопротивления на диспергирующем элементе увеличивает турбулизацию жидкости, что в свою очередь также ускоряет процесс вывода свободного газа и позволяет дополнительно уменьшить габариты устройства. Жидкость отбирается насосом из нижней части сепаратора.

Фиг. - схема газожидкостного сепаратора.

Газожидкостный сепаратор, содержит вертикальный цилиндрический корпус 1, патрубок подачи 2 газожидкостной смеси, внутренний цилиндр 3, с каналом 4 сообщенный рядом отверстий 5, выполненных вдоль центральной оси канала с полостью 6 камеры расширения 7 под нижней поверхностью направляющего аппарата 8 и с патрубком 9 для сбора и отвода дегазированной жидкости. Сепаратор снабжен диспергирующим элементом 10 и оборудованном на нем по меньшим мере, одним участком сопротивления 11, образующим участки с флуктуациями в скорости потока.

Сепаратор работает следующим образом. Набегающий поток, проходя через решетку диспергирующего элемента 10, предварительно турбулизируется, что позволяет уйти от ламинарного обтекания на подавляющей части поверхности испытуемого канала сепаратора.

При моделировании разгона и торможения испытуемых масел различной плотности и физических свойств, возможно изменение расстояния между участками сопротивления, выполненными на дефлекторе (ленте с перфорацией). Выбираемый заранее и нанесенный на ленту участок, установленный в сепаратор (например: путем ввинчивания со стороны, отводящего жидкость патрубка) позволяет легко перенастраивать и очищать сепаратор.

Применение изобретения - повышение степени отделения газа от жидкости, снижение веса, трудозатрат на ремонт и настройку.

Газожидкостный сепаратор, содержащий вертикальный цилиндрический корпус с патрубком подачи газожидкостной смеси, внутренний цилиндр с каналом, сообщенным рядом отверстий, выполненных вдоль центральной оси, с полостью канала и с полостью под нижней поверхностью направляющего аппарата и патрубком для отвода газа, винтовой направляющий аппарат, размещенный между ними и образующий в спиральном канале в потоке газожидкостной смеси участки с флуктуациями в скорости, камеру расширения с патрубком для отвода дегазированной жидкости в нижней части корпуса, отличающийся тем, что он снабжен диспергирующим элементом с, по меньшим мере, одним участком сопротивления, образующим в газожидкостной смеси участок с флуктуациями в скорости потока, участок сопротивления выполнен в виде перфорации или перфорации и выступов или перфорации и впадин на диспергирующем элементе, при этом диспергирующий элемент установлен первым со стороны патрубка подачи газожидкостной смеси над направляющим аппаратом с образованием между ними спирального канала.



 

Похожие патенты:

Изобретение относится к устройствам для вакуумной или комбинированной термической и вакуумной дегазации жидкостей, в том числе воды, с использованием центробежного эффекта.

Изобретение относится к газовой промышленности и может быть использовано для транспортировки газов по трубопроводам. Скважинную продукцию газоконденсатного месторождения (I) сепарируют (1) с получением газа входной сепарации (II), водного конденсата (III) и углеводородного конденсата (IV), который дросселируют и сепарируют с получением газа стабилизации (V) и стабилизированного углеводородного конденсата (VI), который фракционируют совместно с широкой фракцией легких углеводородов (VII) с получением дистиллята среднего (VIII) и широкого (IX) фракционного состава.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для предварительного разделения газожидкостной смеси в системе сбора и подготовки продукции нефтяных и газовых скважин.

Изобретение относится к установкам подготовки сероводородсодержащей нефти и может быть использовано в нефтедобывающей промышленности при подготовке сероводородсодержащей нефти.

Предлагаются способ и установка для удаления диоксида углерода из потока углеводородного газа. Газовый поток охлаждают, расширяют до промежуточного давления и подают в ректификационную колонну в точку ввода питания в верхней части колонны.

Изобретение относится к способу термического разделения раствора, состоящего из термопластичного полимера и растворителя. Раствор нагревают под давлением выше критической точки растворителя и затем декомпрессируют в сепаратор высокого давления.

Изобретение предназначено для разделения неоднородной системы газ/пар-жидкость с низкой концентрацией дисперсной газовой/паровой фазы в жидкой фазе и может быть использовано в нефтеперерабатывающей, газовой, нефтехимической, химической, пищевой и других отраслях промышленности для разделения газожидкостных смесей.

Изобретение относится к области газовой промышленности и является усовершенствованным способом промысловой подготовки продукции газоконденсатных залежей. Способ деэтанизации нестабильного газового конденсата (НГК) включает разделение НГК на два потока.

Изобретение относится к процессам промысловой подготовки нефти. Способ дегазации и обезвоживания нефти заключается в подаче нефтегазоводяной смеси в двухсекционный нефтегазоводоразделитель, отделении в нем нефтяного газа и нагреве водонефтяной эмульсии посредством размещенных друг над другом верхней и нижней U-образных жаровых труб с горизонтально ориентированными друг относительно друга ветвями, причем в процессе дегазации и обезвоживания нефти контролируют тепловую мощность, требуемую для нагрева свободной воды в поступающей нефтегазоводяной смеси, по следующей зависимости: N=Qн(W1-W2) с Δt/(1-W1)(1-W2), где N - тепловая мощность, Qн - расход нефти, W1, - общее содержание воды в поступающей нефтегазоводяной смеси, W2 - содержание воды в водонефтяной эмульсии, с - теплоемкость воды, Δt - требуемый перепад температур на выходе и входе нефтегазоводоразделителя, сравнивают тепловую мощность, требуемую для нагрева свободной воды, с контрольной величиной тепловой мощности нижней жаровой трубы и при ее превышении этой контрольной величины производят отключение нижней жаровой трубы.

Изобретение относится к технологии гидравлических испытаний электрогидромеханических систем и их агрегатов. Устройство предусматривает установку патрубка слива в жидкостно-жидкостной эжектор конфузорно-диффузорного типа с перфорированным диффузором с экраном, который снабжен устройством углового поворота относительно оси патрубка слива, приводом поворота, причем поворот экрана меняет площадь перфорированной поверхности диффузора, через перфорацию которого поток вытекает в бак из эжектора.

Изобретение может быть использовано в нефтедобывающей промышленности при подготовке сероводородсодержащей нефти. Способ включает многоступенчатую сепарацию и последующую отдувку углеводородным газом, не содержащим сероводорода. Дополнительно в зону десорбционной колонны, расположенную между точками ввода в нее сероводородсодержащей нефти и газа, не содержащего сероводорода, подают сероводородсодержащий газ в объеме 0,5-12 м3/т с мольной долей сероводорода не более 1,6%. Технический результат: повышение качества товарной нефти за счет исключения возможного образования термически нестабильных серосодержащих соединений в нефти в результате увеличения эффективности удаления сероводорода из нефти отдувкой в десорбционной колонне, степени очистки газа от сероводорода за счет снижения расхода сероводородсодержащего газа, подаваемого на нее, снижение расхода десорбирующего газа и затрат на очистку нефти от сероводорода. 1 табл., 1 ил.

Изобретение относится к способам и устройствам для обработки загрязненной газообразными соединениями и твердыми веществами технологической воды и может быть использовано для очистки технологической воды из установок мокрой очистки технологического газа, в частности из установок для восстановительной плавки или из плавильного газогенератора. Технологическую воду вводят в резервуар (1) в первой технологической ступени и дегазируют вследствие уменьшения растворимости растворенных газов при перепаде давления 0,1-10 бар. Резервуар (1) на своей верхней стороне имеет газосборную камеру (4), в которой собирают и из которой выводят отделенные газы. Обработанную технологическую воду выводят в области самого низкого места резервуара (1) через закрываемый выпуск, и/или насос, и/или гидроциклон (17), или через шлюзовую систему. Твердые вещества выводят из резервуара через шлюзовое разгрузочное устройство (13). Изобретение позволяет обеспечить возможность простой и надежной очистки технологической воды, а также исключить попадание токсичных газов в окружающий воздух и снизить коррозию оборудования. 2 н. и 20 з.п. ф-лы, 3 ил.

Изобретение относится к системам очистки воды и может быть использовано для очистки нефтесодержащих и сточных вод. Установка для очистки нефтесодержащих и сточных вод содержит по меньшей мере две ступени очистки, соединенные последовательно вдоль потока очищаемой воды и разделенные между собой посредством перегородок 7. Каждая ступень очистки состоит из флотореактора 1, 2, 3 и флоторазделителя 4, 5, 6, разделенных посредством перегородки 8. Аэрирующий узел 10 первой ступени очистки сообщен через насос 9 с придонной частью флоторазделителя 6 последней ступени очистки. Выход трубопровода подвода очищаемой воды 11 сообщен с придонной частью 16 флотореактора 1 первой ступени очистки. Первый выход аэрирующего узла 10 сообщен через дросселирующий клапан 26 с входом в флотореактор 1 первой ступени очистки. Вторая и последующая ступени очистки снабжены деаэрирующими узлами 31, 32. Выход каждого из деаэрирующих узлов 31, 32 расположен в днище 33, 34 и сообщен через дросселирующий клапан 26 с входом в соответствующий флотореактор 2, 3 и через регулятор давления 35 с входом в верхнюю часть деаэрирующего узла 36, 37 следующей ступени очистки. Второй выход аэрирующего узла 10 сообщен через регулятор давления 35 с входом в верхнюю часть 36 деаэрирующего узла второй ступени очистки. Выход каждого дросселирующего клапана 26 размещен у входа в соответствующий флотореактор 1, 2, 3. Площадь поперечного сечения днища каждого флотореактора 1, 2, 3 равномерно уменьшается по направлению сверху вниз. Площадь поперечного сечения флоторазделителя 4, 5, 6 не меньше площади поперечного сечения соответствующего флотореактора. Перегородки 8, отделяющие флотореакторы 1, 2, 3 от флоторазделителей 4, 5, 6, выполнены с возможностью свободного перемещения потока очищаемой воды в верхних частях флотореакторов 1, 2, 3 и флоторазделителей 4, 5, 6 одной ступени очистки. Перегородки 7, разделяющие ступени очистки, выполнены с возможностью свободного перемещения потока очищаемой воды в придонных частях флоторазделителей 4, 5, 6 и флотореакторов 1, 2, 3 различных ступеней очистки. Аэрирующий узел 10 выполнен с возможностью поддержания давления насыщения 0,3-0,6 МПа. Деаэрирующие узлы 31, 32 выполнены с возможностью поддержания давления насыщения 0,1-0,3 МПа. Изобретение позволяет повысить эффективность очистки нефтесодержащих и сточных вод. 6 з.п. ф-лы, 1 ил.

Изобретение относится к оборудованию для подготовки попутно добываемой пластовой воды в системе сбора нефти, газа и воды. Установка включает трубопровод 3 подачи добываемой газо-жидкостной смеси (ГЖС) в блок сепарации ГЖС 1, трубопровод отвода ГЖС 10 из блока сепарации ГЖС 1, блок подготовки воды 2, оснащенный фильтром 6 для очистки от механических примесей, трубопровод отвода воды 5. Блок сепарации ГЖС 1 представляет собой трубный водоотделитель (ТВО) - для газового фактора ГЖС от 100 до 400 м3/м3 или узел фазового разделения эмульсии (УФРЭ) - для газового фактора ГЖС от 20 до 100 м3/м3, или трубный отстойник-сепаратор (ТОС - для газового фактора менее 20 м3/м3, причем до ТВО или УФРЭ установлен успокоитель-депульсатор потока ГЖС 11, оснащенный трубопроводом отвода газа 12 в блок сепарации 1, а блок подготовки воды 2 представляет собой закрытую с концов горизонтальную трубу, а трубопровод ввода в нее нефтесодержащей воды 4, поступающей из блока сепарации 1, соединен с тем концом горизонтальной трубы, в котором установлен в качестве фильтра пакет параллельных пластин 6, соединенный с колпаком для сбора механических примесей 7 через отверстие снизу горизонтальной трубы, причем колпак для сбора выделившихся газа и нефти 8 установлен после пакета параллельных пластин 6, в верхней части горизонтальной трубы, а трубопровод отвода выделившихся газа и нефти 9 из колпака 8 для их сбора в блок сепарации 1 выполнен горизонтальным и находится выше уровня трубопровода подачи добываемой ГЖС 3 в блок сепарации 1 соответственно из успокоителя-депульсатора потока ГЖС в ТВО или в УФРЭ или непосредственно в ТОС. При применении в качестве блока сепарации ГЖС узла фазового разделения эмульсии (УФРЭ) трубопроводы ввода в горизонтальную трубу нефтесодержащей воды установлены с обоих концов горизонтальной трубы, в каждом из которых установлен в качестве фильтра пакет параллельных пластин, соединенный с колпаком для сбора механических примесей через отверстие снизу горизонтальной трубы. Технический результат - повышение эффективности установки за счет обеспечения проточного режима ее эксплуатации и улучшения качества сепарации и подготовки при упрощении установки по конструкции, в том числе по количеству средств автоматики и КИП, при снижении ее металлоемкости. 1 з.п. ф-лы, 4 ил.

Изобретение относится к способу и устройству снижения давления. Устройство и способ снижения давления текучей среды, содержащей жидкую фазу, газовую фазу и твердую фазу, включающий пропускание текучей среды, давление которой нужно снизить, последовательно через множество стадий, соединенных друг с другом последовательно посредством первых нижних соединительных вставок, при этом на каждой стадии имеется пара вертикальных каналов, соединенных друг с другом в верхней части посредством вторых верхних соединительных вставок, при этом текучая среда движется снизу вверх в первом канале каждой стадии и сверху вниз во втором канале каждой стадии, причем в первом канале каждой стадии часть энергии давления текучей среды преобразуют в гравитационный потенциал, причем во втором канале часть гравитационного потенциала преобразуют в тепловую энергию, причем при объемном соотношении между газовой фазой и жидкой фазой выше чем 0,01 газовую фазу отводят из потока. Технический результата - снижение давления определенной текучей среды. 2 н. и 14 з.п. ф-лы, 7 ил.

Изобретение относится к нефтяной и нефтегазоперерабатывающей промышленности и может быть использовано для предварительного разделения смеси на газ и жидкость в системах сбора и подготовки продукции нефтяных и газовых скважин. Устройство содержит трубопровод, в котором размещены завихритель и патрубки для подвода газожидкостной смеси и отвода жидкости и газа, центробежный сепаратор, выполненный в виде плоской спирали, закрытой с торцов пластинами с серповидными отражателями, и выходную трубу. Трубопровод выполнен наклонным под углом 30° и присоединен к вертикальной сепарационной камере. Завихритель с депульсатором установлен в патрубке для подвода смеси. Выходная труба соединена с сепарационной камерой и с коробом, установленным над отверстиями, выполненными по длине на боковой поверхности трубопровода, внутри которого соосно вдоль короба расположена дополнительная труба, закрытая с торцов и имеющая паз с углом от 90° до 120° по длине. Напротив паза в дополнительной трубе выполнены отверстия, идентичные отверстиям в трубопроводе, в которые вварены выводные трубки. Диаметр дополнительной трубы меньше или равен половине диаметра трубопровода. Боковое окно короба закрыто крышкой. В коробе над выводными трубками установлен сепаратор щелевого типа. Под коробом в трубопроводе выполнено отверстие для слива. На входе в сепарационную камеру установлен дефлектор. В колене выходной трубы над камерой сепарации размещена плоская винтовая спираль, а в камере над сливным патрубком размещен пеногаситель. На трубе, соединяющей короб с патрубком для отвода газа, может быть установлен шаровой кран. Технический результат: повышение эффективности сепарации газоводонефтяной смеси при снижении габаритов конструкции. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способам подготовки сероводородсодержащей нефти к транспорту. В способе подготовки сероводородсодержащей нефти, включающем многоступенчатую сепарацию, обезвоживание, обессоливание нефти пресной водой, сепарацию при температуре 30-65°С и пониженном давлении в концевом сепараторе, нейтрализацию остаточного сероводорода реагентом, сепарацию нефти в концевом сепараторе проводят при давлении 0,03-0,10 МПа, которое создают за счет откачки из него газа водокольцевым насосом. В качестве рабочего агента для откачки и сжатия газа используют пресную воду в количестве 1-5% от массы очищаемой нефти. После сжатия проводят разделение газа от воды в газоводоотделителе, при этом газ подают в газопровод, а пресную воду с выделившимся из газа углеводородным конденсатом - в нефть для ее обессоливания. Технические результаты - повышение выхода товарной нефти, упрощение реализации процесса сепарации нефти при пониженном давлении, снижение затрат, связанных с очисткой нефти от сероводорода. 1 ил.

Группа изобретений относится к сепарационному устройству и способу сепарирования потока текучей среды в сепарационном устройстве. Устройство для сепарирования потока текучей среды, состоящего по меньшей мере из двух текучих сред, различающихся по плотности, содержит первый трубчатый элемент, снабженный компонентом, создающим вращение в потоке текучей среды за входом в первый трубчатый элемент, и второй трубчатый элемент, по меньшей мере, частично расположенный внутри первого трубчатого элемента за компонентом, создающим вращение, и формирующий выход для текучих сред с меньшей плотностью. При этом первый и второй трубчатые элементы образуют между внутренней поверхностью первого трубчатого элемента и наружной поверхностью второго трубчатого элемента кольцевой зазор, соединенный с первой выпускной секцией для текучих сред, имеющих более высокую плотность. Второй трубчатый элемент, по меньшей мере, на части своей длины снабжен сквозными отверстиями, проходящими сквозь его стенку и ведущими во вторую выпускную секцию для текучих сред, имеющих более высокую плотность, а первая выпускная секция и вторая выпускная секция присоединены к общему контейнеру, снабженному выходом для текучих сред, имеющих более высокую плотность. Согласно способу сепарирования потока многофазной текучей среды в трубе приводят поток текучей среды во вращение посредством компонента, создающего вращение, который установлен за входом в первый трубчатый элемент. На первой стадии сепарирования обеспечивают возможность текучим средам, имеющим более высокую плотность, отделиться на заданное расстояние от потока текучих сред, имеющих меньшую плотность. После этого проводят отделившиеся текучие среды, имеющие меньшую плотность, через второй трубчатый элемент, по меньшей мере, частично расположенный внутри первого трубчатого элемента, сепарируют текучие среды, имеющие более высокую плотность, в первую выпускную секцию, отводят через отверстия, проходящие сквозь стенку второго трубчатого элемента, захваченные текучие среды, имеющие более высокую плотность, от сепарированных текучих сред, имеющих меньшую плотность, и направляют захваченные текучие среды, имеющие более высокую плотность, во вторую выпускную секцию. Техническим результатом группы изобретений является повышение эффективности сепарации при минимальных потерях давления в протекающей через сепаратор текучей среде. 2 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к области термодинамики многофазных систем и может быть использовано для получения микродисперсных систем. Растворенные в воде газы в соответствии с законом Генри выделяются из нее при прохождении через отверстия в перегородке в виде пузырьков размером от 5 мкм и более. Определяемая средняя величина электрического потенциала в потоке составляет - 98,8 мВ. Диаметр отверстий в перегородке определяется величиной частиц механических примесей до 300 мкм и составляет 400 мкм. Изобретение позволяет повысить эффективность извлечения растворенного в воде газа. 2 ил., 2 табл.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для разделения нефти и газа при сборе продукции скважин. Газожидкостный сепаратор содержит вертикальный цилиндрический корпус, трубопроводы подвода газожидкостной смеси и отвода газа и жидкости. Корпус разделен конической перегородкой на входную и каплеотбойную камеры и снабжен газоуравнительным трубопроводом, соединяющим корпус сепаратора с трубопроводом отвода газа. Входная камера снабжена сливными трубами и концентрично установленной каплеотбойной камерой с конусной нижней частью и сливными трубами, нижние концы которых расположены ниже концов сливных труб входной камеры и установлены в гидрозатворный стакан в нижней части корпуса. Между корпусом и каплеотбойной камерой, выше патрубка подвода газожидкостной смеси и ниже верхней кромки каплеотбойной камеры установлена сужающаяся книзу воронка, верхняя кромка которой соединена с сетчатым стаканом, а также кольцевые сетчатые перегородки и экран. Трубопровод подвода газожидкостной смеси установлен в корпус до сетчатого стакана, а между корпусом и сетчатым стаканом выполнена ленточная спираль в виде винтовой линии для закручивания потока газожидкостной смеси. Между сетчатым стаканом и каплеотбойной камерой установлены кольцевые сетчатые перегородки с размерами ячеек сетки, уменьшающимися сверху вниз. Каплеотбойная камера снабжена чашами с отверстиями в днище каждой чаши, причем чаши расширяются сверху вниз и зафиксированы на внутренней стенке каплеотбойной камеры в пределах трубопровода отвода газа, при этом внутри трубопровода для отвода газа выполнен экран, состоящий из взаимообращенных навстречу друг другу конуса, расширяющегося снизу вверх, и усеченного конуса, сужающегося снизу вверх. Предлагаемый газожидкостный сепаратор позволяет повысить эффективность разделения газожидкостной смеси как на первой, так и второй ступенях, а также повысить надежность работы устройства и повысить качество газа, поступающего в трубопровод отвода газа. 1 ил.
Наверх